Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長平
dc.contributor.authorChien-Ming Laien
dc.contributor.author賴建閔zh_TW
dc.date.accessioned2021-06-16T05:25:00Z-
dc.date.available2019-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citation1. Agarwal, P. K., Agarwal, P., Reddy, M. K., and Sopory, S. K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25:1263-1274.
2. Askari, N., Jouzani, G. S., Mousivand, M., Foroutan, A., Nazari, A. H., Abbasalizadeh, S., Soheilivand, S., and Mardi, M. 2011. Evaluation of anti-phytoplasma properties of surfactin and tetracycline towards lime witches' broom disease using real-time PCR. J. Microbiol. Biotechnol. 21:81-88.
3. Asselbergh, B., De Vleesschauwer, D., and Hofte, M. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant-Microbe Interact. 21:709-719.
4. Bai, X., Zhang, J., Ewing, A., Miller, S. A., Jancso Radek, A., Shevchenko, D. V., Tsukerman, K., Walunas, T., Lapidus, A., Campbell, J. W., and Hogenhout, S. A. 2006. Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188:3682-3696.
5. Baulcombe, D. C. 1999. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant Biol. 2:109-113.
6. Bertaccini, A., and Duduk, B. 2010. Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol. Mediterr. 48:355-378.
7. Bradel, B. G., Preil, W., and Jeske, H. 2000. Remission of the free-branching pattern of Euphorbia pulcherrima by tetracycline treatment. J. Phytopathol. 148:587-590.
8. Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 88:57-63.
9. Chen, W. Y., Huang, Y. C., Tsai, M. L., and Lin, C. P. 2011. Detection and identification of a new phytoplasma associated with periwinkle leaf yellowing disease in Taiwan. Australas. Plant Path. 40:476-483.
10. Chicas, A., and Macino, G. 2001. Characteristics of post-transcriptional gene silencing. EMBO Rep. 2:992-996.
11. Christensen, N. M., Axelsen, K. B., Nicolaisen, M., and Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 10:526-535.
12. Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071.
13. Curkovic Perica, M. 2008. Auxin-treatment induces recovery of phytoplasma-infected periwinkle. J. Appl. Microbiol. 105:1826-1834
14. Delessert, C., Kazan, K., Wilson, I. W., Van Der Straeten, D., Manners, J., Dennis, E. S., and Dolferus, R. 2005. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43:745-757.
15. Devadas, S. K., Enyedi, A., and Raina, R. 2002. The Arabidopsis hrl1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J. 30:467-480.
16. Donze, T., Qu, F., Twigg, P., and Morris, T. J. 2014. Turnip crinkle virus coat protein inhibits the basal immune response to virus invasion in Arabidopsis by binding to the NAC transcription factor TIP. Virology. 449:207-214.
17. Eulgem, T. 2005. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 10:71-78.
18. Fitzmaurice, W. P., Holzberg, S., Lindbo, J. A., Padgett, H. S., Palmer, K. E., Wolfe, G. M., and Pogue, G. P. 2002. Epigenetic modification of plants with systemic RNA viruses. OMICS. 6:137-151.
19. Flors, V., Ton, J., Jakab, G., and Mauch-Mani, B. 2005. Abscisic acid and callose: Team players in defence against pathogens? J. Phytopathol. 153:377-383.
20. Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature. 486:228-232.
21. Giri, M. K., Swain, S., Gautam, J. K., Singh, S., Singh, N., Bhattacharjee, L., and Nandi, A. K. 2014. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. Plant Physiol. DOI: 10.1016/j.jplph.2013.12.015.
22. Guedes, M. E. M., Richmond, S., and Kuc, J. 1980. Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and the onset of flowering and fruiting. Physiol. Plant Pathol. 17:229-233.
23. Guo, A., He, K., Liu, D., Bai, S., Gu, X., Wei, L., and Luo, J. 2005. DATF: a database of Arabidopsis transcription factors. Bioinformatics. 21:2568-2569.
24. Hamilton, A. J., and Baulcombe, D. C. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 286:950-952.
25. Hinz, M., Wilson, I. W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E. S., Sauter, M., and Dolferus, R. 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153:757-772.
26. Hogenhout, S. A., Oshima, K., Ammar El, D., Kakizawa, S., Kingdom, H. N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403-423.
27. Hu, Y., Dong, Q., and Yu, D. 2012. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci. 185-186:288-297.
28. Hung, T. H., and Lin, C. P. 2011. Current status on important crop diseases induced by phytoplasmas in Taiwan. Proceedings of the symposium on integrated management technology of insect vectors and insect-borne diseases. 152:63-71.
29. Kazan, K., and Manners, J. M. 2013. MYC2: the master in action. Mol. Plant. 6:686-703.
30. Kessler, A., and Baldwin, I. T. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53:299-328.
31. Kizis, D., Lumbreras, V., and Pages, M. 2001. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett. 498:187-189.
32. Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F. C., Van Loon, L. C., and Pieterse, C. M. 2008. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147:1358-1368.
33. Koornneef, A., and Pieterse, C. M. 2008. Cross talk in defense signaling. Plant Physiol. 146:839-844.
34. Kube, M., Schneider, B., Kuhl, H., Dandekar, T., Heitmann, K., Migdoll, A. M., Reinhardt, R., and Seemuller, E. 2008. The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics. 9:306.
35. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., and Bartoszyk, I. M. 1998. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int. J. Syst. Evol. Microbiol. 48:1153-1169.
36. Li, J., Brader, G., and Palva, E. T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell. 16:319-331.
37. Liscombe, D. K., and O'connor, S. E. 2011. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry. 72:1969-1977.
38. Liu, Y., Schiff, M., and Dinesh-Kumar, S. P. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-786.
39. Liu, L. Y., Tseng, H. I., Lin, C. P., Lin, Y. Y., Huang, Y. H., Huang, C. K., Chang, T. H., and Lin, S. S. 2014. High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus Induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol. 55:942-957.
40. Lu, H. C., Hsieh, M. H., Chen, C. E., Chen, H. H., Wang, H. I., and Yeh, H. H. 2012. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol. Plant-Microbe Interact. 25:738-746.
41. Lu, R., Malcuit, I., Moffett, P., Ruiz, M. T., Peart, J., Wu, A. J., Rathjen, J. P., Bendahmane, A., Day, L., and Baulcombe, D. C. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22:5690-5699.
42. Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I., and Baulcombe, D. C. 2003. Virus-induced gene silencing in plants. Methods. 30:296-303.
43. Leon-Reyes, A., Van Der Does, D., De Lange, E. S., Delker, C., Wasternack, C., Van Wees, S. C., Ritsema, T., and Pieterse, C. M. 2010. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta. 232:1423-1432.
44. Mcdowell, J. M., and Dangl, J. L. 2000. Signal transduction in the plant immune response. Trends Biochem. Sci. 25:79-82.
45. Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140:411-432.
46. Ndamukong, I., Abdallat, A. A., Thurow, C., Fode, B., Zander, M., Weigel, R., and Gatz, C. 2007. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 50:128-139.
47. Neimark, H., and Kirkpatrick, B. C. 1993. Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic Mycoplasma-like organisms. Mol. Microbiol. 7:21-28.
48. Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39:500-507.
49. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H. Y., Wei, W., Suzuki, S., Arashida, R., Nakata, D., Miyata, S., Ugaki, M., and Namba, S. 2004. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 36:27-29.
50. Pandey, S. P., and Somssich, I. E. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150:1648-1655.
51. Penninckx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P., and Broekaert, W. F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 10:2103-2113.
52. Pieterse, C. M., Leon-Reyes, A., Van Der Ent, S., and Van Wees, S. C. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316.
53. Pozo, M. J., Van Der Ent, S., Van Loon, L. C., and Pieterse, C. M. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol. 180:511-523.
54. Ramanna, H., Ding, X. S., and Nelson, R. S. 2013. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing. Methods Mol. Biol. 975:15-32.
55. Robertson, D. 2004. VIGS vectors for gene silencing: many targets, many tools. Annu. Rev. Plant Biol. 55:495-519.
56. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998-1009.
57. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9:671-675.
58. Shi, X., Pan, H., Xie, W., Wu, Q., Wang, S., Liu, Y., Fang, Y., Chen, G., Gao, X., and Zhang, Y. 2013. Plant virus differentially alters the plant's defense response to its closely related vectors. PloS one. 8:e83520.
59. Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X., and Pieterse, C. M. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. 15:760-770.
60. Sugio, A., and Hogenhout, S. A. 2012. The genome biology of phytoplasma: modulators of plants and insects. Curr. Opin. Microbiol. 15:247-254.
61. Sugio, A., Kingdom, H. N., Maclean, A. M., Grieve, V. M., and Hogenhout, S. A. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 108:E1254-1263.
62. Sung, Y. C., Lin, C. P., and Chen, J. C. 2014. Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol. DOI: 10.1111/ppa.12186.
63. Tai, C. F., Lin, C. P., Sung, Y. C., and Chen, J. C. 2013. Auxin influences symptom expression and phytoplasma colonisation in periwinkle infected with periwinkle leaf yellowing phytoplasma. Ann. Appl. Biol. 163:420-429.
64. Tan, P. Y., and Whitlow, T. 2001. Physiological responses of Catharanthus roseus (periwinkle) to ash yellows phytoplasmal infection. New Phytol. 150:757-769.
65. Thaler, J. S., and Bostock, R. M. 2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology. 85:48-58.
66. Thomma, B. P., Eggermont, K., Tierens, K. F., and Broekaert, W. F. 1999. Requirement of functional Ethylene-Insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121:1093-1102.
67. Tran-Nguyen, L. T., Kube, M., Schneider, B., Reinhardt, R., and Gibb, K. S. 2008. Comparative genome analysis of 'Candidatus Phytoplasma australiense' (subgroup tuf-Australia I; rp-A) and 'Ca. Phytoplasma asteris' Strains OY-M and AY-WB. J. Bacteriol. 190:3979-3991.
68. Turner, J. G., Ellis, C., and Devoto, A. 2002. The jasmonate signal pathway. Plant Cell. 14 Suppl:S153-164.
69. Van Loon, L. C. 1997. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103:753-765.
70. Van Loon, L. C., Rep, M., and Pieterse, C. M. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.
71. Van Loon, L. C., and Van Strien, E. A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85-97.
72. Van Wees, S. C., Van Der Ent, S., and Pieterse, C. M. 2008. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-448.
73. Voitsik, A. M., Muench, S., Deising, H. B., and Voll, L. M. 2013. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biol. 13:85.
74. Walters, D., and Heil, M. 2007. Costs and trade-offs associated with induced resistance. Physiol. Mol. Plant Pathol. 71:3-17.
75. Walters, D., Walsh, D., Newton, A., and Lyon, G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology. 95:1368-1373.
76. Wang, X., Yan, Y., Li, Y., Chu, X., Wu, C., and Guo, X. 2014. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PloS one. 9:e93577.
77. Weintraub, P. G., and Beanland, L. 2006. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 51:91-111.
78. Woldemariam, M. G., Dinh, S. T., Oh, Y., Gaquerel, E., Baldwin, I. T., and Galis, I. 2013. NaMYC2 transcription factor regulates a subset of plant defense responses in Nicotiana attenuata. BMC Plant Biol. 13:73.
79. Wu, Y., Deng, Z., Lai, J., Zhang, Y., Yang, C., Yin, B., Zhao, Q., Zhang, L., Li, Y., Yang, C., and Xie, Q. 2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res. 19:1279-1290.
80. Yu, D., Chen, C., and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell. 13:1527-1540.
81. Zhang, J. Z. 2003. Overexpression analysis of plant transcription factors. Curr. Opin. Plant Biol. 6:430-440.
82. Zhao, Y., Wei, T., Yin, K. Q., Chen, Z., Gu, H., Qu, L. J., and Qin, G. 2012. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol. 195:450-460.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56359-
dc.description.abstract植物菌質體 (phytoplasma) 為重要的植物病原菌,造成嚴重的經濟損失。目前此病害仍缺乏安全有效之防治方法,釐清植物抗植物菌質體的機轉將有助於發展對抗此類病害的策略。在感染日日春葉片黃化病植物菌質體 (PLY phytoplasma)後,我們發現在有病徵與無病徵枝條皆會有 CrPR1a 的誘導表現,此外,茉莉酸生合成上一重要基因 CrLOX2 亦會受植物菌質體感染而誘導表現。因此,我們提出以病毒誘導基因靜默 (virus-induced gene silencing, VIGS) 技術來建構 CrPR1a 與 CrLOX2 的分子調控網絡之目標。我們從日日春 NGS database 中找出 55 群,共 723 個轉錄因子,初步挑選與逆境、抗病相關之類群做為篩選目標,含 AP2/EREBP (38)、ABI3/VP1 (8)、EIL (2)、NAC (29)、MADS (22)、bHLH (38)、WRKY (18),共 155 個轉錄因子。其中,我們發現有二 AP2/EREBP 類別轉錄因子的基因靜默可使 CrPR1a 或 CrLOX2 受 TRV 感染而誘發的表現量改變。為探討篩選出之轉錄因子與植物抗病機制、病原菌間之關係,我們檢查了這兩個轉錄因子對植物菌質體感染、水楊酸 (salicylic acid, SA)、茉莉酸 (jasmonic acid, JA) 與乙烯 (ethylene, ET) 處理的反應,藉以瞭解其受荷爾蒙誘導之狀況及上下游調控網絡。同時,CrNPR1 與 CrNPR3 在調控網絡中的角色與各篩選到轉錄因子彼此間之關係亦納入討論。本研究發現 ERF-34 能負向調控 CrPR1a 的表現,其亦被另一正向調控 CrPR1a 的轉錄因子 ARF-13 調控。ERF-37,一正向調控 CrLOX2 的轉錄因子,受植物菌質體感染後誘導表現。本研究發現了新的 CrPR1a 與 CrLOX2 調控因子並建構出一調控網絡,提供了植物抗植物菌質體所啟動分子路徑上更全面的了解,以期找出更有效之防治策略。zh_TW
dc.description.abstractPhytoplasmas are destructive plant pathogens that cause severe loss in agriculture worldwide. However, effective disease management against phytoplasmas have not been developed. Understanding the interactions between plants and phytoplasmas may provide new insights for disease management. CrPR1a can be induced in symptomatic and non-symptomatic shoots after periwinkle leaf yellowing (PLY) phytoplasma infection. CrLOX2, a jasmonate-responsive and biosynthesis gene, is also induced by the phytoplasma infection. Therefore, we aimed to construct transcriptional regulation networks of CrPR1a and CrLOX2 by using virus-induced gene silencing (VIGS). A total of 723 transcription factors in 55 groups were identified from a pre-established transcriptome database. Seven groups of factors, including AP2/EREBP (38), ABI3/VP1 (8), EIL (2), NAC (29), MADS (22), bHLH (38), WRKY (18), that may involve in biotic or abiotic stresses were selected for the screening. Two transcription factors in the AP2/EREBP group were identified to regulate expression of CrPR1a and CrLOX2 respectively. Their expressions under phytoplasma infection, different hormone treatments, and CrNPR1, CrNPR3 gene silencing were examined, and the expression of ERF-34, the potential negative regulator of CrPR1a, was not changed under conditions tested. However, its transcript level was downregulated when ARF-13, a potential positive regulator of CrPR1a, was silenced. ERF-37, a positive regulator of CrLOX2. ERF-37, the potential positive regulator of CrLOX2, was induced after PLY and PnWB phytoplasma infection. We constructed a regulatory network of CrPR1a and CrLOX2 with novel transcription factors. This might help to better understand of plant defense against phytoplasma.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:25:00Z (GMT). No. of bitstreams: 1
ntu-103-R00633012-1.pdf: 2692903 bytes, checksum: 24a41e37120a09d4928abc9701a22169 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
致謝 i
摘要 ii
Abstract iii
Introduction 1
Materials and Methods 9
Plant Material and Growth Condition 9
Chemical treatment 9
Identification of periwinkle transcription factors from a transcriptome database 9
Plasmid construction 10
Agrobacterium-mediated virus-induced gene silencing 11
RNA extraction and RT-PCR 12
Regulatory network construction 12
Results 14
Data mining of putative periwinkle transcription factors 14
Screening of CrPR1a regulators using TRV-based VIGS system 14
Screening of CrLOX2 regulators using TRV-based VIGS system 15
Construction of regulatory network involving hormonal regulation and responses to phytoplasma infection 16
Construction of regulatory network among candidate factors 17
Discussion 18
Tables and Figures 24
References 41
Supplementary Figures 54
dc.language.isoen
dc.subjectCrPR1azh_TW
dc.subjectCrLOX2zh_TW
dc.subject植物菌質體zh_TW
dc.subject病毒誘導基因靜默zh_TW
dc.subject轉錄因子zh_TW
dc.subject植物抗病zh_TW
dc.subjectvirus-induced gene silencingen
dc.subjectCrLOX2en
dc.subjectCrPR1aen
dc.subjecttranscription factoren
dc.subjectphytoplasmaen
dc.subjectplant defenseen
dc.title建立日日春與CrPR1a及CrLOX2相關之轉錄因子調控網絡zh_TW
dc.titleConstruction of Transcription Factor Regulatory Network of CrPR1a and CrLOX2 genes in Catharanthus roseusen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor陳仁治
dc.contributor.oralexamcommittee陳煜焜,葉信宏,張雅君
dc.subject.keywordCrPR1a,CrLOX2,植物菌質體,病毒誘導基因靜默,轉錄因子,植物抗病,zh_TW
dc.subject.keywordCrPR1a,CrLOX2,phytoplasma,virus-induced gene silencing,transcription factor,plant defense,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved