Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56351
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江運金(Yun Jin Jiang)
dc.contributor.authorChia-Hua Changen
dc.contributor.author張家華zh_TW
dc.date.accessioned2021-06-16T05:24:40Z-
dc.date.available2016-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-14
dc.identifier.citationAasland, R., Stewart, A.F., Gibson, T., 1996. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends in biochemical sciences 21, 87-88.
Ayer, D.E., Lawrence, Q.A., Eisenman, R.N., 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767-776.
Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S., Stainier, D.Y., Traver, D., 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108-111.
Boisset, J.C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., Robin, C., 2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116-120.
Boyer, L.A., Langer, M.R., Crowley, K.A., Tan, S., Denu, J.M., Peterson, C.L., 2002. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Molecular cell 10, 935-942.
Boyer, L.A., Latek, R.R., Peterson, C.L., 2004. The SANT domain: a unique histone-tail-binding module? Nature reviews. Molecular cell biology 5, 158-163.
Bradford, Y., Conlin, T., Dunn, N., Fashena, D., Frazer, K., Howe, D.G., Knight, J., Mani, P., Martin, R., Moxon, S.A., Paddock, H., Pich, C., Ramachandran, S., Ruef, B.J., Ruzicka, L., Bauer Schaper, H., Schaper, K., Shao, X., Singer, A., Sprague, J., Sprunger, B., Van Slyke, C., Westerfield, M., 2011. ZFIN: enhancements and updates to the Zebrafish Model Organism Database. Nucleic acids research 39, D822-829.
Cumano, A., Godin, I., 2007. Ontogeny of the hematopoietic system. Annual review of immunology 25, 745-785.
Davidson, A.J., Zon, L.I., 2004. The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene 23, 7233-7246.
Detrich, H.W., 3rd, Kieran, M.W., Chan, F.Y., Barone, L.M., Yee, K., Rundstadler, J.A., Pratt, S., Ransom, D., Zon, L.I., 1995. Intraembryonic hematopoietic cell migration during vertebrate development. Proceedings of the National Academy of Sciences of the United States of America 92, 10713-10717.
Duarte, A., Hirashima, M., Benedito, R., Trindade, A., Diniz, P., Bekman, E., Costa, L., Henrique, D., Rossant, J., 2004. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes & development 18, 2474-2478.
Engeszer, R.E., Patterson, L.B., Rao, A.A., Parichy, D.M., 2007. Zebrafish in the Wild: A Review of Natural History and New Notes from the Field. Zebrafish 4, 21-U126.
Galloway, J.L., Zon, L.I., 2003. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Current topics in developmental biology 53, 139-158.
Gerlach, G., 2006. Pheromonal regulation of reproductive success in female zebrafish: female suppression and male enhancement. Anim Behav 72, 1119-1124.
Gronroos, E., Terentiev, A.A., Punga, T., Ericsson, J., 2004. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America 101, 12165-12170.
Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., Nusslein-Volhard, C., 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1-36.
Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., Brand, M., van Eeden, F.J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., Nusslein-Volhard, C., 1996. Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123, 143-151.
Howe, K. Clark, M. D. Torroja, C. F. Torrance, J. Berthelot, C. Muffato, M. Collins, J. E. Humphray, S. McLaren, K. Matthews, L. McLaren, S. Sealy, I. Caccamo, M. Churcher, C. Scott, C. Barrett, J. C. Koch, R. Rauch, G. J. White, S. Chow, W. Kilian, B. Quintais, L. T. Guerra-Assuncao, J. A. Zhou, Y. Gu, Y. Yen, J. Vogel, J. H. Eyre, T. Redmond, S. Banerjee, R. Chi, J. Fu, B. Langley, E. Maguire, S. F. Laird, G. K. Lloyd, D. Kenyon, E. Donaldson, S. Sehra, H. Almeida-King, J. Loveland, J. Trevanion, S. Jones, M. Quail, M. Willey, D. Hunt, A. Burton, J. Sims, S. McLay, K. Plumb, B. Davis, J. Clee, C. Oliver, K. Clark, R. Riddle, C. Elliot, D. Threadgold, G. Harden, G. Ware, D. Begum, S. Mortimore, B. Kerry, G. Heath, P. Phillimore, B. Tracey, A. Corby, N. Dunn, M. Johnson, C. Wood, J. Clark, S. Pelan, S. Griffiths, G. Smith, M. Glithero, R. Howden, P. Barker, N. Lloyd, C. Stevens, C. Harley, J. Holt, K. Panagiotidis, G. Lovell, J. Beasley, H. Henderson, C. Gordon, D. Auger, K. Wright, D. Collins, J. Raisen, C. Dyer, L. Leung, K. Robertson, L. Ambridge, K. Leongamornlert, D. McGuire, S. Gilderthorp, R. Griffiths, C. Manthravadi, D. Nichol, S. Barker, G. Whitehead, S. Kay, M. Brown, J. Murnane, C. Gray, E. Humphries, M. Sycamore, N. Barker, D. Saunders, D. Wallis, J. Babbage, A. Hammond, S. Mashreghi-Mohammadi, M. Barr, L. Martin, S. Wray, P. Ellington, A. Matthews, N. Ellwood, M. Woodmansey, R. Clark, G. Cooper, J. Tromans, A. Grafham, D. Skuce, C. Pandian, R. Andrews, R. Harrison, E. Kimberley, A. Garnett, J. Fosker, N. Hall, R. Garner, P. Kelly, D. Bird, C. Palmer, S. Gehring, I. Berger, A. Dooley, C. M. Ersan-Urun, Z. Eser, C. Geiger, H. Geisler, M. Karotki, L. Kirn, A. Konantz, J. Konantz, M. Oberlander, M. Rudolph-Geiger, S. Teucke, M. Lanz, C. Raddatz, G. Osoegawa, K. Zhu, B. Rapp, A. Widaa, S. Langford, C. Yang, F. Schuster, S. C. Carter, N. P. Harrow, J. Ning, Z. Herrero, J. Searle, S. M. Enright, A. Geisler, R. Plasterk, R. H. Lee, C. Westerfield, M. de Jong, P. J. Zon, L. I. Postlethwait, J. H. Nusslein-Volhard, C. Hubbard, T. J. Roest Crollius, H. Rogers, J. and Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E., Yao, T.P., 2002. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. The EMBO journal 21, 6236-6245.
Kaneko, H., Shimizu, R., Yamamoto, M., 2010. GATA factor switching during erythroid differentiation. Current opinion in hematology 17, 163-168.
Kelly, P.D., Chu, F., Woods, I.G., Ngo-Hazelett, P., Cardozo, T., Huang, H., Kimm, F., Liao, L., Yan, Y.L., Zhou, Y., Johnson, S.L., Abagyan, R., Schier, A.F., Postlethwait, J.H., Talbot, W.S., 2000. Genetic linkage mapping of zebrafish genes and ESTs. Genome research 10, 558-567.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 203, 253-310.
Kissa, K., Herbomel, P., 2010. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112-115.
Knapik, E.W., Goodman, A., Ekker, M., Chevrette, M., Delgado, J., Neuhauss, S., Shimoda, N., Driever, W., Fishman, M.C., Jacob, H.J., 1998. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature genetics 18, 338-343.
Kuryshev, V.Y., Vorobyov, E., Zink, D., Schmitz, J., Rozhdestvensky, T.S., Munstermann, E., Ernst, U., Wellenreuther, R., Moosmayer, P., Bechtel, S., Schupp, I., Horst, J., Korn, B., Poustka, A., Wiemann, S., 2006. An anthropoid-specific segmental duplication on human chromosome 1q22. Genomics 88, 143-151.
Lawrence, C., 2007. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1-20.
Leonard, M., Brice, M., Engel, J.D., Papayannopoulou, T., 1993. Dynamics of GATA transcription factor expression during erythroid differentiation. Blood 82, 1071-1079.
Li, M., Brooks, C.L., Wu-Baer, F., Chen, D., Baer, R., Gu, W., 2003. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972-1975.
Lim, C.H., Chong, S.W., Jiang, Y.J., 2009. Udu deficiency activates DNA damage checkpoint. Molecular biology of the cell 20, 4183-4193.
Liu, Y., Du, L., Osato, M., Teo, E.H., Qian, F., Jin, H., Zhen, F., Xu, J., Guo, L., Huang, H., Chen, J., Geisler, R., Jiang, Y.J., Peng, J., Wen, Z., 2007. The zebrafish udu gene encodes a novel nuclear factor and is essential for primitive erythroid cell development. Blood 110, 99-106.
Lu, P., Hankel, I.L., Hostager, B.S., Swartzendruber, J.A., Friedman, A.D., Brenton, J.L., Rothman, P.B., Colgan, J.D., 2011. The developmental regulator protein Gon4l associates with protein YY1, co-repressor Sin3a, and histone deacetylase 1 and mediates transcriptional repression. The Journal of biological chemistry 286, 18311-18319.
Medvinsky, A.L., Samoylina, N.L., Muller, A.M., Dzierzak, E.A., 1993. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364, 64-67.
Michael, D., Oren, M., 2003. The p53-Mdm2 module and the ubiquitin system. Seminars in cancer biology 13, 49-58.
Moore, J.C., Sheppard-Tindell, S., Shestopalov, I.A., Yamazoe, S., Chen, J.K., Lawson, N.D., 2013. Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Developmental biology 384, 128-140.
Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., Brand, M., van Eeden, F.J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg, C.P., Jiang, Y.J., Kelsh, R.N., Nusslein-Volhard, C., 1996. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81-93.
Ohtomo, T., Horii, T., Nomizu, M., Suga, T., Yamada, J., 2008. Cloning and expression analysis of YY1AP-related protein in the rat brain. Amino acids 34, 155-161.
Paik, E.J., Zon, L.I., 2010. Hematopoietic development in the zebrafish. The International journal of developmental biology 54, 1127-1137.
Palis, J., Yoder, M.C., 2001. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Experimental hematology 29, 927-936.
Pennetta, G., Pauli, D., 1998. The Drosophila Sin3 gene encodes a widely distributed transcription factor essential for embryonic viability. Development genes and evolution 208, 531-536.
Postlethwait, J.H., Johnson, S.L., Midson, C.N., Talbot, W.S., Gates, M., Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., et al., 1994. A genetic linkage map for the zebrafish. Science 264, 699-703.
Rampon, C., Huber, P., 2003. Multilineage hematopoietic progenitor activity generated autonomously in the mouse yolk sac: analysis using angiogenesis-defective embryos. The International journal of developmental biology 47, 273-280.
Silverstein, R.A., Ekwall, K., 2005. Sin3: a flexible regulator of global gene expression and genome stability. Current genetics 47, 1-17.
Sirotkin, H., 2011. The Laboratory Zebrafish. Q Rev Biol 86, 361-361.
Spence, R., Gerlach, G., Lawrence, C., Smith, C., 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev 83, 13-34.
Spence, R., Smith, C., 2006. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behavioral Ecology 17, 779-783.
Spronk, C.A., Tessari, M., Kaan, A.M., Jansen, J.F., Vermeulen, M., Stunnenberg, H.G., Vuister, G.W., 2000. The Mad1-Sin3B interaction involves a novel helical fold. Nature structural biology 7, 1100-1104.
Taylor, K.L., Henderson, A.M., Hughes, C.C., 2002. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvascular research 64, 372-383.
Wang, C.Y., Liang, Y.J., Lin, Y.S., Shih, H.M., Jou, Y.S., Yu, W.C., 2004. YY1AP, a novel co-activator of YY1. The Journal of biological chemistry 279, 17750-17755.
Wang, H., Clark, I., Nicholson, P.R., Herskowitz, I., Stillman, D.J., 1990. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Molecular and cellular biology 10, 5927-5936.
Yeh, T.S., Lin, Y.M., Hsieh, R.H., Tseng, M.J., 2003. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. The Journal of biological chemistry 278, 41963-41969.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56351-
dc.description.abstract目前已知斑馬魚Ugly duckling (Udu)蛋白具有許多功能,包含紅血球發育相關、細胞凋亡調控及有可能參與在DNA複製及細胞週期的過程中。Udu蛋白具有多個功能區域 (functional domain),包含兩個YY1-binding (YY1BD)、PAH及SANT 區域。udu具有高度保守性,在許多物種中都有它的同源基因。其中,udu在人類的同源基因Gon4l,在演化過程中發生部分複製的現象,產生一個全新的蛋白YY1-associated protein (YY1AP)。YY1AP的結構跟Udu/Gon4l比起來,只包含了兩個YY1BD,並且能夠與轉錄因子YY1結合,在人類細胞中增強下游基因的表現。同樣地,我們實驗室之前的研究發現,斑馬魚Udu也可以透過其YY1BD和YY1結合。因此我們假設,在發育過程中,Udu的YY1BD、PAH及SANT 區域可能各自具有獨立的功能。
我們利用兩種斑馬魚的udu突變種,udutu24及udusq3進行實驗。udusq3的突變位置跟udutu24比較,多了一個YY1BD的區域。形態方面udusq3和udutu24同樣具有較短的體長、彎曲尾巴及不正常的體節發育。然而udusq3的形態改變情形比udutu24和緩,因此我們認為YY1BD具有獨立的功能。我們透過原位雜合實驗 (in situ hybridization),發現血液發育、血管發育等基因在udutu24及udusq3中分別有不同的表現。另外,我們透過顯微注射的方式,分別將udu N-terminal mRNA (只包含兩個YY1BD) 及udu C-terminal mRNA (只包含PAH、SANT區域) 注射到udutu24或是udusq3的胚胎當中,發現對於udutu24和udusq3擁有不同的效果。大部分的發育缺陷形態透過udu N-terminal mRNA即可挽救,證明了在Udu上面的YY1BD具有獨立的功能。
另外,我們發現在udu mutants當中,除了血液發育缺陷之外,同時也有血管發育缺陷的情形。同時,我們也發現在udu mutants中,Notch signaling的配體 (ligand)─ dll4的表現量是下降的。因此,我們推測這種血管發育缺陷的情形,可能和Notch-VEGF pathway有關。另外,由於在udusq3中,肌節間血管 (intersomitic vessels,ISV)的發育情形比udutu24良好,因此我們推測肌節間血管的發育可能藉由Udu的YY1BD和YY1結合來調控。我們將yy1 morpholino注射到udusq3的胚胎當中,發現其肌節間血管的發育缺陷更為嚴重。這也證明了在Udu當中的YY1BD具有獨立的功能。
zh_TW
dc.description.abstractIt has been shown that zebrafish Udu plays a role in many developmental processes. Our previous data showed that Udu has diverse functions, including erythrocyte development and may be involved in modulating DNA replication or cell cycle. Gon4l is one of the homolog of zebrafish Udu in human and mouse. During evolution, Gon4l was partially duplicated and produced a novel protein, YY1AP (YY1-associated protein). It has been demonstrated that when YY1AP binds to YY1, it will enhance the transcriptional activation of YY1-targeted promoter in human cells. Likewise, our previous data showed that YY1 can associate with YY1-binding domains (YY1BD) of Udu. According to these results, I hypothesize that Udu YY1BD, PAH and SANT domains might have respective or independent functions during development.
I used udu mutants, udutu24 and udusq3 to study whether N-terminal segment of Udu has distinct functions or not. Compared to udutu24, udusq3 remains one of YY1BD sequence in udu gene structure. By using hematopoietic and angiogenic markers for in situ hybridization, I found that there are different expression patterns in udutu24 and udusq3. Furthermore, I injected udu N-terminal or full-length mRNA into one-cell stage udutu24 or udusq3 embryos separately. I have shown that both udu N-terminal and full-length mRNA could partially rescue phenotypes in udu mutants. Moreover, I discovered that ISV defect in udusq3 is much more severe after yy1 MO injection. It suggests that YY1BD of Udu has distinct functions in zebrafish. To sum up, these data shows that YY1BD, PAH and SANT domains of Udu may play independent roles in different developmental processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:24:40Z (GMT). No. of bitstreams: 1
ntu-103-R01b43007-1.pdf: 2632425 bytes, checksum: 7f287ba40f03605e827679cd70503fce (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract v
Table of Contents vii
Index of Figures viii
Index of Tables ix
Chapter 1. Introduction 1
1.1 ugly duckling (udu) gene functions and its important domains 1
1.2 Zebrafish as a model animal to study vertebrate development 3
1.3 Hematopoietic development in zebrafish 5
1.4 YY1AP (YY1-associated protein) 9
1.5 Specific aims 11
Chapter 2. Materials and Methods 12
2.1 Maintenance of zebrafish 12
2.2 Embryo staging 12
2.3 Genotyping of zebrafish udutu24 and udusq3 embryos 12
2.4 Amplication of cDNA by RT-PCR 14
2.5 Microinjection experiments 15
2.6 Antisense probe synthesis 16
2.7 Whole-mount in situ hybridization (WISH) 17
2.8 Microscopy 19
2.9 Real-time PCR 19
Chapter 3. Results 24
3.1 Phenotypic observations of udutu24 and udusq3 embryos 24
3.2 Real-time PCR results of hematopoiesis- and apoptosis-related genes in udutu24 and udusq3 embryos 24
3.3 Rescue experiments by micro-injection and analyzed by in situ hybridization of p53 in udutu24 mutants 25
3.4 Comparison of gata1, hbae1 (hematopoiesis-related markers) in situ hybridization results in udutu24 and udusq3 mutants 28
3.5 ISV angiogenic phenotype in udutu24 and udusq3 mutants 30
Chapter 4. Discussion 54
4.1 Accuracy of real-time PCR in this study 54
4.2 Functional domains in zebrafish Udu protein 55
4.3 YY1-Udu-NICD complex ? 56
4.4 The angioblast precusor migration defect in udu mutants 57
4.5 Udu may be involved in Notch-VEGF pathway 58
References 60
List of Abbreviations 65
dc.language.isoen
dc.title斑馬魚Ugly duckling (Udu) 蛋白功能域之分析zh_TW
dc.titleAnalysis of functional domains in zebrafish Ugly duckling (Udu) proteinen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王致恬(Chih Tien Wang),李士傑(Shyh Jye Lee)
dc.subject.keyword斑馬魚,血管新生,血管發育,血球發育,細胞凋亡,肌節間血管,zh_TW
dc.subject.keywordzebrafish,Udu,Gon4l,YY1-binding domain,PAH domain,SANT domain,angiogenesis,hematopoiesis,p53-dependent apoptosis,apoptosis,intersomitic vessels,Notch,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved