Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐立中(Li-Chung Hsu)
dc.contributor.authorYi-Hui Laien
dc.contributor.author賴怡惠zh_TW
dc.date.accessioned2021-06-16T05:24:19Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citationChen, G. & Pedra, J. H. The inflammasome in host defense. Sensors (Basel) 10, 97-111, doi:10.3390/s100100097 (2010).
2 Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821-832, doi:10.1016/j.cell.2010.01.040 (2010).
3 Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature reviews microbiology 7, 99-109, doi:10.1038/nrmicro2070 (2009).
4 Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121, doi:10.1038/nature10558 (2011).
5 Gringhuis, S. I. et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nature immunology 13, 246-254, doi:10.1038/ni.2222 (2012).
6 Rathinam, V. A., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nature immunology 13, 333-342, doi:10.1038/ni.2237 (2012).
7 de Alba, E. Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). The Journal of biological chemistry 284, 32932-32941, doi:10.1074/jbc.M109.024273 (2009).
8 Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nature reviews molecular cell biology 4, 95-104, doi:10.1038/nrm1019 (2003).
9 Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745-757, doi:10.1016/j.cell.2011.04.022 (2011).
10 Jeru, I. et al. Role of interleukin-1beta in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy. Arthritis and rheumatism 63, 2142-2148, doi:10.1002/art.30378 (2011).
11 Anand, P. K. et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488, 389-393, doi:10.1038/nature11250 (2012).
12 D., J. et al. Monarch-1 Suppresses Non-Canonical NF-kB Activation and p52-Dependent Chemokine Expression in Monocytes. The Journal of Immunology vol. 178 1256-1260 (2007).
13 Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. The Journal of experimental medicine 207, 1745-1755, doi:10.1084/jem.20100257 (2010).
14 Miao, E. A. & Warren, S. E. Innate immune detection of bacterial virulence factors via the NLRC4 inflammasome. J Clin Immunol 30, 502-506, doi:10.1007/s10875-010-9386-5 (2010).
15 Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596-600, doi:10.1038/nature10510 (2011).
16 Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518, doi:10.1038/nature07725 (2009).
17 Kerur, N. et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell host & microbe 9, 363-375, doi:10.1016/j.chom.2011.04.008 (2011).
18 Goldbach-Mansky, R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol 167, 391-404, doi:10.1111/j.1365-2249.2011.04533.x (2012).
19 Church, L. D., Churchman, S. M., Hawkins, P. N. & McDermott, M. F. Hereditary auto-inflammatory disorders and biologics. Springer seminars in immunopathology 27, 494-508, doi:10.1007/s00281-006-0015-6 (2006).
20 Mitoma, H. et al. The DHX33 RNA helicase senses cytosolic RNA and activates the NLRP3 inflammasome. Immunity 39, 123-135, doi:10.1016/j.immuni.2013.07.001 (2013).
21 Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233-236, doi:10.1038/nature04517 (2006).
22 Gross, O. et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433-436, doi:10.1038/nature07965 (2009).
23 Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228-232, doi:10.1038/nature04515 (2006).
24 Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature immunology 11, 136-140, doi:10.1038/ni.1831 (2010).
25 Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241, doi:10.1038/nature04516 (2006).
26 Gasse, P. et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. American journal of respiratory and critical care medicine 179, 903-913, doi:10.1164/rccm.200808-1274OC (2009).
27 Cassel, S. L. et al. The Nalp3 inflammasome is essential for the development of silicosis. Proceedings of the National Academy of Sciences of the United States of America 105, 9035-9040, doi:10.1073/pnas.0803933105 (2008).
28 Feldmeyer, L. et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Current biology : CB 17, 1140-1145, doi:10.1016/j.cub.2007.05.074 (2007).
29 Jin, C. & Flavell, R. A. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30, 628-631, doi:10.1007/s10875-010-9440-3 (2010).
30 Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature medicine 19, 57-64, doi:10.1038/nm.2999 (2013).
31 Martinon, F. Dangerous liaisons: mitochondrial DNA meets the NLRP3 inflammasome. Immunity 36, 313-315, doi:10.1016/j.immuni.2012.03.005 (2012).
32 Mihai G. Netea et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1B in monocytes and macrophages. Blood 113, 2324-2335, doi:10.1182/blood-2008-03-146720
10.1182/blood2008-03-146720 (2009).
33 Piccini, A. et al. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proceedings of the National Academy of Sciences of the United States of America 105, 8067-8072, doi:10.1073/pnas.0709684105 (2008).
34 Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268, doi:10.1038/nature07383 (2008).
35 Chuang, S. Y. et al. TLR-induced PAI-2 expression suppresses IL-1beta processing via increasing autophagy and NLRP3 degradation. Proceedings of the National Academy of Sciences of the United States of America 110, 16079-16084, doi:10.1073/pnas.1306556110 (2013).
36 Guarda, G. et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213-223, doi:10.1016/j.immuni.2011.02.006 (2011).
37 Haneklaus, M. et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. Journal of immunology 189, 3795-3799, doi:10.4049/jimmunol.1200312 (2012).
38 Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature immunology 12, 222-230, doi:10.1038/ni.1980 (2011).
39 Walle, L. V. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature, doi:10.1038/nature13322 (2014).
40 Hernandez-Cuellar, E. et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. Journal of immunology 189, 5113-5117, doi:10.4049/jimmunol.1202479 (2012).
41 Stehlik, C. & Dorfleutner, A. COPs and POPs: Modulators of Inflammasome Activity. Journal of Immunology, 7993-7998 (2007).
42 Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401-414, doi:10.1016/j.immuni.2012.01.009 (2012).
43 Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nature immunology 14, 454-460, doi:10.1038/ni.2550 (2013).
44 Subramanian, N., Natarajan, K., Clatworthy, M. R., Wang, Z. & Germain, R. N. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell 153, 348-361, doi:10.1016/j.cell.2013.02.054 (2013).
45 Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311-323, doi:10.1016/j.immuni.2013.08.001 (2013).
46 Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer, doi:10.1038/nrc2400. (2008).
47 Medcalf, R. L. & Stasinopoulos, S. J. The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. FEBS J 272, 4858-4867, doi:10.1111/j.1742-4658.2005.04879.x (2005).
48 Greten, F. R. et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130, 918-931, doi:10.1016/j.cell.2007.07.009 (2007).
49 Linder, P. & Jankowsky, E. From unwinding to clamping - the DEAD box RNA helicase family. Nature reviews. Molecular cell biology 12, 505-521, doi:10.1038/nrm3154 (2011).
50 Tanner, N., Cordin, O., Banroques, J., Doere, M. & Linder, P. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Molecular cell 11, 127-165 (2003).
51 Linder P, L. P., Ashburner M, Leroy P, Nielsen PJ, & Nishi K, S. J., Slonimski PP. Birth of the D-E-A-D box. Nature,337:121–122. (1989).
52 Jarmoskaite, I. & Russell, R. DEAD-box proteins as RNA helicases and chaperones. Wiley interdisciplinary reviews. RNA 2, 135-187, doi:10.1002/wrna.50 (2011).
53 Yang, Q., Del Campo, M., Lambowitz, A. & Jankowsky, E. DEAD-box proteins unwind duplexes by local strand separation. Molecular cell 28, 253-316, doi:10.1016/j.molcel.2007.08.016 (2007).
54 Pyle, A. RNA helicases and remodeling proteins. Current opinion in chemical biology 15, 636-678, doi:10.1016/j.cbpa.2011.07.019 (2011).
55 Solem, A., Zingler, N. & Pyle, A. A DEAD protein that activates intron self-splicing without unwinding RNA. Molecular cell 24, 611-618, doi:10.1016/j.molcel.2006.10.032 (2006).
56 Iost, I. & Dreyfus, M. DEAD-box RNA helicases in Escherichia coli. Nucleic acids research 34, 4189-4286, doi:10.1093/nar/gkl500 (2006).
57 Shajani, Z., Sykes, M. & Williamson, J. Assembly of bacterial ribosomes. Annual review of biochemistry 80, 501-527, doi:10.1146/annurev-biochem-062608-160432 (2011).
58 Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature cell biology 8, 668-676, doi:10.1038/ncb1424 (2006).
59 Tran, E., Zhou, Y., Corbett, A. & Wente, S. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Molecular cell 28, 850-859, doi:10.1016/j.molcel.2007.09.019 (2007).
60 Watanabe, M. et al. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. The EMBO journal 20, 1341-1393, doi:10.1093/emboj/20.6.1341 (2001).
61 Gunter W. Klappacher et al. From unwinding to clamping — the DEAD box RNA helicase family. Cell 109, 169-180 (2002).
62 Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5, 730-737, doi:10.1038/ni1087 (2004).
63 Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nature immunology 6, 981-989, doi:10.1038/ni1243 (2005).
64 Andrejeva, J. et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proceedings of the National Academy of Sciences of the United States of America 101, 17264-17273, doi:10.1073/pnas.0407639101 (2004).
65 Miyashita, M., Oshiumi, H., Matsumoto, M. & Seya, T. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Molecular and cellular biology 31, 3802-3819, doi:10.1128/MCB.01368-10 (2011).
66 Zhang, Z. et al. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity 34, 866-878, doi:10.1016/j.immuni.2011.03.027 (2011).
67 Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology 12, 959-965, doi:10.1038/ni.2091 (2011).
68 Agostini, L. et al. NALP3 Forms an IL-1B-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder. Immunity 20, 319-325 (2004).
69 Lo, Y. H. et al. Selective inhibition of the NLRP3 inflammasome by targeting to promyelocytic leukemia protein in mouse and human. Blood 121, 3185-3194, doi:10.1182/blood-2012-05-432104 (2013).
70 Chuang, Y.-T. et al. Tumor suppressor death-associated protein kinase is required for full IL-1β production. Blood 117, 960-1030, doi:10.1182/blood-2010-08-303115 (2011).
71 Martinon, F., Agostini, L., Meylan, E. & Tschopp, J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Current biology : CB 14, 1929-1934, doi:10.1016/j.cub.2004.10.027 (2004).
72 Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278-364, doi:10.1038/nature10759 (2012).
73 Martinon, F., Burns, K. & Tschopp, J. r. The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-1B. Molecular cell 10, 417-426 (2002).
74 Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225, doi:10.1038/nature09663 (2011).
75 Jin, J. et al. LRRFIP2 negatively regulates NLRP3 inflammasome activation in macrophages by promoting Flightless-I-mediated caspase-1 inhibition. Nat Commun 4, 2075, doi:10.1038/ncomms3075 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56343-
dc.description.abstract發炎小體(the inflammasomes)為一蛋白質複合體,其功能為將第一型半胱天冬酶(caspase-1)活化並因此催化第一型介白素 β (IL-1β)與第十八型介白素(IL-18)的成熟。發炎小體適度的活化可清除病原體,但失控的發炎反應已被報導和許多癌症及自體炎症性疾病相關。我們實驗室發現了第二型纖溶酶原激活物抑制酶(PAI-2)能在受LPS刺激的巨噬細胞中抑制第一型介白素β的成熟。我們實驗室進行了酵母雙雜交實驗發現一核醣核酸解旋脢(DDX)為PAI-2的結合蛋白。然而,DDX在調控發炎小體的角色仍是未知的。我們研究發現當利用RNA干擾技術(RNA interference)抑制DDX的基因表現並處以細菌內毒素脂多醣體 (LPS,Lipopolysaccharide)後,不管是在人類巨噬細胞THP-1細胞株或是小鼠骨髓細胞分化成的巨噬細胞(BMDM)中都大幅提高成熟型第一型半胱天冬酶活性以及成熟型第一型介白素β的釋放。此外THP-1細胞在處以LPS後DDX會從細胞核轉到細胞質,而DDX的出核對它抑制發炎小體是很重要的。在人類胚腎細胞株HEK293T內證實DDX會和其中一種發炎小體蛋白NLRP3的LRR區域結合。因為LRR區域對於NLRP3跑到粒線體並結合接合蛋白ASC,我們發現NLRP3和ASC的結合會受到DDX存在下的干擾。這些研究結果證實DDX能夠負調控NLRP3發炎小體複合體的形成進而抑制第一型半胱天冬酶活性以及成熟型第一型介白素β的活性。zh_TW
dc.description.abstractInflammasome, a multiple protein complex modulating caspase-1 activity, regulates the proteolytic cleavage of proinflammatory cytokines, IL-1 sand IL-18, into their active forms. Inflammasomes play a crucial role in the clearance of pathogens, however, deregulated inflammasome activity contributes the pathogenesis of various diseases including auto-inflammatory diseases and cancers. Our previous studies showed that PAI-2 is a negative regulator of NLRP3 inflammasome activation. We previously identified a novel DEAD box-containing protein, DDX, using PAI-2 as a bait in a yeast two-hybrid screening. However, the role of DDX in regulation of the inlammasome activation remains unknown. In this research, we found that caspase-1 activation and mature IL-1β s production were largely enhanced upon LPS challenge in DDX-silenced THP-1 macrophages and bone marrow derived macrophages (BMDMs). In addition, DDX migrated from the nucleus to the cytoplasm upon LPS stimulation, which is required for its inhibitory role in NLRP3 inflammasome activation. DDX specifically interacted with the LRR motif of NLRP3 via its DEAD domain. Furthermore, due to the crucial role of the NLRP3 LRR domain in recruitment of NLRP3 to mitochondria and binding to its adaptor ASC, we found that the interaction of NLRP3 and ASC was downregulated in the presence of DDX. Our results suggest that DDX suppresses the formation of the NLRP3 inflammasome complex leading to negative regulation of caspase-1 activation and IL-1β s production.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:24:19Z (GMT). No. of bitstreams: 1
ntu-103-R01448008-1.pdf: 2952684 bytes, checksum: 18f3bf61031fddcf5d3d75528537d2dd (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 1
摘要 2
Abstract 3
Contents 5
Introduction 8
Inflammasomes 8
Classes of the inflammasomes 9
NLRP1 inflammasome 10
NLRP6 and NLRP12 inflammasomes 11
NLRC4 inflammasome 11
PYHIN inflammasome 12
NLRP3 inflammasome and its regulations 13
NLRP3 inflammasome and mitochondria 17
PAI-2 18
DEAD RNA Helicase family 19
The DEAD-box proteins and the immune system 20
DDX 21
Specific aim 23
Materials and Methods 24
Reagents 24
Plasmids 25
Site-directed mutagenesis 27
Cell culture and transfection 27
Preparation of pseudotyped lentiviruses 28
Preparation of Bone Marrow Derived Macrophages (BMDMs) 29
Preparation of whole cell lysate 30
Preparation of nuclear and cytosolic extracts 30
Immunoblotting 31
Detection of secreted cytokines and caspase-1 32
Immunoprecipitation 32
Immunofluorescence staining 33
Reconstitution of NLRP3 inflammasome in HEK293T cells 34
Purification of His-tagged DDX Antigen 34
DDX Antibody Production and Purification of DDX Antibody 36
Results 37
1. Generation of the DDX antibody 37
2. DDX depletion enhanced inflammasome activity and IL-1β production in THP-1 macrophages upon LPS treatment 39
3. Depletion of DDX in BMDMs induced caspase-1 activation and IL-1β production after LPS stimulation 40
4. DDX associated with NLRP3 in HEK293T and THP-1 macrophages 41
5. The DEAD domain of DDX associated with the LRR region of NLRP3. 41
6. Full length and the DEAD-box domain of DDX inhibited mature IL-1β production in reconstituted NLRP3 inflammasome. 43
7. DDX inhibited the interaction between NLRP3 and ASC in HEK293T cells. 44
8. DDX translocated to the cytosol in THP-1 macrophages in response to LPS. 44
9. Translocation of DDX to cytosol in LPS-treated THP-1 macrophages is required for DDX-mediated suppression of caspase-1 activation and IL-1β production. 46
Discussion 48
Figures 56
Figure 1. Expression and purification of a recombinant DDX polypeptide in E. coli. 56
Figure 2. Characterization of the specificity of homemade DDX antibody. 58
Figure 3.Knockdown of DDX in THP-1 macrophages enhanced IL-1β and IL-18 production and inflammasome activity after LPS stimulation. 59
Figure 4. Knockdown of DDX induced caspase-1 activation and IL-1β production in BMDMs after LPS stimulation. 60
Figure 5. DDX specifically associated with NLRP3 but not other NLRs or AIM2 in HEK293T cells. 61
Figure 6. The LRR of NLRP3 associated with DDX when overexpressed in HEK293T cells. 63
Figure 7. The DEAD domain of DDX associated with NLRP3. 64
Figure 8. Full length and the DEAD-box domain of DDX suppressed mature IL-1β production in the reconstituted with the NLRP3 inflammasome in HEK293T cells. 65
Figure 9. DDX blocked association of NLRP3 with ASC in HEK293T cells. 66
Figure 10. LPS induced translocation of wild type, but not DDX NES mutant, from the nucleus to the cytosol in THP-1 macrophages. 68
Figure 11. LPS-induced translocation of DDX to cytosol in THP-1 macrophages is required for DDX-mediated suppression of IL-1β production. 69
Reference 70
dc.language.isoen
dc.subject發炎小體zh_TW
dc.subjectinflammasomeen
dc.title一個新穎的DEAD-box蛋白於NLRP3發炎小體中的角色zh_TW
dc.titleThe role of a novel DEAD-box containing protein in NLRP3 inflammasome activationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊雅惠(Ya-Hui chuang),陳俊任(Chun-Jen Chen)
dc.subject.keyword發炎小體,zh_TW
dc.subject.keywordinflammasome,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2014-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved