請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文彬 | |
| dc.contributor.author | Miao-Li Su | en |
| dc.contributor.author | 蘇妙莉 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:24:17Z | - |
| dc.date.available | 2017-10-15 | |
| dc.date.copyright | 2014-10-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | 1. Basson, C.T., et al., Identification, Characterization, and Chromosomal Localization of the Human Homolog (hES) of ES/130. Genomics, 1996. 35(3): p. 628-631.
2. Savitz, A.J. and D.I. Meyer, Identification of a ribosome receptor in the rough endoplasmic reticulum. Nature, 1990. 346(6284): p. 540-4. 3. Collins, P.G. and R. Gilmore, Ribosome binding to the endoplasmic reticulum: a 180-kD protein identified by crosslinking to membrane-bound ribosomes is not required for ribosome binding activity. J Cell Biol, 1991. 114(4): p. 639-49. 4. Nunnari, J.M., et al., Characterization of the rough endoplasmic reticulum ribosome-binding activity. Nature, 1991. 352(6336): p. 638-640. 5. Gorlich, D., et al., A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell, 1992. 71(3): p. 489-503. 6. Gorlich, D. and T.A. Rapoport, Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell, 1993. 75(4): p. 615-630. 7. Cui, X.A., H. Zhang, and A.F. Palazzo, p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol, 2012. 10(5): p. e1001336. 8. Ueno, T., et al., Regulation of polysome assembly on the endoplasmic reticulum by a coiled-coil protein, p180. Nucleic Acids Res, 2012. 40(7): p. 3006-17. 9. Shibata, Y., et al., Mechanisms Determining the Morphology of the Peripheral ER. Cell, 2010. 143(5): p. 774-788. 10. Ogawa-Goto, K., et al., p180 is involved in the interaction between the endoplasmic reticulum and microtubules through a novel microtubule-binding and bundling domain. Mol Biol Cell, 2007. 18(10): p. 3741-51. 11. Telikicherla, D., et al., Overexpression of ribosome binding protein 1 (RRBP1) in breast cancer. Clin Proteomics, 2012. 9(1): p. 7. 12. Tsai, H.Y., et al., Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78. Oncogene, 2013. 32(41): p. 4921-31. 13. Krasnov, G.S., et al., [Colorectal cancer 2D-proteomics: identification of altered protein expression]. Mol Biol (Mosk), 2009. 43(2): p. 348-56. 14. Tohyama, S., et al., Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell, 2013. 12(1): p. 127-37. 15. Cooper, L.L., et al., Redox modification of ryanodine receptors by mitochondria-derived reactive oxygen species contributes to aberrant Ca2+ handling in ageing rabbit hearts. J Physiol, 2013. 591(Pt 23): p. 5895-911. 16. Cutler, M.J., et al., Aberrant S-nitrosylation mediates calcium-triggered ventricular arrhythmia in the intact heart. Proc Natl Acad Sci U S A, 2012. 109(44): p. 18186-91. 17. Lim, G., et al., Does nitric oxide modulate cardiac ryanodine receptor function? Implications for excitation-contraction coupling. Cardiovasc Res, 2008. 77(2): p. 256-64. 18. Gonzalez, D.R., et al., Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci U S A, 2007. 104(51): p. 20612-7. 19. Xu, L., et al., Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 1998. 279(5348): p. 234-7. 20. Shan, J., et al., Role of chronic ryanodine receptor phosphorylation in heart failure and beta-adrenergic receptor blockade in mice. J Clin Invest, 2010. 120(12): p. 4375-87. 21. Marx, S.O. and A.R. Marks, Dysfunctional ryanodine receptors in the heart: new insights into complex cardiovascular diseases. J Mol Cell Cardiol, 2013. 58: p. 225-31. 22. Terentyev, D., et al., Redox modification of ryanodine receptors contributes to sarcoplasmic reticulum Ca2+ leak in chronic heart failure. Circ Res, 2008. 103(12): p. 1466-72. 23. Gonzalez, D.R., et al., Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem, 2010. 285(37): p. 28938-45. 24. Kohlhaas, M., et al., Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res, 2006. 98(2): p. 235-44. 25. Niggli, E., et al., Posttranslational modifications of cardiac ryanodine receptors: Ca(2+) signaling and EC-coupling. Biochim Biophys Acta, 2013. 1833(4): p. 866-75. 26. Hashambhoy, Y.L., J.L. Greenstein, and R.L. Winslow, Role of CaMKII in RyR leak, EC coupling and action potential duration: a computational model. J Mol Cell Cardiol, 2010. 49(4): p. 617-24. 27. Barouch, L.A., et al., Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature, 2002. 416(6878): p. 337-9. 28. Ziolo, M.T., H. Katoh, and D.M. Bers, Expression of inducible nitric oxide synthase depresses beta-adrenergic-stimulated calcium release from the sarcoplasmic reticulum in intact ventricular myocytes. Circulation, 2001. 104(24): p. 2961-6. 29. Thomas, M.M., et al., Cardiac calcium pump inactivation and nitrosylation in senescent rat myocardium are not attenuated by long-term treadmill training. Exp Gerontol, 2011. 46(10): p. 803-10. 30. Sirenko, S., et al., Sarcoplasmic reticulum Ca2+ cycling protein phosphorylation in a physiologic Ca2+ milieu unleashes a high-power, rhythmic Ca2+ clock in ventricular myocytes: relevance to arrhythmias and bio-pacemaker design. J Mol Cell Cardiol, 2014. 66: p. 106-15. 31. Shibata, Y., et al., Mechanisms determining the morphology of the peripheral ER. Cell, 2010. 143(5): p. 774-88. 32. Ueno, T., et al., Enhancement of procollagen biosynthesis by p180 through augmented ribosome association on the endoplasmic reticulum in response to stimulated secretion. J Biol Chem, 2010. 285(39): p. 29941-50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56342 | - |
| dc.description.abstract | 簡介:從先前的SAPPHIRe研究計畫中發現,位於人類染色體20上的基因和胰島素阻抗及高血壓代謝症候群有高度相關,經莊醫師團隊進一步研究發現其與染色體20上的核餹體結合蛋白1(RRBP1)基因的單核甘酸多態性有關。目的:本篇論文旨在找出RRBP1基因對於心血管功能的影響。
材料與方法: 為了研究RRBP1對於心血管功能的影響,我們建立了一個幹細胞模型,使用了rrbp1-/-及wild type (WT)的老鼠胚胎幹細胞並分化成心肌細胞來做後續研究。Fura2AM為胞內鈣染劑,DAF為胞內一氧化氮指示劑。慢病毒載體用來使rrbp1-/-的心肌細胞表現過量的人類RRBP1。Real-time qPCR用來測量NOS的轉錄差異。 實驗結果: 我們觀察到在rrbp1-/-的心肌中其胞內鈣離子的處理和WT組有差異,包括較高的胞內鈣離子含量、較慢的肌漿網釋放和回收鈣離子能力以及肌漿網的鈣離子洩漏。而rrbp1-/-的細胞中也含有較高的一氧化氮含量,在以NOS抑制劑(L-NAME和1400W)治療後,其鈣離子處理能力都有恢復和WT一致。由Real-time qPCR 結果顯示rrbp1-/-老鼠心臟細胞中表現較多的eNOS及iNOS。KN93,一種Ca/calmodulin依賴性蛋白激酶抑制劑,僅能回復肌漿網釋放鈣離子的能力,而無法回復回收鈣離子的能力及降低胞內的一氧化氮。過量表現hRRBP1於rrbp1-/-的心肌細胞中也可以回復胞內鈣離子的處理能力。 總結: RRBP1缺失可能導致eNOS、iNOS及nNOS的表現量提高,進而製造出較多的一氧化氮,導致肌漿網上RyR及SERCR等鈣離子通道後轉譯修飾改變,造成其控制鈣離子進出之功能不正常,導致靜止期胞內鈣離子濃度增加、肌漿網釋放和回收鈣離子速度減慢、以及鈣離子由肌漿網上RyR2洩漏增加。而靜止期胞內鈣離子濃度提昇,會經由活化CAMKII,進一步導致肌漿網上RyR2釋鈣能力異常。 | zh_TW |
| dc.description.abstract | Introduction: From fine mapping the gene locus on chromosome 20 found in the SAPPHIRe study, multiple SNP of RRBP1 was identified to be highly associated with hypertension and insulin resistant in human. The present study aims to investigate the roles of RRBP1 in regulating cardiovascular function.
Material and Method: To clarify the role of RRBP1 in cardiovascular diseases, rrbp1-/- mouse embryonic stem cell (ESC) was generated and the cardiovascular cells derived from ESC were used to identify the mechanism contributed to the different functional properties between wild type (wt) and rrbp1-/- cells. Fura2AM was used as intracellular calcium indicator, and DAF as nitric oxide indicator. Lentivirus vectors were used to deliver human RRBP1 gene (hRRBP1) into rrbp1-/- myocytes. Real-time qPCR was performed to determine transcriptional alterations of NOSs. Results: We demonstrated different calcium handling properties in rrbp1-/- myocytes, including the elevated basal calcium levels, the slowed rates of both SR calcium release and cytosolic calcium return to baseline in calcium transients of cardiac cells, and diastolic SR Ca2+ leak. We further observed that the NO level was high in rrbp1-/- cells and calcium handling properties were restored in the presence of NOSs inhibitors (L-NAME and 1400W). Real-time RT-PCR demonstrated that the transcriptional levels of eNOS, iNOS and nNOS were both higher in rrbp1-/- myocytes. KN93, a Ca/calmodulin dependent kinase (CAMKII) inhibitor, could only restore SR calcium releasing velocity, but not in calcium decay rate and intracellular NO level. Overexpression of hRRBP1 in rrbp1-/- myocytes could also restore all intracellular calcium handling properties. Conclusion: Taken together, rrbp1 deficiency could increase the expression of iNOS, eNOS and nNOS to produce more intracellular NO, which may result in the post-translational modification on cardiac RyR2 and SERCA2 to lead to the slowed rates of SR calcium release and cytosolic calcium return to basal level, the diastolic SR calcium leak as well as the increase of diastolic calcium levels. The elevated diastolic calcium level could further activate CAMKII to cause the abnormality of cardiac RyR2 in regulating calcium release. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:24:17Z (GMT). No. of bitstreams: 1 ntu-103-R01443005-1.pdf: 7038673 bytes, checksum: 9bd43253034f983f194142a369f8fff6 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 II
Abstract IV Introduction 1 Materials and Methods 3 Generation of rrbp1 Knockout mouse embryonic stem cells and mice 3 Mouse embryonic stem cells (mESC) culture 3 Cardiomyogenic differentiation method 4 Purification of cardiomyocytes 5 Measurement of intracellular Ca2+ transient 5 FACS 6 Production and transduction of lentivirus carrying human RRBP1 7 RNA extraction and qPCR 8 Chemicals 8 Result 10 Result 1: To verify the expression levels of rrbp1 in wild type and rrbp1-/- myocytes and the purity of mESC-derived cardiomyocytes. 10 Result 2: Different properties of Ca2+ transients in WT and rrbp1-/- mESC-derived cardiomyocytes with or without pacing. 11 Result 3: Different properties of Ca2+ transients in WT and rrbp1-/- mESC-derived cardiomyocytes with β agonist and PDE3/4 inhibitors. 13 Result 4: Higher triggered activity and SR calcium leak were observed in rrbp1-/- myocytes. 14 Result 5: More NO was produced in rrbp1-/- myocytes. 15 Result 6: L-NAME and 1400W could reverse the abnormal intracellular Ca2+ handling in rrbp1-/- mESC-derived cardiomyocytes 16 Result 7: CAMKII inhibition could reverse the abnormal Ca2+ release property in rrbp1-/- mESC-derived cardiomyocytes. 17 Result 8: The abnormal intracellular Ca2+ handling properties in rrbp1-/- myocytes could be rescued by overexpression of human RRBP1 gene delivered by lentivirus 18 Result 9: The transcriptional levels of cardiac eNOS, iNOS and nNOS were increased in rrbp1-/- transgenic mice. 19 Discussion 20 References 25 Figures 28 | |
| dc.language.iso | en | |
| dc.subject | mESC | zh_TW |
| dc.subject | RRBP1 | zh_TW |
| dc.subject | eNOS | zh_TW |
| dc.subject | iNOS | zh_TW |
| dc.subject | CAMKII | zh_TW |
| dc.subject | nNOS | zh_TW |
| dc.title | 探討rrbp1基因缺失對於胞內鈣離子恆定及心臟功能之機制 | zh_TW |
| dc.title | Mechanism of rrbp1 deficiency altered cellular calcium homeostasis and cardiac function | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇銘嘉,莊立民,李安生 | |
| dc.subject.keyword | mESC,RRBP1,eNOS,iNOS,CAMKII,nNOS, | zh_TW |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 6.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
