請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56337完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Chun-Hao Lin | en |
| dc.contributor.author | 林君豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:24:04Z | - |
| dc.date.available | 2015-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | Avrutsky, I., R. Soref, and W. Buchwald, 'Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,' Opt. Express, vol. 18, pp. 348-363, 2010.
Barnes, W. L., A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-830, 2003. Berenger, J. P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185-200, 1994. Berini, P., 'Plasmon polariton modes guided by a metal fi lm of finite width,' Opt. Lett., vol. 24, pp. 1011-1013, 1999. Berini, P., 'Plasmon-polariton waves guided by thin lossy metal fi lms of finite width: bound modes of symmetric structures,' Phys. Rev. B, vol. 61, pp. 10484-10503, 2000. Berini, P., 'Plasmon-polariton waves guided by thin lossy metal films of fi nite width: bound modes of asymmetric structures,' Phys. Rev. B, vol. 63, 125417, 2001. Bian, Y., Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, 'Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep subwavelength mode con nement,' Opt. Express, vol. 19, pp. 22417-22422, 2011. Bierwirth, K., N. Schulz, and F. Arndt, 'Finite-diff erence analysis of rectangular dielectric waveguide structures,' IEEE. Trans. Microwave Theory Tech., vol. 34, pp. 1104-1113, 1986. Boltasseva, A., T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, 'Integrated optical components utilizing long-range surface plasmon polaritons,' J. Lightwave Technol., vol. 23, pp. 413-421, 2005. Boltasseva, A., V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, 'Triangular metal wedges for subwavelength plasmon polariton guiding at telecom wavelengths,' Opt. Express, vol. 16, pp. 5252-5260, 2008. Bolzoni, M. P., G. G. Gentili, and S. M. Pietralunga, 'LR-SPP mode cuto ff in strip waveguides as aff ected by technologically induced asymmetries: a numerical study,' IEEE Photonics Technol. Lett., vol. 23, pp. 1082-1084, 2011. Burnett, D. S., Finite Element Analysis. AT&T Bell Laboratories, 1987. Cavendish, J. C., D. A. Field, and W. H. Frey, 'An approach to automatic three-dimensional finite element mesh generation,' Int. J. Number. Meth. Eng., vol. 21, pp. 329-347, 1985. Cendes, Z. J., and P. Silvster, 'Numerical solution of dielectric loaded waveguides: finite-element analysis,' IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124-1131, 1970. Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. Cheng, P. J., C. Y. Weng, S. W. Chang, T. R. Lin, and C. H. Tien, 'Plasmonic gapmode nanocavities with metallic mirrors in high-index cladding,' Opt. Express, vol. 21, pp. 13479-13491, 2013. Chiang, Y. C., Y. P. Chiou, and H. C. Chang, 'Improved full-vectorial finite-difference mode solver for optical waveguides with step-index pro files,' J. Lightwave Technol., vol. 20, pp. 1609-1618, 2002. Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008. Fujisawa, T., and M. Koshiba, 'Full-vector fi nite-element beam propagation method for three-dimensional nonlinear optical waveguides,' J. Lightwave Technol., vol. 20, pp. 1876-1884, 2002. Gramotnev, D. K., and S. I. Bohevolnyi, 'Plasmonics beyond the di ffraction limit,' Nature Photon., vol. 4, pp. 83-91, 2010. Hadley, G. R., and R. E. Smith, 'Full-vector waveguide modeling using an iterative finite-diff erence method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465-469, 1995. Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M.S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004. Jin, J., The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press, 2002. Koshiba, M., and Y. Tsuji, 'Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,' J. Lightwave Technol., vol. 18, pp. 737-743, 2000. Lamprecht, B., J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, 'Surface plasmon propagation in microscale metal stripes,' Appl. Phys. Lett., vol. 79, pp. 51-53, 2001. Lee, J. F., Finite element method with curvillinear hybrid edge/nodal triangular shape element for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. Lee, J. F., D. K. Sun, and Z. J. Cendes, 'Full-wave analysis of dielectric waveguides using tangential vector fi nite elements,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262-1271, 1991. Li, Q., and M. Qiu, 'Plasmonic wave propagation in silver nanowires: guiding modes or not?,' Opt. Express, vol. 21, pp. 8587-8595, 2013. Liu, L., Z. Han, and S. He, 'Novel surface plasmon waveguide for high integration,' Opt. Express, vol. 13, pp. 6645-6650, 2005. L usse, P., P. Stuwe, and J. SchAule, 'Analysis of vectorial mode fields in optical waveguides by a new fi nite diff erence method,' J. Lightwave Technol, vol. 12, pp. 487-493, 1994. Maier, S. A., and H. A. Atwater, 'Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,' J. Appl. Phys., vol. 98, 011101, 2005. Maier, S. A., Surface Plasmons: Fundamental and Application. Berlin: Springer, 2007. Palik, E. D., and G. Ghosh, Handbook of Optical Constants of Solids. New York: Academic, 1985. Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007. Pile, D. F. P., T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi , and M. Fukui, 'Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,' Appl. Phys. Lett., vol. 87, 261114, 2005. Raether, H., Surface Plasmons. Berlin: Springer-Verlag,1988. Rebay, S., 'E fficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm,' J. Comput. Phys., vol. 105, pp. 125-138, 1993. Saitoh, K., and M. Koshiba, 'Full-vectorial imaginary-distance beam propagation method based on a fi nite element scheme: application to photonic crystal fibers,' IEEE J. Quantum Electron., vol. 38, pp. 927-933, 2002. Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, 'Finite element beam propagation method,' J. Lightwave Technol., vol. 16, pp. 1336-1341, 1998. Sekkeri, S., L. Vincetti, A. Cucunotta, and M. Zoboli, 'Complex FEM modal solver of optical waveguides with PML boundary conditions,' Opt. Quant. Electron., vol. 33: pp. 359-371, 2001. Sorger, V. J., R. F. Oulton , R. M. Ma , and X. Zhang, 'Toward integrated plasmonic circuits,' MRS Bull., vol. 37, pp. 728-738, 2012. Su, Y., Z. Zheng, Y. Bian, L. Liu, X. Zhao, J. Liu, T. Zhou, S. Guo, W. Niu, Y. Liu, and J. Zhu 'Metal-coated hollow nanowires for low-loss transportation of plasmonic modes with nanoscale mode con nement,' J. Opt., vol. 14, 095501, 2012. Tsuji, Y., and M. Koshiba, 'Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme,' J. Lightwave Technol., vol. 18, pp. 618-623, 2000. Tsuji, Y., M. Koshiba, and T. Shiraishi, 'Finite element beam propagation method for three-dimensional optical waveguide structures,' J. Lightwave Technol., vol. 15, pp. 1728-1734, 1997. Veronis, G., and S. Fan, 'Guided subwavelength plasmonic mode supported by a slot in a thin metal film,' Opt. Lett., vol. 30, pp. 3359-3361, 2005. Veronis, G., and S. Fan, 'Modes of subwavelength plasmonic slot waveguides,' J. Lightwave Technol, vol. 25, pp. 2511-2521, 2007. Wu, M., Z. Han, and V. Van, 'Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,' Opt. Express, vol. 18, pp. 11728-11736, 2010. Zhang, X. Y., A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, 'Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides,' Opt. Express, vol. 18, pp. 18945-18959, 2010. Zia, R., M. D. Selker, P. B. Catrysse, and M. L. Brongersma, 'Geometries and materials for subwavelength surface plasmon modes,' J. Opt. Soc. Am. A, vol. 21, pp. 2442-2446, 2004. Zia, R., M. D. Selker, and M. L. Brongersma, 'Leaky and bound modes of surface plasmon waveguides,' Phys. Rev. B, vol. 71, 165431, 2005. Zia, R., J. A. Schuller, and M. L. Brongersma, 'Near-fi eld characterization of guided polariton propagation and cutoff in surface plasmon waveguides,' Phys. Rev. B, vol. 74, 165415, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56337 | - |
| dc.description.abstract | 本篇論文中,我們以曲線混合型元素為基底的全向量有限元素虛軸波束傳遞法來分析數種表面電漿波導結構的模態特性。我們分析了由電漿子模態和光子模態混合的混成模態以及洩漏模態。針對不同的材料和結構,我們計算表面電漿波導之等效折射率、傳播長度以及模態場型。關於混成模態,我們改變導體/間隙/介電材料系統中的間隙寬度來了解它對電漿子模態和光子模態成分乃至於傳播特性的影響。至於洩漏模態,我們先討論存在於非對稱槽型表面電漿波導的模態是否為洩漏模態,然後改變金屬條狀波導中的金屬厚度來看它對傳播長度的影響。最後,我們設計一些方法來改善金屬條狀波導的傳播長度。 | zh_TW |
| dc.description.abstract | Modal analysis of surface plasmon polariton (SPP) waveguides using the finite-element imaginary-distance beam propagation method (FE-ID-BPM) is discussed in this thesis. The hybridized mode, which has plasmonic mode component and photonic mode component, and leaky mode are investigated. The effective refractive indices, propagation lengths, and mode field profiles are calculated for different structure parameters. For the hybridized mode, the gap thickness of a conductor-gap-dielectric system is changed to understand its relation to the relative ratio between plasmonic and photonic components and to the propagation characteristics. For the leaky mode, the asymmetric slot waveguide is first examined to see whether the mode is purely leaky or not. Then the thickness of the strip in the metal strip waveguide is varied to examine how it affects the propagation length. Finally, some design to improve the propagation length of the metal strip waveguide is proposed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:24:04Z (GMT). No. of bitstreams: 1 ntu-103-R01941077-1.pdf: 2677504 bytes, checksum: 277f82cdbcdcd5139457f347676f0d4b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Surface Plasmon . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Numerical Methods for Waveguide Analysis . . . . . . . . . . . . . . 6 1.4 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 The Finite Element Method and Related Mathematical Formulations 10 2.1 The Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . 10 2.2 The Finite Element Method and Mode Solver . . . . . . . . . . . . . 13 2.3 The Finite Element Beam Propagation Method . . . . . . . . . . . . 17 2.4 The Finite-Element Imaginary-Distance Beam Propagation Method . 21 3 Hybridized Plasmonic and Photonic Modes 29 3.1 The Gap Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 The Conductor-Gap-Dielectric (CGD) Mode . . . . . . . . . . . . . . 32 3.3 More Plasmonic Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 The Leaky Modes in Plasmonic Waveguides 68 4.1 Asymmetric Slot Waveguides . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Metal Strip Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Conclusion 91 Bibliography 94 | |
| dc.language.iso | en | |
| dc.subject | 電漿子學 | zh_TW |
| dc.subject | 洩漏模態 | zh_TW |
| dc.subject | 表面電漿子波導 | zh_TW |
| dc.subject | 有限元素虛軸波束傳遞法 | zh_TW |
| dc.subject | leaky modes | en |
| dc.subject | finite-element imaginary-distance beam propagation method (FE-IDBPM) | en |
| dc.subject | plasmonics | en |
| dc.subject | surface plasmon waveguides | en |
| dc.title | 以全向量虛軸有限元素波束傳播法分析數種表面電漿波導結構的模態特性 | zh_TW |
| dc.title | Modal Analysis of Several Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宗哲(Zong-Zhe Yang),鄧君豪(Chun-Hao Teng),徐世祥(Shih-Hsiang Hsu) | |
| dc.subject.keyword | 有限元素虛軸波束傳遞法,電漿子學,表面電漿子波導,洩漏模態, | zh_TW |
| dc.subject.keyword | finite-element imaginary-distance beam propagation method (FE-IDBPM),plasmonics,surface plasmon waveguides,leaky modes, | en |
| dc.relation.page | 100 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
