請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56321完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 田維誠(Wei-Cheng Tian) | |
| dc.contributor.author | Wei-Cheng Chung | en |
| dc.contributor.author | 鍾威正 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:23:22Z | - |
| dc.date.available | 2019-08-17 | |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | [1] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, 2004.
[2] J. Bercoff, M. Tanter, S. Chaffai, and M. Fink, 'Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elastography,' in Ultrasonics Symposium, 2002. Proceedings. 2002 IEEE, 2002, pp. 1899-1902 vol.2. [3] O. Oralkan, S. T. Hansen, B. Bayram, G. G. Yaralioglu, A. S. Ergun, and B. T. Khuri-Yakub, 'CMUT ring arrays for forward-looking intravascular imaging,' in Ultrasonics Symposium, 2004 IEEE, 2004, pp. 403-406 Vol.1. [4] T. Meng-Xing and R. J. Eckersley, 'Nonlinear propagation of ultrasound through microbubble contrast agents and implications for imaging,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, pp. 2406-2415, 2006. [5] 李百祺, 醫用超音波原理, 2000. [6] A. S. Ergun, G. G. Yaralioglu, and B. T. Khuri-Yakub, 'Capacitive micromachined ultrasonic transducers: Theory and technology,' Journal of aerospace engineering, vol. 16, pp. 76-84, 2003. [7] O. Oralkan, A. S. Ergun, J. A. Johnson, M. Karaman, U. Demirci, K. Kaviani, et al., 'Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging?,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 49, pp. 1596-1610, 2002. [8] G. M. Systems, 'Ultrasound Technology Update – Harmonic Imaging ' 1997. [9] A. Novell, M. Legros, N. Felix, and A. Bouakaz, 'Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 56, pp. 2733-2743, 2009. [10] M. Legros, A. Novell, A. Bouakaz, G. Ferin, R. Dufait, and D. Certon, 'Tissue harmonic imaging with CMUTs,' in Ultrasonics Symposium (IUS), 2011 IEEE International, 2011, pp. 2249-2252. [11] M. Yock, G. Paul, M. Fitzgerald, and J. Peter, 'Intravascular ultrasound: state of the art and future directions,' The American journal of cardiology, vol. 81, pp. 27E-32E, 1998. [12] A. Moini, A. Nikoozadeh, O. Oralkan, C. Jung Woo, A. F. Sarioglu, D. N. Stephens, et al., 'Volumetric intracardiac imaging using a fully integrated CMUT ring array: Recent developments,' in Ultrasonics Symposium (IUS), 2011 IEEE International, 2011, pp. 692-695. [13] C. Tekes, J. Zahorian, G. Gurun, S. Satir, T. Xu, M. Hochman, et al., 'Volumetric imaging using single chip integrated CMUT-on-CMOS IVUS array,' in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, 2012, pp. 3195-3198. [14] A. Nikoozadeh, I. O. Wygant, L. Der-Song, O. Oralkan, A. S. Ergun, D. N. Stephens, et al., 'Forward-looking intracardiac ultrasound imaging using a 1-D CMUT array integrated with custom front-end electronics,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 55, pp. 2651-2660, 2008. [15] G. G. Yaralioglu, A. S. Ergun, B. Bayram, E. Haeggstrom, and B. T. Khuri-Yakub, 'Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 50, pp. 449-456, 2003. [16] B. Bayram, E. Haeggstrom, G. G. Yaralioglu, and B. T. Khuri-Yakub, 'A new regime for operating capacitive micromachined ultrasonic transducers,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 50, pp. 1184-1190, 2003. [17] O. Oralkan, B. Bayram, G. G. Yaralioglu, A. S. Ergun, M. Kupnik, D. T. Yeh, et al., 'Experimental characterization of collapse-mode CMUT operation,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, pp. 1513-1523, 2006. [18] 林芳伃, CMOS-MEMS電容式微機電系統超音波換能器製作與開發, 2013. [19] S. Vaezy, X. Shi, R. W. Martin, E. Chi, P. I. Nelson, M. R. Bailey, et al., 'Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging,' Ultrasound in medicine & biology, vol. 27, pp. 33-42, 2001. [20] S. Li and P.-H. Wu, 'Magnetic resonance image-guided versus ultrasound-guided high-intensity focused ultrasound in the treatment of breast cancer,' Chinese journal of cancer, vol. 32, p. 441, 2013. [21] S. H. Wong, M. Kupnik, K. Butts-Pauly, and B. T. Khuri-Yakub, 'P1B-10 Advantages of Capacitive Micromachined Ultrasonics Transducers (CMUTs) for High Intensity Focused Ultrasound (HIFU),' in Ultrasonics Symposium, 2007. IEEE, 2007, pp. 1313-1316. [22] B. Bayram, O. Oralkan, A. S. Ergun, E. Haeggstrom, G. G. Yaralioglu, and B. T. Khuri-Yakub, 'Capacitive micromachined ultrasonic transducer design for high power transmission,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 326-339, 2005. [23] A. Kshirsagar, R. Chee, A. Sampaleanu, A. Forbrich, D. Rishi, W. Moussa, et al., 'Multi-frequency CMUT arrays for imaging-therapy applications,' in Ultrasonics Symposium (IUS), 2013 IEEE International, 2013, pp. 1991-1993. [24] J. Knight, J. McLean, and F. L. Degertekin, 'Low temperature fabrication of immersion capacitive micromachined ultrasonic transducers on silicon and dielectric substrates,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 51, pp. 1324-1333, 2004. [25] A. Erguri, Y. Huang, X. Zhuang, O. Oralkan, G. G. Yarahoglu, and B. T. Khuri-Yakub, 'Capacitive micromachined ultrasonic transducers: fabrication technology,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 2242-2258, 2005. [26] M. Hochman, J. Zahorian, S. Satir, G. Gurun, T. Xu, M. Karaman, et al., 'CMUT-on-CMOS for forward-looking IVUS: Improved fabrication and real-time imaging,' in Ultrasonics Symposium (IUS), 2010 IEEE, 2010, pp. 555-558. [27] D. F. Lemmerhirt, X. Cheng, O. D. Kripfgans, M. Zhang, and J. B. Fowlkes, 'A fully-populated 32x32 CMUT-in-CMOS array,' in Ultrasonics Symposium (IUS), 2010 IEEE, 2010, pp. 559-562. [28] 田鈺申, CMOS MEMS 低偏壓電容式超音波感測器開發, 2012. [29] A. Bozkurt, I. Ladabaum, A. Atalar, and B. T. Khuri-Yakub, 'Theory and analysis of electrode size optimization for capacitive microfabricated ultrasonic transducers,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 46, pp. 1364-1374, 1999. [30] S. Olcum, F. Y. Yamaner, A. Bozkurt, H. Koymen, and A. Atalar, 'An equivalent circuit model for transmitting capacitive micromachined ultrasonic transducers in collapse mode,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 58, pp. 1468-1477, 2011. [31] H. Yongli, E. Haeggstrom, B. Bayram, Z. Xuefeng, A. S. Ergun, C. Ching-Hsiang, et al., 'Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, pp. 1918-1933, 2006. [32] W. Sonphao and S. Chaisirikul, 'Silicon anisotropic etching of TMAH solution,' in Industrial Electronics, 2001. Proceedings. ISIE 2001. IEEE International Symposium on, 2001, pp. 2049-2052 vol.3. [33] I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, 'Analytically calculating membrane displacement and the equivalent circuit model of a circular CMUT cell,' in Ultrasonics Symposium, 2008. IUS 2008. IEEE, 2008, pp. 2111-2114. [34] J. Wibbeler, G. Pfeifer, and M. Hietschold, 'Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS),' Sensors and Actuators A: Physical, vol. 71, pp. 74-80, 1998. [35] S. Olcum, F. Y. Yamaner, A. Bozkurt, and A. Atalar, 'Deep-collapse operation of capacitive micromachined ultrasonic transducers,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 58, pp. 2475-2483, 2011. [36] S. Olcum, F. Y. Yamaner, A. Bozkurt, H. Koymen, and A. Atalar, 'CMUT array element in deep-collapse mode,' in Ultrasonics Symposium (IUS), 2011 IEEE International, 2011, pp. 108-111. [37] D. F. Lemmerhirt, X. Cheng, R. D. White, C. A. Rich, M. Zhang, J. Fowlkes, et al., 'A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 59, pp. 1521-1536, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56321 | - |
| dc.description.abstract | 本研究利用TSMC 0.35μm 2P4M CMOS-MEMS製程製作電容式微機電超音波換能器(Capacitive Micromachined Ultrasonic Transducers,簡稱CMUT),並將CMUT操作於大於崩潰電壓的模態(稱為崩潰模態)。然而本團隊製作CMUT的良率需要提昇,因此本研究第一部分著重於尋找濕蝕刻製程上影響良率的關鍵步驟,發現烤乾後的晶片可以確保良率,目前製作CMUT的良率到達100%;且CMUT在崩潰模態時必須在水中偏壓高達90V的直流電壓,防水鍍膜強度不足使57%的薄膜損壞,且水中漏電現象明顯使電路板氧化,然而提高防水鍍膜厚度使元件特性下降,因此本研究第二部分將防水薄膜厚度最佳化,以及電路板的防水設計。
本研究利用共軛焦顯微鏡呈現崩潰模態時的表面輪廓,量測出CMUT的崩潰電壓在50~60V區間;也呈現CMUT操作於崩潰模態的特性。由於直流偏壓大於崩潰電壓,因此CMUT的靈敏度變好,且薄膜觸底將使中心頻率變化。本研究利用商用Pulser 5077PR與商用探頭發射超音波,CMUT在崩潰模態的接收效率為傳統薄態的4倍,且中心頻率由2.7MHz轉換到7.9MHz;而CMUT做自發自收時,傳統模態的電壓峰對峰值達2.625V,比例頻寬132%,然而由於致動元件的交流電壓遠大於直流偏壓,元件會操作於深崩潰模態,在崩潰模態的自發自收電壓峰對峰值可達3.427V,但比例頻寬下降至40~45%。 | zh_TW |
| dc.description.abstract | In this work, experimental results of Capacitive Micromachined Ultrasonic Transducers (CMUTs) operated in collapse-mode is presented. The device is implemented with the TSMC 0.35μm CMOS-MEMS process. Through the surface profile measured by a confocal microscope, the collapsed voltage is measured at approximately 50 ~ 60V. With a bias voltage over the collapse voltage, the receiving sensitivity of CMUTs is increased 4 times larger and the center frequency is shifted from 2.7MHz to 7.9MHz. Driven by a commercial pulser, the received echo signal using our device in traditional mode is 2.625Vpp and the fractional bandwidth is 132%. Affected by the deep-collapse operation, the largest received echo signal reaches 3.427Vpp and the fractional bandwidth reduced to approximately 40 ~ 45%. The CMUT center frequency shifts from 3.12MHz to 9.12MHz. We also present an improved wet etch process to significantly increase the yield to almost 100%. Depositing thicker sealing membrane material ensures the robustness of CMUTs. Our developed CMUTs operated in DC bias of 90V in a water tank for over half an hour was demonstrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:23:22Z (GMT). No. of bitstreams: 1 ntu-103-R01943075-1.pdf: 5292644 bytes, checksum: c70c0a4314cc600a47961e12ba766c83 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 論文目錄 V 圖片目錄 VIII 表格目錄 XI Chapter1. 緒論與研究動機 1 1.1 CMUT: 超音波探頭的不同選擇 2 1.1.1 接收頻寬大-Harmonic Imaging 3 1.1.2 標準半導體製程-Forward-looking IVUS 4 1.2 CMUT的操作方式 6 1.2.1 傳統模態 6 1.2.2 崩潰模態 7 1.2.3 零偏壓操作 9 1.2.4 崩潰模態CMUT的應用-Ultrasound-guided HIFU 9 1.3 CMUT的製作方式 11 1.3.1 表面微加工 11 1.3.2 體型微加工 12 1.3.3 CMOS-based製程 13 1.4 研究動機 15 Chapter2. CMUT-操作於崩潰模態 16 2.1 CMUT的參數推導 16 2.1.1 電能-機械能轉換效率 17 2.1.2 崩潰電壓 18 2.1.3 參數探討 19 2.2 元件模擬與討論 21 2.2.1 電極面積設計 21 2.2.2 不同電壓與薄膜觸底面積 22 2.3 元件設計與製作 24 2.3.1 結構設計 25 2.3.2 畫佈局圖 27 2.3.3 Wire-bond 28 2.3.4 防水鍍膜 29 Chapter3. 後製程改良以及高偏壓封裝 30 3.1前言 30 3.2 濕蝕刻製程改良 31 3.2.1 濕蝕刻步驟 31 3.2.2 良率問題以及關鍵步驟 33 3.3高偏壓封裝 36 3.3.1 Bond-wire斷裂與電路板的氧化 36 3.3.2 防水薄膜破裂 37 3.3.3 防水膠以及提高薄膜厚度 39 3.4 附錄-薄膜厚度影響的元件特性 41 Chapter4. 量測方法與探頭測試成果 43 4.1 不同偏壓的表面輪廓 43 4.1.1 顯微鏡下的崩潰現象 43 4.1.2 崩潰電壓的量測 45 4.1.3 量測細節 47 4.2 元件接收超音波:傳統與崩潰 48 4.3 元件自發自收Pulse-echo:傳統與崩潰 51 4.3.1 傳統模態 52 4.3.2 崩潰模態 54 4.4 CMUT在不同偏壓下探討 56 4.5 與前代CMUT比較 59 4.6 牙齒表面成像 60 Chapter5. 結論以及未來展望 62 5.1 元件特性整理與比較 62 5.2 未來工作 63 5.2.1 量測系統 63 5.2.2 IVUS前置階段 66 Reference 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微機電超音波換能器 | zh_TW |
| dc.subject | 互補式金屬氧化物半導體 | zh_TW |
| dc.subject | 崩潰模態 | zh_TW |
| dc.subject | Ultrasound | en |
| dc.subject | CMUT | en |
| dc.subject | Collapse-mode | en |
| dc.subject | CMOS-MEMS | en |
| dc.title | CMOS-based 電容式微機電超音波換能器操作於崩潰模態之開發 | zh_TW |
| dc.title | Development of CMOS-based Capacitive Micromachined Ultrasonic Transducers Operated in Collapse-mode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李百祺(Pai-Chi Li),呂良鴻(Liang-Hung Lu),呂家榮(Chia-Jung Lu),劉建宏(Jian-Hung Liu) | |
| dc.subject.keyword | 互補式金屬氧化物半導體,微機電超音波換能器,崩潰模態, | zh_TW |
| dc.subject.keyword | CMOS-MEMS,CMUT,Collapse-mode,Ultrasound, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
