請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56310完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞(Hung-Chun Chang) | |
| dc.contributor.author | Min-Hsiang Chang | en |
| dc.contributor.author | 張閔翔 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:22:54Z | - |
| dc.date.available | 2019-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | Abbott, D., and X. C. Zhang, 'Scanning the issue: T-ray imaging, sensing, and retection,' Proc. IEEE, vol. 95, pp. 1509-1513, 2007.
Ahmed, G. P., and P. Daly, 'Finite-element method for inhomogeneous waveguide,' Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661-1664, 1969. Ando, T., H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, 'Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,' J. Lightwave Technol., vol. 20, pp. 1627-1634, 2002. Baken, N. H. G., M. B. J. Diemeer, J. M. V. Splunter, and H. Blok, 'Computational modeling of di used channel waveguides using a domain integral equation,' J. Lightwave Technol., vol. 8, pp. 576--586, 1990. Barnes, W. L., A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-830, 2003. B ‘erenger, J.-P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185-200, 1994. Bierwirth, K., N. Schulz, and F. Arndt, 'Finite-di erence analysis of rectangular 111 dielectric waveguides by a new nite diRerence method,' J. Lightwave Technol., vol. 34, pp. 1104-1113, 1986. Bowden, B., J. A. Harrington, and Mitrofanov, O., 'Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,' Opt. Lett., vol. 30, pp. 2945-2947, 2007. Bozhevolnyi, S. I., 'Effective-index modeling of channel plasmon polaritons,' Opt. Express, vol. 14, pp. 9467-9476, 2006. Bozhevolnyi, S. I., and J. Jung, 'Scaling for gap plasmon based waveguides,' Opt. Express, vol. 16, pp. 2676-2684, 2008. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, 'Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves,' Phys. Rev. B, vol. 95, 046802, 2005. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, 'Electromagnetic energy transfer and switching in nanoparticle chain arrays below the di raction limit,' Phys. Rev. B, vol. 62, pp. R16 356-R16 359, 2000. Cendes, Z. J., and P. Silvester, 'Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis,' IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124-1131, 1970. Chang, H. C., H. C. Yeh, C. H. Peng, and B. Y. Lin,, 'Modal analysis of plasmonic waveguides,' Japan-Indo Workshop on Microwaves, Photonics, and Communication Systems, 2007. Chen, H. W., C. M. Chiu, C. H. Lai, J. L. Kuo, P. J. Chiang, Y. J. Hwang, H. C. Chang, and C. K. Sun, C. K. 'Subwavelength dielectric- ber-based THz coupler,' J. Lightwave Technol., vol. 27, pp. 1489-1495, 2009. Chen, L. J., H. W Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, 'Low-loss subwavelength plastic fiber for terahertz waveguiding,' Opt. Lett., vol. 31, pp. 308-310, 2006. Chen, M. Y., S. M. Hsu, and H. C. Chang, 'A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with an arbitrary permittivity tensor,' Opt. Express, vol. 17, pp. 5965-5979, 2009. Chew, W. C., and W. H. Weedom, 'A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinate,' IEEE Microwave Opt. Technol. Lett., vol. 7, pp. 599-604, 1994. Chung, C. C., 'Analysis of slot and triangle-shaped surface plasmonic waveguides using a full-vectorial imaginary-distance finite-element beam propagation method', 2008. Collin, J. B., 'Field Theory of Guided Waves. ' John Wiley Sons, 1991. Dinleyici, M. S., and B. Patterson, 'Vector modal solution of evanescent couplers,'J. Lightwave Technol., vol. 15, pp. 2316-2324, 1997. Ditkowski, A., J. S. Hesthaven, and C. H. Teng, 'Modeling dielectric interfaces in the FDTD-method: A comparative study,' in 2000 Progress in Electromagnetics Research (PIERS 2000) Proceedings, Cambridge, Massachusetts, 2000. Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, 'Staircase-free finite-difference time-domian formulation for general materials in complex geometries,' IEEE Trans. Antennas Propagat., vol. 49, pp. 749--756, 2001. Duguay, M. A., Y. Kokubun, T. L. Koch, and L, Pfeiffer, 'Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,' Appl. Phys. Lett., vol. 49, pp. 13-15, 1986. Fano, U., 'Effects of configuration interaction on intensities and phase shifts,' Phys. Rev., vol. 124, pp. 1866-1878, 1961. Feng, N. N., G. R. Zhou, and W. P. Huang, 'Mode calculation by beam propagation method combined with digital signal processing technique,' IEEE J. Quantum Electron., vol. 39, pp. 1111-1117, 2003. Fox, M., 'Optical Properties of Solids.' Oxford, 2001. Gallot, G., S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Terahertz waveguides,' J. Opt. Soc. Am. B, vol. 17, pp. 851-863, 2000. Goto, M., A. Quema, H. Takahashi, S. Ono, and N. Sarukura, 'Teflon photonic crystal fiber as terahertz waveguide,' Jpn. J. Appl. Lett., vol. 43, pp. L317-L319, 2004. Grillot, F., L. Vivien, and E. Cassan, 'Propagation loss in single-mode ultra-small square silicon-on-insulator optical waveguides ,' J. Lightwave Technol., vol. 24, pp. 891-896, 2006. Hadley, G. R., and R. E. Smith, Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465-469, 1995. Han, H., H. Park, M. Cho, and J. Kim, 'Terahertz pulse propagation in a plastic photonic crystal fiber,' Appl. Phys. Lett., vol. 80, pp. 2634-2636, 2002. Harrington, J. A., R. George, P. Pedersen, and E. Mueller, 'Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,' Opt. Express, vol. 12, pp. 5263--5268, 2004. Haus, H. A., 'Waves and Fields in Optoelectronics. ' Prentice-Hall, 1984. Hidaka, T., H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, and S. Ichikawa, 'Ferroelectric PVDF cladding terahertz waveguide,' J. Lightwave Technol., vol. 23, pp. 2469-2473, 2005. Krenn, J. R., B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, 'Non-diffraction-limited light transport by gold nanowires,' Europhys. Lett., vol. 60, pp. 663-669, 2002. Lai, C. H., B. You, J. Y. Lu, T. A. Liu, J. L Peng, C. K. Sun, and H. C. Chang, 'Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,' Opt. Express, vol. 18, pp. 309-322, 2009. Lee, J. F., D. K. Sun, and Z. J. Cendes, 'Full-wave analysis of dielectricwaveguides using tangential vector finite elememts,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262--1271, 1991. Lee, S. M., 'Finite-difference vectorial-beam-propagation method using Yees iscretization scheme for modal fields,' J. Opt. Soc. Am. A., vol. 13, pp. 1369-1377, 1996. Li, Y. F., K. Iizuka, and J. W. Y. Lit, 'Equivalent-layer method for optical waveguides with a multiple quantum well structure,' Opt. Lett., vol. 17, pp. 273- 275, 1992. Lin, J. J., 'Analysis of plasmonic waveguides with right-angled corners and edges using a full-vectorial imaginary-distance finite-element beam propagation method, 2009. Litchinitser, N. M., S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, 'Resonances in microstructured optical waveguides,' Opt. Express, vol. 11, pp. 1243-1251, 2003 Lu, J.-Y., C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, 'Terahertz air-core microstructure fiber,' Appl. Phys. Lett., vol. 92, 064105, 2008. L usse, P., P. Stuwe, J. Sch ule, and H.-G. Unger, 'Analysis of vectorial mode fields in optical waveguides by a new finite difference method,' J. Lightwave Technol., vol. 12, pp. 487-494, 1994. Mendis, R., and D. Grischkowsky, 'Plastic ribbon THz waveguides,' J. Appl. Phys., vol. 88, pp. 4449-4451, 2000. Mendis, R., and D. Grischkowsky, 'Undistorted guided-wave propagation of subpicosecond terahertz pulses,' Opt. Lett., vol. 26, pp. 846-848, 2001. Maier, S. A., Plasmonics: Fundamentals and Applications. Springer, 2007. Maier, S. A., P. G. Kik, H. A. Atwater, S.Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, 'Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,' Nat. Mater., vol. 2, pp. 229-232, 2003. Marcuse, D., 'Investigation of coupling between a fiber and an in finite slab,' J. Lightwave Technol., vol. 7, pp. 122-130, 1989. Ohke, S., T. Umeda, and Y. Cho, Equivalent-layer method for optical waveguides with a multiple quantum well structure: comment,' Opt. Lett., vol. 18, pp. 1870-1872, 1993. Palik, E. D., 'Handbook of Optical Constants of Solids. Academic, ' New York, 1985. Pekel, U., and R. Mittra, A ' finite-element method frequency-domain application of the perfectly matched layer (PML) concept,' Microwave Opt. Technol. Lett., vol. 9, pp. 117-122, 1995. Pendry, J. B., 'Negative refraction makes a perfect lens,' Phys. Rev. Lett., vol. 85, pp. 3966-3969, 2000. Rahman, B. M. A., and J. B. Davies, 'Finite-element analysis of optical and microwave waveguide problems,' IEEE. Trans. Microwvae Theory Tech., vol. 32, pp. 20-28, 1984. Rappaport, C. M., 'Perfectly matched absorbing boundary conditions based on anistropic lossy mapping of space,' IEEE Microwave Guided Wave Lett., vol. 5, pp.90-92, 1995. Saini, M., and E. K. Sharma, 'Equivalent refractive index of MQW waveguides,' IEEE J. Quantum Electron., vol. 32, pp. 1383-1390, 1996. Satuby, Y., and M. Orenstein, 'Surface-Plasmon-Polariton modes in deep metallic trenches-measurement and analysis,' Opt. Express, vol. 15, pp. 4247-4252, 2007. Skorobogatiy, M., and A. Dupuis, 'Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,' Appl. Phys. Lett., vol. 90, 113514, 2007. Sphicopoulos, T., V. Teodoridis, and F. E. Gardiol, 'Dyadic Green function for the electromagnetic field in multilayered isotropic media: An operator approach,' Inst. Elec. Eng. Proc.-J., vol. 132, pp. 329-338, 1985. Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, 'Analysis of the spectral index method for vector modes of rib waveguides,' Inst. Elec. Eng. Proc.-J., vol. 137, pp. 21-26, 1990. Tonouchi, M., 'Cutting-edge terahertz technology,' Nature Photon., vol. 1, pp. 97- 105, 2007. Veronis, G., and S. Fan, 'Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides, ' Appl. Phys. Lett., vol. 87, 131102, 2005a. Veronis, G., and S. Fan, 'Guided subwavelength plasmonic mode supported by a slot in a thin metal film, ' Opt. Lett., vol. 30, pp. 3359-3361, 2005b. Veronis, G., and S. Fan, 'Modes of subwavelength plasmonic slot waveguides, ' Opt. Lett., vol. 30, pp. 3359-3361, 2005c. Veronis, G., and S. Fan, 'Crosstalk between three-dimensional plasmonic slot waveguides,' Opt. Express, vol. 16, pp.2129-2140, 2008. Vincetti, L., and V. Setti, 'Waveguiding mechanism in tube lattice fibers,' Opt. Express, vol. 18, pp.23133-23146, 2010. Vincetti, L., and V. Setti, 'Fano resonances in polygonal tube fibers,' J. Lightwave Technol., vol. 30, pp.31-37, 2012. Wang, C. Y., S. Y. Chung, C. H. Teng, J. K. Wang, C. P. Chen, and H. C. Chang, 'A high-accuracy multidomain legendre pseudospectral frequencydomain method with penalty scheme for solving scattering and coupling problems of nanocylinders,' J. Lightwave Technol., vol. 31, pp. 768-778, 2013. Wang, K., and D. M. Mittleman, 'Metal wires for terahertz wave guiding,' Nature, vol. 432, pp. 376-379, 2004. Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, 'Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,' Phys. Rev. B,, vol. 60, pp. 9061-9068, 1999. Xu, C. L., W. P. Huang, and S. K. Chaudhuri, Efficient and accurate vector mode calculations by beam propagation method,' J. Lightwave Technol., vol. 11, pp. 1209-1215, 1993. Yee, K. S., 'Numerical solution of initial boundary value problems involing Maxwell's equations on isotropic media,' IEEE Trans. Antenna Propagat., vol. 14, pp. 302-307, 1966. Yu, C. P., and H. C. Chang, 'Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,' Opt. Express, vol. 12, pp. 1397-1408, 2004a. Yu, C. P., and H. C. Chang, 'Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,' Opt. Express, vol. 12, pp. 6165-6177, 2004b. Yu, R.-J., B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, 'Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,' IEEE Photon. Technol. Lett., vol. 19, pp. 910-912, 2007. Zhu, Z., and T. G. Brown, 'Full-vectorial finite-difference analysis of microstructured optical fibers,' Opt. Express, vol. 10, pp. 853-864, 2002. Zia, R., J. A. Schuller, A. Chandran, and M. L. Brongersma, 'Plasmonics: the next chip-scale technology,' MaterialsToday, vol. 9, pp. 20-27, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56310 | - |
| dc.description.abstract | 本論文使用全向量有限差分頻域法分析管狀介質波導與槽形電漿子波導,並引入完美匹配層做為計算區域外圍的吸收邊界,以便分析洩漏波導。對於介質接面的處理,係採用階梯式近似法或折射率平均法。
本論文分析研究不同形狀的管狀介質波導在兆赫頻率下傳播的等效折射率和衰減係數,包括圓形、半圓形、四分之一圓形、正方形與二十四多邊形等形狀,特別討論其基本模態的特性。另外,對於各波導結構亦探討其空氣核心模態與殼層模態耦合所產生的法諾效應。 本論文亦分析研究槽形電漿子波導的模態特性,針對其中間凹槽的寬度、金屬薄膜的高度與曲率半徑、兩側的薄膜寬度等參數,討論其基本模態的特性。對於有限差分網格點的大小與位置和計算空間大小對數值計算精準度的影響,亦詳加探討。此外,經由忽略金屬的材料損耗,探討對稱與非對稱槽形結構的洩漏性質。 | zh_TW |
| dc.description.abstract | In this thesis, the full-vectorial finite-difference frequency-domain (FDFD) method based on Yee's mesh is utilized to analyze optical waveguides. The perfect matched layer (PML) is employed as the absorbing boundary of the computational window in this FDFD solver. Moreover, the FDFD model adopts two approximation methods for dealing with dielectric interfaces: the stair-case approximation method and the index average scheme.
Effective indices and attenuation constants are calculated for pipe waveguides with different forms of the core region at terahertz frequencies, such as circular, semi-circular, quarter-circular, square, and 24 sided polygonal pipe waveguide. Fano resonances, which are caused by the coupling between the core modes and the cladding modes, are observed inside transmission bands in the above-mentioned structures. As for the subwavelength plasmonic slot waveguide, its basic characteristics for various slot widths, film thicknesses, radii of rounded edges, and finite strip widths are analyzed and discussed. The effect of some parameters of calculation on the accuracy of the numerical results is also examined. Moreover, by ignoring the material loss of the metal in both symmetric and asymmetric slot waveguides, the possible leakage characteristics are investigated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:22:54Z (GMT). No. of bitstreams: 1 ntu-103-R01941097-1.pdf: 11197787 bytes, checksum: 229747849e22ce288e2367c1b64b0503 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Numerical Schemes for the Analysis of Optical Waveguides . . . . . . 1 1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 The Finite-Difference Frequency-Domain Method 6 2.1 The Central Difference Scheme . . . . . . . . . . . . . . . . . . . . . 7 2.2 Mode Solvers for 1-D Problems . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 The TE Polarized Wave . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 The TM Polarized wave . . . . . . . . . . . . . . . . . . . . . 11 2.3 Mode Solvers for 2-D Problems . . . . . . . . . . . . . . . . . . . . . 12 2.4 The FDFD Method with Perfectly Matched Layers . . . . . . . . . . 16 2.5 Approximation at Dielectric Interfaces . . . . . . . . . . . . . . . . . 20 2.5.1 The Stair-Case Approximation Method . . . . . . . . . . . . . 20 2.5.2 The Index Average scheme . . . . . . . . . . . . . . . . . . . . 21 2.5.3 Comparison between FDFD Solutions and Analytic Solutions of the Optical Fiber . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Analysis of Pipe Waveguides for Terahertz Waveguiding 31 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Guiding Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 Circular Pipe Waveguides . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Semi-circular and Quarter-circular Pipe Waveguides . . . . . . 36 3.3.3 Square and 24 Sided Polygonal Pipe Waveguides . . . . . . . . 36 3.4 Fano Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.1 Circular and 24 Sided Polygonal Pipe Waveguides . . . . . . . 39 3.4.2 Square Pipe Waveguides . . . . . . . . . . . . . . . . . . . . . 40 3.4.3 Semi-circular and Quarter-circular Pipe Waveguides . . . . . . 40 4 Analysis of Subwavelength Plasmonic Slot Waveguides 69 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.1 The Surface Plasmon Polariton . . . . . . . . . . . . . . . . . 70 4.1.2 Surface Plasmon Polariton Waveguides . . . . . . . . . . . . . 72 4.2 Modal Analysis of Slot Waveguides . . . . . . . . . . . . . . . . . . . 73 4.2.1 Symmetric Slot Waveguides . . . . . . . . . . . . . . . . . . . 74 4.2.2 Asymmetric Slot Waveguides . . . . . . . . . . . . . . . . . . 78 4.2.3 Slot Waveguides with Rounded Edges . . . . . . . . . . . . . . 80 4.2.4 Slot Waveguides with Finite Metal-Film Width . . . . . . . . 81 5 Conclusion 108 | |
| dc.language.iso | en | |
| dc.subject | 槽形電漿子波導 | zh_TW |
| dc.subject | 管狀波導 | zh_TW |
| dc.subject | 光波導 | zh_TW |
| dc.subject | 有限差分頻域法 | zh_TW |
| dc.subject | Finite-difference frequency-domain (FDFD) method | en |
| dc.subject | optical waveguides | en |
| dc.subject | pipe waveguides | en |
| dc.subject | plasmonic slot waveguides | en |
| dc.title | 以有限差分頻域法分析管狀介質波導與槽形電漿子波導 | zh_TW |
| dc.title | Analysis of Dielectric Pipe Waveguides and Plasmonic Slot Waveguides Using the Finite-Difference Frequency-Domain Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宗哲(Zong-Zhe Yang),鄧君豪(Chun-Hao Teng) | |
| dc.subject.keyword | 有限差分頻域法,光波導,管狀波導,槽形電漿子波導, | zh_TW |
| dc.subject.keyword | Finite-difference frequency-domain (FDFD) method,optical waveguides,pipe waveguides,plasmonic slot waveguides, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 10.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
