請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56258完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘(Da-Ming Wang) | |
| dc.contributor.author | Yu-Pin Lin | en |
| dc.contributor.author | 林郁評 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:20:50Z | - |
| dc.date.available | 2019-09-15 | |
| dc.date.copyright | 2014-09-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | 1. Mulder, M., Basic Principles of Membrane Technology. 2nd ed. 1996, Dordrecht, Netherland, Boston: Kluwer Academic.
2. Kesting, R. E., Concerning microstructure of dry-ro membranes. J. Appl. Polym. Sci. 1973, 17 (6), 1771-1785. 3. Zeman, L.; Fraser, T., Formation of air-cast cellulose-acetate membranes .1. study of macrovoid formation. J. Membr. Sci. 1993, 84 (1-2), 93-106. 4. Zeman, L.; Fraser, T., Formation of air-cast cellulose-acetate membranes .2. kinetics of demixing and microvoid growth. J. Membr. Sci. 1994, 87 (3), 267-279. 5. Kang, Y. S., Asymmetric membrane formation via immersion precipitation method .1. kinetic effect. J. Membr. Sci. 1991, 60 (2-3), 219-232. 6. Altena, F. W.; Smolders, C. A., Calculation of liquid liquid-phase separation in a ternary-system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 1982, 15 (6), 1491-1497. 7. H. Tompa, Polymer Solutions, Butterworths, London, 1956. 8. Yilmaz, L.; McHugh, A. J., Modeling of asymmetric membrane formation .1. critique of evaporation models and development of a diffusion equation formalism for the quench period. J. Membr. Sci. 1986, 28 (3), 287-310. 9. Prausnitz J., Lichtenthaler R., de Azevedo E., Molecular Thermodynamics of Fluuid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, 1986. 10. Flory P., Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, NY, 1953. 11. Reuvers, A. J.; Altena, F. W.; Smolders, C. A., Demixing and gelation behavior of ternary cellulose-acetate solutions. Journal of Polymer Science Part B-Polymer Physics 1986, 24 (4), 793-804. 12. Gaides, G. E.; McHugh, A. J., Gelation in an amorphous polymer - a discussion of its relation to membrane formation. Polymer 1989, 30 (11), 2118-2123. 13. Wijmans, J. G.; Baaij, J. P. B.; Smolders, C. A., The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. J. Membr. Sci. 1983, 14 (3), 263-274. 14. Stropnik, C.; Germic, L.; Zerjal, B., Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion. J. Appl. Polym. Sci. 1996, 61 (10), 1821-1830. 15. Quentin J. P., Sulfonated polyarylethersulfones. U.S. Pat.3,709,841, 1973. 16. Noshay, A.; Robeson, L. M., Sulfonated polysulfone. J. Appl. Polym. Sci. 1976, 20 (7), 1885-1903. 17. Chao H. S., Kelsey D. R., Poly(aryl ether) resins having repeat units of the structure. U.S. Pat.4,625,000, 1986. 18. Chen, S.-H.; Liou, R.-M.; Lin, Y.-Y.; Lai, C.-L.; Lai, J.-Y., Preparation and characterizations of asymmetric sulfonated polysulfone membranes by wet phase inversion method. European Polymer Journal 2009, 45 (4), 1293-1301. 19. Blanco, J. F.; Sublet, J.; Nguyen, Q. T.; Schaetzel, P., Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J. Membr. Sci. 2006, 283 (1-2), 27-37. 20. Lufrano, F.; Squadrito, G.; Patti, A.; Passalacqua, E., Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. J. Appl. Polym. Sci. 2000, 77 (6), 1250-1256. 21. Lufrano, F.; Baglio, V.; Staiti, P.; Arico, A. S.; Antonucci, V., Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. Journal of Power Sources 2008, 179 (1), 34-41. 22. Genova-Dimitrova, P.; Baradie, B.; Foscallo, D.; Poinsignon, C.; Sanchez, J. Y., Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. J. Membr. Sci. 2001, 185 (1), 59-71. 23. Nabe, A.; Staude, E.; Belfort, G., Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J. Membr. Sci. 1997, 133 (1), 57-72. 24. Koenhen, D. M.; Mulder, M. H. V.; Smolders, C. A., PHASE SEPARATION PHENOMENA DURING FORMATION OF ASYMMETRIC MEMBRANES. J. Appl. Polym. Sci. 1977, 21 (1), 199-215. 25. Wijmans, J. G.; Baaij, J. P. B.; Smolders, C. A., The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. J. Membr. Sci. 1983, 14 (3), 263-274. 26. Reuvers, A. J.; Smolders, C. A., Formation of membranes by means of immersion precipitation .2. the mechanism of formation of membranes prepared from the system cellulose-acetate acetone water. J. Membr. Sci. 1987, 34 (1), 67-86. 27. Lloyd, D. R.; Kim, S. S.; Kinzer, K. E., Microporous membrane formation via thermally-induced phase-separation .2. liquid liquid-phase separation. J. Membr. Sci. 1991, 64 (1-2), 1-11. 28. Koros, W. J.; Fleming, G. K., Membrane-based gas separation. J. Membr. Sci. 1993, 83 (1), 1-80. 29. Nunes, S. P.; Inoue, T., Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. J. Membr. Sci. 1996, 111 (1), 93-103. 30. Lee, H. J.; Jung, B.; Kang, Y. S.; Lee, H., Phase separation of polymer casting solution by nonsolvent vapor. J. Membr. Sci. 2004, 245 (1-2), 103-112. 31. 蔡榮贊, 蒸氣誘導式相分離過程之蕾絲結構生成與合併探討; Study on the Lacy Structure Formation and Coarsening during Vapor-Induced Phase Separation., 國立台灣大學化學工程學系研究所, 博士論文, (2010). 32. Su, Y. S.; Kuo, C. Y.; Wang, D. M.; Lai, J. Y.; Deratani, A.; Pochat, C.; Bouyer, D., Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation. J. Membr. Sci. 2009, 338 (1-2), 17-28. 33. 郭純因, 非溶劑誘導相分離製備具雙連續結構微孔膜及其成膜機制之研究; Study of microporous membranes with bicontinuous structure by nonsolvent induced phase separation., 私立中原大學化學工程學系研究所, 博士論文, (2008). 34. Fisher, S.; Kunin, R., Routine exchange capacity determinations of ion exchange resins. Anal. Chem. 1955, 27 (7), 1191-1194. 35. Karimi, M.; Albrecht, W.; Heuchel, M.; Kish, M. H.; Frahn, J.; Weigel, T.; Hofmann, D.; Modarress, H.; Lendlein, A., Determination of water/polymer interaction parameter for membrane-forming systems by sorption measurement and a fitting technique. J. Membr. Sci. 2005, 265 (1-2), 1-12. 36. Nolte, R.; Ledjeff, K.; Bauer, M.; Mulhaupt, R., Partially sulfonated poly(arylene ether sulfone) - a versatile proton conducting membrane material for modern energy-conversion technologies. J. Membr. Sci. 1993, 83 (2), 211-220. 37. Johnson, B. C.; Yilgor, I.; Tran, C.; Iqbal, M.; Wightman, J. P.; Lloyd, D. R.; McGrath, J. E., Synthesis and characterization of sulfonated poly(arylene ether sulfones). J. Polym. Sci. Part a-Polymer Chemistry 1984, 22 (3), 721-737. 38. Edwards, H. G. M.; Brown, D. R.; Dale, J. R.; Plant, S., Raman spectroscopic studies of acid dissociation in sulfonated polystyrene resins. J. Mol. Struct. 2001, 595 (1-3), 111-125. 39. Lufrano, F.; Squadrito, G.; Patti, A.; Passalacqua, E., Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. J. Appl. Polym. Sci. 2000, 77 (6), 1250-1256. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56258 | - |
| dc.description.abstract | 本研究係以濕式相轉換法(Wet inversion method,又稱濕式法)製備磺酸化聚碸(Sulfonated polysulfone,SPSf)高分子薄膜,針對其薄膜結構形成之機制進行探討。高分子薄膜材料磺酸化聚碸由氯磺酸與聚碸(Polysulfone,PSf)進行磺酸化取代反應製備而得,所使用的溶劑為N-甲基-2-吡咯酮(N-Methyl-2-pyrrolidone,NMP)。
在磺酸化程度到達10.6%之SPSf(10.6%)/NMP系統中,經過濕式相轉換法成膜之薄膜主體為雙連續(Bicontinueous)結構,並且於表面生成緻密皮層;而PSf/NMP系統,在成膜後於表面緻密皮層下方生成封閉式孔洞為主的細胞狀(Cellular)結構。文獻曾提及,細胞狀結構係由鑄膜溶液於成膜過程中以成核成長(Nucleation and growth)相分離主導生成,而雙連續結構則是由spinodal decomposition相分離所主導生成。因此本研究在探討薄膜結構形成機制時,必須以鑄膜溶液之相分離機制為基礎進行分析。 在20 wt%鑄膜溶液成膜過程中,SPSf/NMP和PSf/NMP系統的組成路徑通過三成分相圖之介穩區所耗費的時間是接近的,因此兩系統鑄膜溶液能夠成核成長的時間大致相同;然而,SPSf/NMP鑄膜溶液形成穩定高分子貧相核胞的阻力較大,系統較不易成核成長,因此SPSf/NMP系統得以在介穩區維持勻相溶液,在組成路徑進入非穩區後發生spinodal decomposition。SPSf/NMP系統在成膜過程中鑄膜溶液黏度上升的幅度大於PSf/NMP系統,由此也印證了SPSf/NMP鑄膜溶液穩定性更優於PSf/NMP。 當鑄膜溶液濃度提高,SPSf/NMP鑄膜溶液的黏度巨幅上升,雖然黏度上升會減緩質傳速度使得組成路徑通過介穩區的時間增加,然而SPSf/NMP系統之溶液穩定性完全抑制成核成長發生並主導雙連續結構的生成。在30 wt%成膜系統中,SPSf/NMP的組成路徑於進入介穩區之前先通過膠固化線,使鑄膜溶液達到膠固化程度,爾後即便組成路徑再進到介穩區抑或是非穩區,鑄膜溶液皆能維持穩定不發生相分離。而PSf/NMP系統在提高濃度至30 wt%後,黏度上升的幅度低於SPSf/NMP系統;此外,組成路徑通過介穩區的時間又遠大於SPSf/NMP系統,因此在成膜過程中鑄膜溶液仍會發生成核成長並生成細胞狀結構。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:20:50Z (GMT). No. of bitstreams: 1 ntu-103-R01524022-1.pdf: 3043029 bytes, checksum: a80f50fef59123e91c64c7097a22f99b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract iii 目錄 vi 圖索引 ix 表索引 xiv 第一章 緒論 1 1-1 薄膜簡介 1 1-2 薄膜製備方法 1 1-2-1 熱誘導式相分離(Thermally induced phase separation, TIPS) 2 1-2-2 乾式法(Dry method) 2 1-2-3 濕式相轉換法(Wet inversion method) 2 1-2-4 蒸氣誘導式相分離(Vapor induced phase separation, VIPS) 3 1-3 非溶劑誘導式相分離成膜理論 4 1-3-1 熱力學 4 1-3-2 質傳動力學 9 1-4 文獻回顧 12 1-4-1 聚碸的磺酸化反應 12 1-4-2 磺酸化聚碸薄膜及其應用 13 1-4-3 非溶劑誘導式相分離之成膜機制 15 1-5 研究動機和目的 19 第二章 實驗材料與研究方法 21 2-1 實驗藥品 21 2-2 實驗儀器 21 2-3 實驗方法 22 2-3-1 PSf之磺酸化取代反應 22 2-3-2 傅立葉紅外光光譜儀 (FTIR)分析 22 2-3-3 SPSf磺酸化程度之測定 24 2-3-4 鑄膜溶液之配製 24 2-3-5 濕式法成膜 25 2-3-6 掃描式電子顯微鏡(scanning electronic microscopy, SEM) 25 2-3-7 霧點量測(Clouding point) 26 2-3-8 薄膜膨潤 26 2-3-9 相圖繪製 27 2-3-10 膠固化測定 27 2-3-11 FTIR-Microscopy分析 27 2-3-12 鑄膜液黏度之量測 29 第三章 結果與討論 31 3-1 SPSf之磺酸化分析 31 3-2 PSf和SPSf以濕式法成膜 34 3-3 PSf和SPSf系統相分離機制之探討 39 3-3-1 水在鑄膜中的質傳速度 40 3-3-2 建立PSf與SPSf系統之熱力學相圖 41 3-3-3 PSf與SPSf成膜系統的組成路徑變化 48 3-3-4 PSf與SPSf系統的溶液組成在介穩區滯留之時間 53 3-3-5 PSf和SPSf系統在liquid holder中的成膜結構 54 3-3-6 溶液穩定度對相分離之影響 60 3-3-7 質傳因素和溶液穩定性對相分離影響之比較 61 3-3-8 PSf與SPSf系統之溶液穩定性 62 3-3-9 高分子鏈糾纏對溶液穩定度之影響 64 3-3-10 水的添加對鑄膜溶液穩定性之影響 64 3-4 提高鑄膜溶液濃度對相分離機制之影響 66 3-4-1 提高濃度對SPSf系統Tmeta-stable之影響 66 3-4-2 高濃度SPSf系統在liquid holder中的成膜結構 68 3-4-3 高濃度SPSf系統之溶液穩定性 72 3-4-4 提高濃度對PSf系統Tmeta-stable之影響 74 3-4-5 高濃度PSf和SPSf(10.1%)系統Tmeta-stable之比較 75 3-4-6 高濃度PSf系統在liquid holder中的成膜結構 76 3-4-7 高濃度PSf和SPSf系統相分離機制之比較 78 第四章 結論 81 參考文獻 83 附錄 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磺酸化聚? | zh_TW |
| dc.subject | 聚? | zh_TW |
| dc.subject | 濕式相轉換法 | zh_TW |
| dc.subject | 成核成長 | zh_TW |
| dc.subject | spinodal decomposition | zh_TW |
| dc.subject | polysulfone (PSf) | en |
| dc.subject | sulfonated polysulfone (SPSf) | en |
| dc.subject | wet inversion method | en |
| dc.subject | nucleation and growth | en |
| dc.subject | spinodal decomposition | en |
| dc.title | 磺酸化聚碸高分子薄膜成膜機制之探討 | zh_TW |
| dc.title | Formation mechanism of sulfonated polysulfone membranes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴君義(Juin-Yih Lai),李魁然(Kueir-Rarn Lee) | |
| dc.subject.keyword | 磺酸化聚?,聚?,濕式相轉換法,成核成長,spinodal decomposition, | zh_TW |
| dc.subject.keyword | sulfonated polysulfone (SPSf),polysulfone (PSf),wet inversion method,nucleation and growth,spinodal decomposition, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
