Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘(Da-Ming Wang)
dc.contributor.authorYu-Pin Linen
dc.contributor.author林郁評zh_TW
dc.date.accessioned2021-06-16T05:20:50Z-
dc.date.available2019-09-15
dc.date.copyright2014-09-15
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation1. Mulder, M., Basic Principles of Membrane Technology. 2nd ed. 1996, Dordrecht, Netherland, Boston: Kluwer Academic.
2. Kesting, R. E., Concerning microstructure of dry-ro membranes. J. Appl. Polym. Sci. 1973, 17 (6), 1771-1785.
3. Zeman, L.; Fraser, T., Formation of air-cast cellulose-acetate membranes .1. study of macrovoid formation. J. Membr. Sci. 1993, 84 (1-2), 93-106.
4. Zeman, L.; Fraser, T., Formation of air-cast cellulose-acetate membranes .2. kinetics of demixing and microvoid growth. J. Membr. Sci. 1994, 87 (3), 267-279.
5. Kang, Y. S., Asymmetric membrane formation via immersion precipitation method .1. kinetic effect. J. Membr. Sci. 1991, 60 (2-3), 219-232.
6. Altena, F. W.; Smolders, C. A., Calculation of liquid liquid-phase separation in a ternary-system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 1982, 15 (6), 1491-1497.
7. H. Tompa, Polymer Solutions, Butterworths, London, 1956.
8. Yilmaz, L.; McHugh, A. J., Modeling of asymmetric membrane formation .1. critique of evaporation models and development of a diffusion equation formalism for the quench period. J. Membr. Sci. 1986, 28 (3), 287-310.
9. Prausnitz J., Lichtenthaler R., de Azevedo E., Molecular Thermodynamics of Fluuid-Phase Equilibria, Prentice-Hall, Englewood Cliffs, 1986.
10. Flory P., Principles of Polymer Chemistry, Cornell Univ. Press, Ithaca, NY, 1953.
11. Reuvers, A. J.; Altena, F. W.; Smolders, C. A., Demixing and gelation behavior of ternary cellulose-acetate solutions. Journal of Polymer Science Part B-Polymer Physics 1986, 24 (4), 793-804.
12. Gaides, G. E.; McHugh, A. J., Gelation in an amorphous polymer - a discussion of its relation to membrane formation. Polymer 1989, 30 (11), 2118-2123.
13. Wijmans, J. G.; Baaij, J. P. B.; Smolders, C. A., The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. J. Membr. Sci. 1983, 14 (3), 263-274.
14. Stropnik, C.; Germic, L.; Zerjal, B., Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion. J. Appl. Polym. Sci. 1996, 61 (10), 1821-1830.
15. Quentin J. P., Sulfonated polyarylethersulfones. U.S. Pat.3,709,841, 1973.
16. Noshay, A.; Robeson, L. M., Sulfonated polysulfone. J. Appl. Polym. Sci. 1976, 20 (7), 1885-1903.
17. Chao H. S., Kelsey D. R., Poly(aryl ether) resins having repeat units of the structure. U.S. Pat.4,625,000, 1986.
18. Chen, S.-H.; Liou, R.-M.; Lin, Y.-Y.; Lai, C.-L.; Lai, J.-Y., Preparation and characterizations of asymmetric sulfonated polysulfone membranes by wet phase inversion method. European Polymer Journal 2009, 45 (4), 1293-1301.
19. Blanco, J. F.; Sublet, J.; Nguyen, Q. T.; Schaetzel, P., Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process. J. Membr. Sci. 2006, 283 (1-2), 27-37.
20. Lufrano, F.; Squadrito, G.; Patti, A.; Passalacqua, E., Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. J. Appl. Polym. Sci. 2000, 77 (6), 1250-1256.
21. Lufrano, F.; Baglio, V.; Staiti, P.; Arico, A. S.; Antonucci, V., Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells. Journal of Power Sources 2008, 179 (1), 34-41.
22. Genova-Dimitrova, P.; Baradie, B.; Foscallo, D.; Poinsignon, C.; Sanchez, J. Y., Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. J. Membr. Sci. 2001, 185 (1), 59-71.
23. Nabe, A.; Staude, E.; Belfort, G., Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions. J. Membr. Sci. 1997, 133 (1), 57-72.
24. Koenhen, D. M.; Mulder, M. H. V.; Smolders, C. A., PHASE SEPARATION PHENOMENA DURING FORMATION OF ASYMMETRIC MEMBRANES. J. Appl. Polym. Sci. 1977, 21 (1), 199-215.
25. Wijmans, J. G.; Baaij, J. P. B.; Smolders, C. A., The mechanism of formation of microporous or skinned membranes produced by immersion precipitation. J. Membr. Sci. 1983, 14 (3), 263-274.
26. Reuvers, A. J.; Smolders, C. A., Formation of membranes by means of immersion precipitation .2. the mechanism of formation of membranes prepared from the system cellulose-acetate acetone water. J. Membr. Sci. 1987, 34 (1), 67-86.
27. Lloyd, D. R.; Kim, S. S.; Kinzer, K. E., Microporous membrane formation via thermally-induced phase-separation .2. liquid liquid-phase separation. J. Membr. Sci. 1991, 64 (1-2), 1-11.
28. Koros, W. J.; Fleming, G. K., Membrane-based gas separation. J. Membr. Sci. 1993, 83 (1), 1-80.
29. Nunes, S. P.; Inoue, T., Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation. J. Membr. Sci. 1996, 111 (1), 93-103.
30. Lee, H. J.; Jung, B.; Kang, Y. S.; Lee, H., Phase separation of polymer casting solution by nonsolvent vapor. J. Membr. Sci. 2004, 245 (1-2), 103-112.
31. 蔡榮贊, 蒸氣誘導式相分離過程之蕾絲結構生成與合併探討; Study on the Lacy Structure Formation and Coarsening during Vapor-Induced Phase Separation., 國立台灣大學化學工程學系研究所, 博士論文, (2010).
32. Su, Y. S.; Kuo, C. Y.; Wang, D. M.; Lai, J. Y.; Deratani, A.; Pochat, C.; Bouyer, D., Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation. J. Membr. Sci. 2009, 338 (1-2), 17-28.
33. 郭純因, 非溶劑誘導相分離製備具雙連續結構微孔膜及其成膜機制之研究; Study of microporous membranes with bicontinuous structure by nonsolvent induced phase separation., 私立中原大學化學工程學系研究所, 博士論文, (2008).
34. Fisher, S.; Kunin, R., Routine exchange capacity determinations of ion exchange resins. Anal. Chem. 1955, 27 (7), 1191-1194.
35. Karimi, M.; Albrecht, W.; Heuchel, M.; Kish, M. H.; Frahn, J.; Weigel, T.; Hofmann, D.; Modarress, H.; Lendlein, A., Determination of water/polymer interaction parameter for membrane-forming systems by sorption measurement and a fitting technique. J. Membr. Sci. 2005, 265 (1-2), 1-12.
36. Nolte, R.; Ledjeff, K.; Bauer, M.; Mulhaupt, R., Partially sulfonated poly(arylene ether sulfone) - a versatile proton conducting membrane material for modern energy-conversion technologies. J. Membr. Sci. 1993, 83 (2), 211-220.
37. Johnson, B. C.; Yilgor, I.; Tran, C.; Iqbal, M.; Wightman, J. P.; Lloyd, D. R.; McGrath, J. E., Synthesis and characterization of sulfonated poly(arylene ether sulfones). J. Polym. Sci. Part a-Polymer Chemistry 1984, 22 (3), 721-737.
38. Edwards, H. G. M.; Brown, D. R.; Dale, J. R.; Plant, S., Raman spectroscopic studies of acid dissociation in sulfonated polystyrene resins. J. Mol. Struct. 2001, 595 (1-3), 111-125.
39. Lufrano, F.; Squadrito, G.; Patti, A.; Passalacqua, E., Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. J. Appl. Polym. Sci. 2000, 77 (6), 1250-1256. 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56258-
dc.description.abstract本研究係以濕式相轉換法(Wet inversion method,又稱濕式法)製備磺酸化聚碸(Sulfonated polysulfone,SPSf)高分子薄膜,針對其薄膜結構形成之機制進行探討。高分子薄膜材料磺酸化聚碸由氯磺酸與聚碸(Polysulfone,PSf)進行磺酸化取代反應製備而得,所使用的溶劑為N-甲基-2-吡咯酮(N-Methyl-2-pyrrolidone,NMP)。
在磺酸化程度到達10.6%之SPSf(10.6%)/NMP系統中,經過濕式相轉換法成膜之薄膜主體為雙連續(Bicontinueous)結構,並且於表面生成緻密皮層;而PSf/NMP系統,在成膜後於表面緻密皮層下方生成封閉式孔洞為主的細胞狀(Cellular)結構。文獻曾提及,細胞狀結構係由鑄膜溶液於成膜過程中以成核成長(Nucleation and growth)相分離主導生成,而雙連續結構則是由spinodal decomposition相分離所主導生成。因此本研究在探討薄膜結構形成機制時,必須以鑄膜溶液之相分離機制為基礎進行分析。
在20 wt%鑄膜溶液成膜過程中,SPSf/NMP和PSf/NMP系統的組成路徑通過三成分相圖之介穩區所耗費的時間是接近的,因此兩系統鑄膜溶液能夠成核成長的時間大致相同;然而,SPSf/NMP鑄膜溶液形成穩定高分子貧相核胞的阻力較大,系統較不易成核成長,因此SPSf/NMP系統得以在介穩區維持勻相溶液,在組成路徑進入非穩區後發生spinodal decomposition。SPSf/NMP系統在成膜過程中鑄膜溶液黏度上升的幅度大於PSf/NMP系統,由此也印證了SPSf/NMP鑄膜溶液穩定性更優於PSf/NMP。
當鑄膜溶液濃度提高,SPSf/NMP鑄膜溶液的黏度巨幅上升,雖然黏度上升會減緩質傳速度使得組成路徑通過介穩區的時間增加,然而SPSf/NMP系統之溶液穩定性完全抑制成核成長發生並主導雙連續結構的生成。在30 wt%成膜系統中,SPSf/NMP的組成路徑於進入介穩區之前先通過膠固化線,使鑄膜溶液達到膠固化程度,爾後即便組成路徑再進到介穩區抑或是非穩區,鑄膜溶液皆能維持穩定不發生相分離。而PSf/NMP系統在提高濃度至30 wt%後,黏度上升的幅度低於SPSf/NMP系統;此外,組成路徑通過介穩區的時間又遠大於SPSf/NMP系統,因此在成膜過程中鑄膜溶液仍會發生成核成長並生成細胞狀結構。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T05:20:50Z (GMT). No. of bitstreams: 1
ntu-103-R01524022-1.pdf: 3043029 bytes, checksum: a80f50fef59123e91c64c7097a22f99b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 i
Abstract iii
目錄 vi
圖索引 ix
表索引 xiv
第一章 緒論 1
1-1 薄膜簡介 1
1-2 薄膜製備方法 1
1-2-1 熱誘導式相分離(Thermally induced phase separation, TIPS) 2
1-2-2 乾式法(Dry method) 2
1-2-3 濕式相轉換法(Wet inversion method) 2
1-2-4 蒸氣誘導式相分離(Vapor induced phase separation, VIPS) 3
1-3 非溶劑誘導式相分離成膜理論 4
1-3-1 熱力學 4
1-3-2 質傳動力學 9
1-4 文獻回顧 12
1-4-1 聚碸的磺酸化反應 12
1-4-2 磺酸化聚碸薄膜及其應用 13
1-4-3 非溶劑誘導式相分離之成膜機制 15
1-5 研究動機和目的 19
第二章 實驗材料與研究方法 21
2-1 實驗藥品 21
2-2 實驗儀器 21
2-3 實驗方法 22
2-3-1 PSf之磺酸化取代反應 22
2-3-2 傅立葉紅外光光譜儀 (FTIR)分析 22
2-3-3 SPSf磺酸化程度之測定 24
2-3-4 鑄膜溶液之配製 24
2-3-5 濕式法成膜 25
2-3-6 掃描式電子顯微鏡(scanning electronic microscopy, SEM) 25
2-3-7 霧點量測(Clouding point) 26
2-3-8 薄膜膨潤 26
2-3-9 相圖繪製 27
2-3-10 膠固化測定 27
2-3-11 FTIR-Microscopy分析 27
2-3-12 鑄膜液黏度之量測 29
第三章 結果與討論 31
3-1 SPSf之磺酸化分析 31
3-2 PSf和SPSf以濕式法成膜 34
3-3 PSf和SPSf系統相分離機制之探討 39
3-3-1 水在鑄膜中的質傳速度 40
3-3-2 建立PSf與SPSf系統之熱力學相圖 41
3-3-3 PSf與SPSf成膜系統的組成路徑變化 48
3-3-4 PSf與SPSf系統的溶液組成在介穩區滯留之時間 53
3-3-5 PSf和SPSf系統在liquid holder中的成膜結構 54
3-3-6 溶液穩定度對相分離之影響 60
3-3-7 質傳因素和溶液穩定性對相分離影響之比較 61
3-3-8 PSf與SPSf系統之溶液穩定性 62
3-3-9 高分子鏈糾纏對溶液穩定度之影響 64
3-3-10 水的添加對鑄膜溶液穩定性之影響 64
3-4 提高鑄膜溶液濃度對相分離機制之影響 66
3-4-1 提高濃度對SPSf系統Tmeta-stable之影響 66
3-4-2 高濃度SPSf系統在liquid holder中的成膜結構 68
3-4-3 高濃度SPSf系統之溶液穩定性 72
3-4-4 提高濃度對PSf系統Tmeta-stable之影響 74
3-4-5 高濃度PSf和SPSf(10.1%)系統Tmeta-stable之比較 75
3-4-6 高濃度PSf系統在liquid holder中的成膜結構 76
3-4-7 高濃度PSf和SPSf系統相分離機制之比較 78
第四章 結論 81
參考文獻 83
附錄 87
dc.language.isozh-TW
dc.subject磺酸化聚?zh_TW
dc.subject聚?zh_TW
dc.subject濕式相轉換法zh_TW
dc.subject成核成長zh_TW
dc.subjectspinodal decompositionzh_TW
dc.subjectpolysulfone (PSf)en
dc.subjectsulfonated polysulfone (SPSf)en
dc.subjectwet inversion methoden
dc.subjectnucleation and growthen
dc.subjectspinodal decompositionen
dc.title磺酸化聚碸高分子薄膜成膜機制之探討zh_TW
dc.titleFormation mechanism of sulfonated polysulfone membranesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君義(Juin-Yih Lai),李魁然(Kueir-Rarn Lee)
dc.subject.keyword磺酸化聚?,聚?,濕式相轉換法,成核成長,spinodal decomposition,zh_TW
dc.subject.keywordsulfonated polysulfone (SPSf),polysulfone (PSf),wet inversion method,nucleation and growth,spinodal decomposition,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2014-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved