請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56248
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江宏仁(Hong-Ren Jiang) | |
dc.contributor.author | Cheng-Chung Lin | en |
dc.contributor.author | 林正忠 | zh_TW |
dc.date.accessioned | 2021-06-16T05:20:27Z | - |
dc.date.available | 2016-08-22 | |
dc.date.copyright | 2014-08-22 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-15 | |
dc.identifier.citation | [1] Weinert, Franz M., and Dieter Braun. 'Optically driven fluid flow along arbitrary microscale patterns using thermoviscous expansion.' Journal of applied physics 104.10 (2008): 104701..
[2] Appleyard, David C., and Matthew J. Lang. 'Active particle control through silicon using conventional optical trapping techniques.'Lab on a Chip 7.12 (2007): 1837-1840. [3] Piazza, Roberto, and Andrea Guarino. 'Soret effect in interacting micellar solutions.' Physical review letters 88.20 (2002): 208302. [4] Braun, Dieter, and Albert Libchaber. 'Trapping of DNA by thermophoretic depletion and convection.' Physical review letters 89.18 (2002): 188103. [5] Ruckenstein, Eli. 'Can phoretic motions be treated as interfacial tension gradient driven phenomena?.' Journal of Colloid and Interface Science 83.1 (1981): 77-81. [6] Gaeta, F. S., et al. 'Nonisothermal matter transport in sodium chloride and potassium chloride aqueous solutions. 1. Homogeneous system (thermal diffusion).' The Journal of Physical Chemistry 86.15 (1982): 2967-2974. [7] Putnam, Shawn A., and David G. Cahill. 'Transport of nanoscale latex spheres in a temperature gradient.' Langmuir 21.12 (2005): 5317-5323. [8] Jiang, Hong-Ren, et al. 'Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient.' Physical review letters 102.20 (2009): 208301. [9] Würger, Alois. 'Thermal non-equilibrium transport in colloids.' Reports on Progress in Physics 73.12 (2010): 126601. [10] Brownian motion, http://en.wikipedia.org/wiki/Brownian_motion [11] Einstein, Albert. Investigations on the Theory of the Brownian Movement. Courier Dover Publications, 1956. [12] Cappelezzo, M., et al. 'Stokes-Einstein relation for pure simple fluids.' The Journal of chemical physics 126.22 (2007): 224516. [13] Braibanti, Marco, Daniele Vigolo, and Roberto Piazza. 'Does thermophoretic mobility depend on particle size?.' Physical review letters 100.10 (2008): 108303. [14] Ning, Hui, et al. 'Thermal diffusion behavior of hard-sphere suspensions.' The Journal of chemical physics 125.20 (2006): 204911. [15] Derjaguin, B. V., N. V. Churaev, and V. M. Muller. 'Surface forces, 1987.'Consultants Bureau, New York. [16] Derjaguin, B., and G. Sidorenkov. 'Thermoosmosis at ordinary temperatures and its analogy with the thermomechanical effect in helium II.' CR Acad Sci De L Urss 32 (1941): 622-626. [17] Guthrie Jr, George, J. Norton Wilson, and Verner Schomaker. 'Theory of the thermal diffusion of electrolytes in a Clusius column.' The Journal of Chemical Physics 17.3 (1949): 310-313. [18] Giddings, J. Calvin, Karin D. Caldwell, and Marcus N. Myers. 'Thermal diffusion of polystyrene in eight solvents by an improved thermal field-flow fractionation methodology.' Macromolecules 9.1 (1976): 106-112. [19] Staffeld, Peter O., and John A. Quinn. 'Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolytes.' Journal of colloid and interface science 130.1 (1989): 88-100. [20] De Gennes, Pierre-Gilles. Scaling concepts in polymer physics. Cornell university press, 1979. [21] Nachtigall, Von K., and G. Meyerhoff. 'Die Messung der Diffusionskoeffizienten von Hochpolymeren in Lösung mit einer konvektionsfreien Thermodiffusionszelle.' Die Makromolekulare Chemie 33.1 (1959): 85-88. [22] Giddings, J. Calvin, Karin D. Caldwell, and Marcus N. Myers. 'Thermal diffusion of polystyrene in eight solvents by an improved thermal field-flow fractionation methodology.' Macromolecules 9.1 (1976): 106-112. [23] 溫偉源、陸駿逸. '微流變學'物理雙月刊2005,6(廿七卷三期) [24] Langevin, P. (1908). 'Sur la théorie du mouvement brownien [On the Theory of Brownian Motion]'. C. R. Acad. Sci. (Paris) 146: 530–533. ; reviewed by D. S. Lemons & A. Gythiel: Paul Langevin’s 1908 paper 'On the Theory of Brownian Motion' [...], Am. J. Phys. 65, 1079 (1997) [25] Mason, T. G., et al. 'Particle tracking microrheology of complex fluids.'Physical Review Letters 79.17 (1997): 3282. [26] Dasgupta, Bivash R., et al. 'Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering.' Physical Review E 65.5 (2002): 051505. [27] polyethylene glycol, http://chemindustry.ru/Polyethylene_Glycol.php [28] French, Alister C., Amber L. Thompson, and Benjamin G. Davis. 'High‐Purity Discrete PEG‐Oligomer Crystals Allow Structural Insight.' Angewandte Chemie121.7 (2009): 1274-1278. [29] Holyst, Robert, et al. 'Scaling form of viscosity at all length-scales in poly (ethylene glycol) solutions studied by fluorescence correlation spectroscopy and capillary electrophoresis.' Physical Chemistry Chemical Physics 11.40 (2009): 9025-9032. [30] Chan, Joey, et al. 'Soret coefficients for aqueous polyethylene glycol solutions and some tests of the segmental model of polymer thermal diffusion.' Journal of solution chemistry 32.3 (2003): 197-214. [31] Devanand, K., and J. C. Selser. 'Asymptotic behavior and long-range interactions in aqueous solutions of poly (ethylene oxide).' Macromolecules 24.22 (1991): 5943-5947. [32] Wang, Y. Z., et al. 'Universal scaling description of the strain-softening behavior in the semidilute uncross-linked polyacrylamide-water solution.' Soft matter6.14 (2010): 3318-3324. [33] Cooper, E. C., P. Johnson, and A. M. Donald. 'Probe diffusion in polymer solutions in the dilute/semi-dilute crossover regime: 1. Poly (ethylene oxide).'Polymer 32.15 (1991): 2815-2822. [34] Dasgupta, Bivash R., et al. 'Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering.' Physical Review E 65.5 (2002): 051505. [35] Zimbro, M. J., and D. A. Power. 'Difco & BBL Manual.' Manual of Microbiological Culture Media. BD (2003): 508-9. [36] Agar, http://www.fao.org/docrep/006/y4765e/y4765e06.htm#TopOfPage [37] Agarose, http://en.wikipedia.org/wiki/Agarose [38] B Guiseley, Kenneth. 'The relationship between methoxyl content and gelling temperature of agarose.' Carbohydrate Research 13.2 (1970): 247-256. [39] Narayanan, Janaky, Jun-Ying Xiong, and Xiang-Yang Liu. 'Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques.'Journal of Physics: Conference Series. Vol. 28. No. 1. IOP Publishing, 2006. [40] Aymard, Pierre, et al. 'Influence of thermal history on the structural and mechanical properties of agarose gels.' Biopolymers 59.3 (2001): 131-144. [41] Maeda, Yusuke T., Tsvi Tlusty, and Albert Libchaber. 'Effects of long DNA folding and small RNA stem–loop in thermophoresis.' Proceedings of the National Academy of Sciences 109.44 (2012): 17972-17977. [42] Duhr, Stefan, and Dieter Braun. 'Optothermal molecule trapping by opposing fluid flow with thermophoretic drift.' Physical review letters 97.3 (2006): 038103. [43] Melling, A. 'Tracer particles and seeding for particle image velocimetry.'Measurement Science and Technology 8.12 (1997): 1406. [44] Particle image velocimetry, http://en.wikipedia.org/wiki/Particle_image_velocimetry | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56248 | - |
dc.description.abstract | 近年來,微流體控制技術使實驗室晶片有廣泛的應用,微流道、外加電場、磁場、溫度場都是常見的控制方法,其中用雷射加熱來控制微流體的方法是屬於非接觸性且易於控制。隨著許多對於高分子溶液、膠體溶液等複雜系統的液體熱泳研究,使得液體熱泳現象的物理機制陸續被提出來。本文由雷射加熱高分子並觀察高分子在溫度梯度下的變形,來推測熱泳動與受力之間的關係,以更深入的了解高分子的熱泳性質。
本實驗的研究方法是在聚環氧乙烷 (PEO, polyethylene oxide)與瓊脂糖 (agarose)的混合凝膠中加入螢光聚苯乙烯粒子,並以紅外雷射照射產生一溫度梯度場,藉由觀察螢光粒子的位移,並利用PIV的方式來分析凝膠受熱後變形的位移場,希望可以藉由這個位移場來觀察溫度梯度下熱泳與受力的關係。濃高分子在結構上交結而會有彈性材料的性質,實驗上發現濃高分子置於溫度梯度下會結構有變形,且變形幅度遠大於熱膨脹的尺度,顯示應該有一個與溫度梯度有關的力作用於此高分子上,且這個力可能與熱泳現象有關。 本研究觀察到濃高分子在溫度梯度場下受力最大的位置在溫度梯度最大值附近的位置,溫度梯度高的區域受力較大,而受力大小也與高分子濃度有關,顯示出在同樣溫度下高分子密度越高則受力越大。 | zh_TW |
dc.description.abstract | In recent years, many researches for complex system of thermophoresis in liquid has been reported, such as thermophoresis of polymer and colloid solution. Thermophoresis in liquid has been widely used in different fields, such as control of microfluidics and biological engineering. We plan to study thermophoretic properties of polymer by observing the mechanical behavior of polymer under temperature gradient.
Concentrated polymer solution is a partial elastic material with entangling of structure. We observe structure of concentrated polymer solution also deform under temperature gradient. The degree of deformation from thermophoresis under temperature gradient is much larger than the degree of deformation from thermal expansion. This result indicates that a force applied on the polymer solution which is related to temperature gradient. In our experiment, we add PS fluorescent particle in to the gel which is a mixture of PEO and agarose, and we use IR laser to generate a temperature gradient. To study the relation between thermophoresis and mechanical behavior, we analysis the displacement field of deformation under temperature gradient by PIV method. According to our experiment, the force acts on polymer solution which is positively relative to temperature gradient and concentration of polymer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:20:27Z (GMT). No. of bitstreams: 1 ntu-103-R00543063-1.pdf: 3645042 bytes, checksum: f1bcd27eec41bed7dc35e273767da970 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 1
中文摘要 2 ABSTRACT 3 目錄 4 圖目錄 6 第 一 章 緒論 9 1.1 前言 9 1.2 熱泳動 10 1.2.1 膠體溶液中粒子的運動 11 1.2.2 膠體粒子熱泳動模型介紹 15 1.2.3 膠體粒子在高分子溶液內的熱泳 19 1.2.4 高分子熱泳 20 1.3 研究動機 21 第 二 章 實驗設備材料與實驗步驟 23 2.1 光路架構 23 2.1.1 光源 24 2.1.2 振鏡系統 25 2.1.3 影像擷取裝置 25 2.1.4 其他光學元件 26 2.2 流變儀 28 2.2.1 微流變學 29 2.3 電子束蒸鍍機 33 2.3.1 原理 33 2.3.2 規格 35 2.4 實驗裝置 36 2.4.1 聚環氧乙烷與聚乙二醇 36 2.4.2 瓊脂糖 40 2.4.3 聚苯乙烯螢光粒子 42 2.5 量測加熱後的溫度 43 2.6 高分子凝膠在巨觀上的變形 45 2.7 觀測凝膠中粒子的運動 48 2.8 實驗步驟與分析方法 49 2.8.1 溶液調配 49 2.8.2 高分子塊狀凝膠製作 49 2.8.3 量測材料係數與位移場 49 2.8.4 計算受力 51 第 三 章 實驗結果與討論 52 3.1 材料係數 52 3.1.1 被動式微流變學 52 3.1.2 流變儀 54 3.1.3 塊狀凝膠變形 58 3.2 不同加熱強度下的受力 60 3.2.1 溫度梯度量測 60 3.2.2 PEO受力比較 63 3.3 不同agarose濃度下的受力 64 3.4 不同PEO濃度下的受力 67 第 四 章 結論 71 參考文獻 73 | |
dc.language.iso | zh-TW | |
dc.title | 濃高分子凝膠在溫度梯度下的熱泳動與受力 | zh_TW |
dc.title | Thermophoresis and force analysis of polymer in concentrated polymer gel | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 翁宗賢(Tzong-Shyan Wung),黃仲仁 | |
dc.subject.keyword | 高分子,熱泳,聚環氧乙烷, | zh_TW |
dc.subject.keyword | Thermophoresis,Polymer,polyethylene oxide, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。