請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56231完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | |
| dc.contributor.author | Ya-Ting Hu | en |
| dc.contributor.author | 胡雅婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:19:49Z | - |
| dc.date.available | 2024-08-15 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | [1] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu. Fast app
launching for mobile devices using predictive user context. In Proceedings of the 10th international conference on Mobile systems, applications, and services, pages 113–126. ACM, 2012. [2] Yi-Fan Chung, Yin-Tsung Lo, and Chung-Ta King. Enhancing user experiences by exploiting energy and launch delay trade-off of mobile multimedia applications. ACM Transactions on Embedded Computing Systems (TECS), 12(1s):37, 2013. [3] Kristijan Mihalic and Manfred Tscheligi. Interactional context for mobile applications. In Proceeding of the 20th International Symposium on Human Factors in Telecommunication HFT, pages 20–23, 2006. [4] Zhung-Xun Liao, Shou-Chung Li, Wen-Chih Peng, Philip S Yu, and Te-Chuan Liu. On the feature discovery for app usage prediction in smartphones. In Data Mining (ICDM), 2013 IEEE 13th International Conference on, pages 1127–1132. IEEE, 2013. [5] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling Chen. Predicting mobile application usage using contextual information. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 1059–1065. ACM, 2012. [6] Ye Xu, Mu Lin, Hong Lu, Giuseppe Cardone, Nicholas Lane, Zhenyu Chen, Andrew Campbell, and Tanzeem Choudhury. Preference, context and communities: A multifaceted approach to predicting smartphone app usage patterns. In Proceedings of the 17th annual international symposium on International symposium on wearable computers, pages 69–76. ACM, 2013. [7] Choonsung Shin, Jin-Hyuk Hong, and Anind K Dey. Understanding and prediction of mobile application usage for smart phones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 173–182. ACM, 2012. [8] Chen Sun, Jun Zheng, Huiping Yao, Yang Wang, and D Frank Hsu. Apprush: Using dynamic shortcuts to facilitate application launching on mobile devices. Procedia Computer Science, 19:445–452, 2013. [9] Chen Sun, Yang Wang, Jun Zheng, and D Frank Hsu. Feature fusion for mobile usage prediction using rank-score characteristics. In Cognitive Informatics & Cognitive Computing (ICCI* CC), 2013 12th IEEE International Conference on, pages 212– 217. IEEE, 2013. [10] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang Pan. Prophet: what app you wish to use next. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, pages 167–170. ACM, 2013. [11] Shu-Bo Chao. Context-aware daily activity summarization with mobile devices. Master’s thesis, National Taiwan University, Jan 2013. [12] Abhinav Parate, Matthias Bohmer, David Chu, Deepak Ganesan, and Benjamin M Marlin. Practical prediction and prefetch for faster access to applications on mobile phones. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 275–284. ACM, 2013. [13] Li-Yu Tang, Pi-Cheng Hsiu, Jiun-Long Huang, and Ming-Syan Chen. ilauncher: an intelligent launcher for mobile apps based on individual usage patterns. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages 505–512. ACM, 2013. [14] Zhung-Xun Liao, Yi-Chin Pan, Wen-Chih Peng, and Po-Ruey Lei. On mining mobile apps usage behavior for predicting apps usage in smartphones. In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, pages 609–618. ACM, 2013. [15] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun Cho, and Chong Sang Kim. On the existence of a spectrum of policies that subsumes the least recently used (lru) and least frequently used (lfu) policies. ACM SIGMETRICS Performance Evaluation Review, 27(1):134–143, 1999. [16] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231, 1996. [17] Antti Oulasvirta, Tye Rattenbury, Lingyi Ma, and Eeva Raita. Habits make smartphone use more pervasive. Personal and Ubiquitous Computing, 16(1):105–114, 2012. [18] Colin Cooper and Michele Zito. Realistic synthetic data for testing association rule mining algorithms for market basket databases. Knowledge Discovery in Databases: PKDD 2007, pages 398–405, 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56231 | - |
| dc.description.abstract | 隨著智慧型手機的普及,手機應用程式的數量急速的增加,並在使
用者的日常生活中扮演不可或缺的角色。我們提出了APEIC 以預測在 不同的使用情境下,使用者會優先使用哪一個程式。預測手機程式使 用的好處包括將需要的程式預先載入記憶體以降低啟動所需的時間, 以及將不需要的程式關掉以避免程式在背景持續消耗手機電力。在這 篇論文裡,情境的描述包含了環境情境和互動情境兩種不同的類型, 前者指的是裝置周遭的環境資訊,比方說時間、空間、使用者的運動 狀態等,而互動情境則是指程式使用的先後順序。我們收集了實際的 手機程式使用資料,進而分析程式的使用情境,將觀察的結果作為設 計預測模型的參考。利用使用者過去的使用紀錄,預測模型學習如何 從當下的環境情境以及互動情境評估每個程式被開啟的機率,以及如 何從已經開啟的程式來推測接下來將會被使用的程式。根據使用者目 前的使用情況,預測模型會自動調整預測的結果以符合當下的使用模 式。我們除了利用收集到的實際資料進行實驗,也根據收集的資料設 計了一個手機使用資料產生器,利用產生器製造的合成資料進行完整 的參數分析。實驗的結果顯示出我們提出的預測不但準確而且適用於 不同的使用模式。結合其他研究夥伴先前提出的應用,我們可以實作 出一個實用的手機應用。程式會在手機螢幕上會顯示一個常駐的啟動 器,列出預測模型依據當前情境,推測使用者目前最有可能使用的手 機程式,並且根據使用者現在的活動以推薦合適的應用程式。 | zh_TW |
| dc.description.abstract | With the growing prevalence of smartphones, there is an increasing number
of mobile applications which play important roles in daily life. In this thesis, we propose a framework of APEIC (standing for App Prediction by Environmental and Interactional Contexts) to predict apps that are most likely to be used according to the current context. The context consists of environmental context (EC), which is characterized by features extracted from built-in sensors, and interactional context (IC), which is defined as the app launch sequence. The benefits of such prediction include fast app launching by pre-loading the right apps into memory, and also efficient power management by terminating apps which are not to be used in the near future. We collected real app usage traces and made some observations that provide insights into the design of our prediction model. First, from past traces, we adopt features representing EC to build a naive Bayes classifier and evaluate the launch contributions between apps from IC respectively. Second, from the current condition, Poisson distribution is used to model the re-access pattern of certain apps. Finally, we can rank the apps by the sum of their launch intensities. We conduct experiments on both real data and synthetic data. The results demonstrate the capability and the robustness of our prediction framework. Furthermore, in combination with our companions’ work, we design a smart launcher which helps users have rapid access to the apps they need and recommends other useful apps according to the context at that time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:19:49Z (GMT). No. of bitstreams: 1 ntu-103-R01921054-1.pdf: 1277760 bytes, checksum: c22739c730dc1d6ed804ee3832bea9b7 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
Acknowledgments ii 中文摘要iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 2 Related Work 6 3 Context Construction and Usage Observations 8 3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Context Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 App Usage Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3.1 Same Application in Consecutive Sessions . . . . . . . . . . . . 10 3.3.2 Re-access to Apps in a Session . . . . . . . . . . . . . . . . . . . 13 4 Apps Usage Prediction 14 4.1 Work Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Launch Intensity from EC . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Launch Intensity from IC . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.1 Considering Launch Contributions from Preceding Apps . . . . . 15 4.3.2 Considering Re-access probabilities for Used Apps . . . . . . . . 17 4.4 Apps Usage Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Experiments 21 5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Compared Methods . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 Accuracy Measurement . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Real Data Experimental Results . . . . . . . . . . . . . . . . . . . . . . 22 5.3 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3.1 Analyze App Usage Behavior . . . . . . . . . . . . . . . . . . . 24 5.3.2 Generate Sessions with Corresponding Environmental Contexts . 25 5.3.3 Develop Interactional Context according to Environmental context 25 5.4 Synthetic Data Experimental Results . . . . . . . . . . . . . . . . . . . . 27 6 Application 30 7 Conclusion 33 Bibliography 34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 智慧型手機 | zh_TW |
| dc.subject | 手機程式 | zh_TW |
| dc.subject | 情境感知 | zh_TW |
| dc.subject | smartphone | en |
| dc.subject | mobile apps | en |
| dc.subject | context-aware | en |
| dc.title | 基於環境與互動情境之手機程式使用預測 | zh_TW |
| dc.title | Mobile Apps Prediction by Environmental and Interactional
Contexts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂俊賢,鄧維光,陳正君,楊得年 | |
| dc.subject.keyword | 智慧型手機,手機程式,情境感知, | zh_TW |
| dc.subject.keyword | smartphone,mobile apps,context-aware, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
