請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56228完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳彥龍(Yeng-Long Chen) | |
| dc.contributor.author | Yi Chiang | en |
| dc.contributor.author | 江翊 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:19:43Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-27 | |
| dc.identifier.citation | Meletharayil, G. H., Patel, H. A., Metzger, L. E., Huppertz, T. (2016). Acid gelation of reconstituted milk protein concentrate suspensions: Influence of lactose addition. International Dairy Journal, 61, 107–113. doi:10.1016/j.idairyj.2016.04.005 Hoeng, F., Bras, J., Gicquel, E., Krosnicki, G., Denneulin, A. (2017). Inkjet printing of nanocellulose–silver ink onto nanocellulose coated cardboard. RSC Advances, 7, 15372-15381. doi:10.1039/c6ra23667g Cauchi, M., Grech, I., Mallia, B., Mollicone, P., Sammut, N. G. E. (2018). Analytical, Numerical and Experimental Study of a Horizontal Electrothermal MEMS Microgripper for the Deformability Characterisation of Human Red Blood Cells. Micromachines, 9(3). doi:10.3390/mi9030108 Mebius, R. E. Kraal, G. (2005). Structure and function of the spleen. Nat Rev Immunol, 5, 606-616. doi: 10.1038/nri1669 Pearson, H. A., Spencer, R. P., Cornelius, E. A. (1969). Functional Asplenia in Sickle-Cell Anemia. New England Journal of Medicine, 281, 923-926. doi:10.1056/NEJM196910232811703 Lei, H., Karniadakis, G. E. (2012). Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers. Soft Matter, 8(16). doi:10.1039/C2SM07294G Mohammadalipour, A., Burdick, M. M., Tees, D. F. J. (2018). Deformability of breast cancer cells in correlation with surface markers and cell rolling. FASEB J, 32(4), 1806-1817. doi:10.1096/fj.201700762R Chen, L., Wang, K. X., Doyle, P. S. (2017). Effect of internal architecture on microgel deformation in microfluidic constrictions. Soft Matter, 13(9), 1920-1928. doi:10.1039/c6sm02674e Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E. M. (2012). The Lattice Boltzmann Method: Springer, Chem. Ladd, A. J. C. Verberg, R. (2001). Lattice-Boltzmann Simulations of Particle-Fluid Suspensions. Journal of Statistical Physics, 107, 1191–1251. doi:10.1023/A:1010414013942 Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond: Oxford. Warner, H. R. (1972). Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells. Ind. Eng. Chem. Fundamen., 11, 3, 379-387. doi:10.1021/i160043a017 Weeks, J. D., Chandler, D., Andersen, H. C. (1971). Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. The Journal of Chemical Physics, 54, 12, 5237-5247. doi: 10.1063/1.1674820 Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O. (1987). Dynamics of Polymer Liquids, Vol. 2: Kinetic Theory: Wiley-Interscience. Landau, L. D., Lifshitz, E. M., (1986). Theory of Elasticity: Oxford. Pozrikidis, C. (2010). Computational Hydrodynamics of Capsules and Biological Cells: CRC Press. Peskin, C. S. (1972). Flow patterns around heart valves A numerical method. Journal of Computational Physics, 10, 252-271. Peskin, C. S. (2003). The immersed boundary method. Acta Numerica, 11, 479-517. doi:10.1017/s0962492902000077 Maciaszek, J. L., Lykotrafitis, G. (2011). Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech, 44(4), 657-661. doi:10.1016/j.jbiomech.2010.11.00810.1016/j.jbiomech.2010.11.008 Quarteroni, A. (2015). Modeling the Heart and the Circulatory System: Springer, Cham. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56228 | - |
| dc.description.abstract | 粒子透過形變穿透進入狹窄通道的行為,是特定領域中非常重要的研究課題,然而其動態研究卻非常稀少。本研究採用結構單純的玩具模型進行模擬及分析,試著找出內部結構如何影響粒子穿透的行為。在此論文中,我們尤其關注內部結構對粒子形變與穿透所需時間的影響。 我們使用二維晶格波茲曼法來建模流體、單層彈簧模型模擬粒子形變。我們考慮具單棒狀內部結構的粒子。我們的模擬結果顯示,粒子的穿透過程涉及粒子變形和內部結構的重新定向過程。此重新定向過程的旋轉速度,決定穿透時間受粒子傾斜角度影響的程度。此外,內部結構的物理性質,例如彈性硬度、彎曲硬度、或兩者之間的比值都會影響具單棒狀內部結構粒子的穿透時間和穿透模式。 我們通過追蹤粒子在穿透過程中不同區域的位能變化,提出傾斜角度影響穿透時間的物理解釋。並且我們的結果與一些先前的實驗在質性上吻合,證明了我們系統的可靠性。 | zh_TW |
| dc.description.abstract | The deformation and transition behaviors of particles are very important research topics that give a few specific fields. However, there are few studies about them. This thesis used a simple model to simulate and analyze such processes and try to find out how the inner structure affects the transit physics of soft particles. I investigated the effect of particle inner structure on particle deformation and the time required to enter and pass through a constrictive tube which diameter smaller than the particle diameter. We used the 2D lattice Boltzmann method to model the fluid flow, and a single-layered spring model for particle deformation. We considered particles with inner beams. Our results show that the transit time for a particle with an inner beam strongly depends on the beam tilt angle as the particle enters the tube. Furthermore, the transit process involves particle deformation and reorientation of the beam to align with the constriction geometry. The properties of the inner structure, such as the elastic constant, the bending constant, and the ratio of them, will affect the transit time and the transit process. We analyzed the transit energy by tracing the change in potential energy of different parts of a particle to find the physical explanations of the relationship between the transit time and the tilt angle. Our results capture the qualitative physics with previous experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:19:43Z (GMT). No. of bitstreams: 1 U0001-2707202016341400.pdf: 2476150 bytes, checksum: d51c55d3ad8b70dc8f09c2ce42392673 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口委審定書 i 致謝 ii 中文摘要 iii Abstract iv Contents v List of Figures vi List of Tables viii Chapter 1 Introduction 1 Chapter 2 Simulation Method 4 2-1 Lattice Boltzmann Method 4 2-2 Simulation System 6 2-3 Force Computation 8 2-4 Implementation of the Simulation 12 2-5 Parameter Setting 13 Chapter 3 Results and Discussion 19 3-1 Beam Structure Effect 22 3-2 Particle Strain vs. Bending 30 3-3 Application 33 Chapter 4 Conclusion 37 Reference 39 | |
| dc.language.iso | en | |
| dc.subject | 內部結構 | zh_TW |
| dc.subject | 穿透動態過程 | zh_TW |
| dc.subject | 二維晶格波茲曼法 | zh_TW |
| dc.subject | 2D lattice Boltzmann method | en |
| dc.subject | Inner structure | en |
| dc.subject | Transit dynamics | en |
| dc.title | 內部結構對通過窄管粒子之動態過程的影響 | zh_TW |
| dc.title | Effect of Inner Structure on Particle Flow Transit Dynamics Through a Constrictive Tube | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳義裕(Yi-Yuh Chen) | |
| dc.contributor.oralexamcommittee | 謝之真(Chih-Chen Hsieh) | |
| dc.subject.keyword | 內部結構,穿透動態過程,二維晶格波茲曼法, | zh_TW |
| dc.subject.keyword | Inner structure,Transit dynamics,2D lattice Boltzmann method, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU202001920 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2707202016341400.pdf 未授權公開取用 | 2.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
