Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥龍(Yeng-Long Chen)
dc.contributor.authorYi Chiangen
dc.contributor.author江翊zh_TW
dc.date.accessioned2021-06-16T05:19:43Z-
dc.date.available2020-09-02
dc.date.copyright2020-09-02
dc.date.issued2020
dc.date.submitted2020-07-27
dc.identifier.citationMeletharayil, G. H., Patel, H. A., Metzger, L. E., Huppertz, T. (2016). Acid gelation of reconstituted milk protein concentrate suspensions: Influence of lactose addition. International Dairy Journal, 61, 107–113. doi:10.1016/j.idairyj.2016.04.005
Hoeng, F., Bras, J., Gicquel, E., Krosnicki, G., Denneulin, A. (2017). Inkjet printing of nanocellulose–silver ink onto nanocellulose coated cardboard. RSC Advances, 7, 15372-15381. doi:10.1039/c6ra23667g
Cauchi, M., Grech, I., Mallia, B., Mollicone, P., Sammut, N. G. E. (2018). Analytical, Numerical and Experimental Study of a Horizontal Electrothermal MEMS Microgripper for the Deformability Characterisation of Human Red Blood Cells. Micromachines, 9(3). doi:10.3390/mi9030108
Mebius, R. E. Kraal, G. (2005). Structure and function of the spleen. Nat Rev Immunol, 5, 606-616. doi: 10.1038/nri1669
Pearson, H. A., Spencer, R. P., Cornelius, E. A. (1969). Functional Asplenia in Sickle-Cell Anemia. New England Journal of Medicine, 281, 923-926. doi:10.1056/NEJM196910232811703
Lei, H., Karniadakis, G. E. (2012). Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers. Soft Matter, 8(16). doi:10.1039/C2SM07294G
Mohammadalipour, A., Burdick, M. M., Tees, D. F. J. (2018). Deformability of breast cancer cells in correlation with surface markers and cell rolling. FASEB J, 32(4), 1806-1817. doi:10.1096/fj.201700762R
Chen, L., Wang, K. X., Doyle, P. S. (2017). Effect of internal architecture on microgel deformation in microfluidic constrictions. Soft Matter, 13(9), 1920-1928. doi:10.1039/c6sm02674e
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E. M. (2012). The Lattice Boltzmann Method: Springer, Chem.
Ladd, A. J. C. Verberg, R. (2001). Lattice-Boltzmann Simulations of Particle-Fluid Suspensions. Journal of Statistical Physics, 107, 1191–1251. doi:10.1023/A:1010414013942
Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond: Oxford.
Warner, H. R. (1972). Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells. Ind. Eng. Chem. Fundamen., 11, 3, 379-387. doi:10.1021/i160043a017
Weeks, J. D., Chandler, D., Andersen, H. C. (1971). Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. The Journal of Chemical Physics, 54, 12, 5237-5247. doi: 10.1063/1.1674820
Bird, R. B., Curtiss, C. F., Armstrong, R. C., Hassager, O. (1987). Dynamics of Polymer Liquids, Vol. 2: Kinetic Theory: Wiley-Interscience.
Landau, L. D., Lifshitz, E. M., (1986). Theory of Elasticity: Oxford.
Pozrikidis, C. (2010). Computational Hydrodynamics of Capsules and Biological Cells: CRC Press.
Peskin, C. S. (1972). Flow patterns around heart valves A numerical method. Journal of Computational Physics, 10, 252-271.
Peskin, C. S. (2003). The immersed boundary method. Acta Numerica, 11, 479-517. doi:10.1017/s0962492902000077
Maciaszek, J. L., Lykotrafitis, G. (2011). Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech, 44(4), 657-661. doi:10.1016/j.jbiomech.2010.11.00810.1016/j.jbiomech.2010.11.008
Quarteroni, A. (2015). Modeling the Heart and the Circulatory System: Springer, Cham.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56228-
dc.description.abstract粒子透過形變穿透進入狹窄通道的行為,是特定領域中非常重要的研究課題,然而其動態研究卻非常稀少。本研究採用結構單純的玩具模型進行模擬及分析,試著找出內部結構如何影響粒子穿透的行為。在此論文中,我們尤其關注內部結構對粒子形變與穿透所需時間的影響。
我們使用二維晶格波茲曼法來建模流體、單層彈簧模型模擬粒子形變。我們考慮具單棒狀內部結構的粒子。我們的模擬結果顯示,粒子的穿透過程涉及粒子變形和內部結構的重新定向過程。此重新定向過程的旋轉速度,決定穿透時間受粒子傾斜角度影響的程度。此外,內部結構的物理性質,例如彈性硬度、彎曲硬度、或兩者之間的比值都會影響具單棒狀內部結構粒子的穿透時間和穿透模式。
我們通過追蹤粒子在穿透過程中不同區域的位能變化,提出傾斜角度影響穿透時間的物理解釋。並且我們的結果與一些先前的實驗在質性上吻合,證明了我們系統的可靠性。
zh_TW
dc.description.abstractThe deformation and transition behaviors of particles are very important research topics that give a few specific fields. However, there are few studies about them. This thesis used a simple model to simulate and analyze such processes and try to find out how the inner structure affects the transit physics of soft particles. I investigated the effect of particle inner structure on particle deformation and the time required to enter and pass through a constrictive tube which diameter smaller than the particle diameter.
We used the 2D lattice Boltzmann method to model the fluid flow, and a single-layered spring model for particle deformation. We considered particles with inner beams. Our results show that the transit time for a particle with an inner beam strongly depends on the beam tilt angle as the particle enters the tube. Furthermore, the transit process involves particle deformation and reorientation of the beam to align with the constriction geometry. The properties of the inner structure, such as the elastic constant, the bending constant, and the ratio of them, will affect the transit time and the transit process.
We analyzed the transit energy by tracing the change in potential energy of different parts of a particle to find the physical explanations of the relationship between the transit time and the tilt angle. Our results capture the qualitative physics with previous experiments.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:19:43Z (GMT). No. of bitstreams: 1
U0001-2707202016341400.pdf: 2476150 bytes, checksum: d51c55d3ad8b70dc8f09c2ce42392673 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口委審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents v
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Simulation Method 4
2-1 Lattice Boltzmann Method 4
2-2 Simulation System 6
2-3 Force Computation 8
2-4 Implementation of the Simulation 12
2-5 Parameter Setting 13
Chapter 3 Results and Discussion 19
3-1 Beam Structure Effect 22
3-2 Particle Strain vs. Bending 30
3-3 Application 33
Chapter 4 Conclusion 37
Reference 39
dc.language.isoen
dc.subject內部結構zh_TW
dc.subject穿透動態過程zh_TW
dc.subject二維晶格波茲曼法zh_TW
dc.subject2D lattice Boltzmann methoden
dc.subjectInner structureen
dc.subjectTransit dynamicsen
dc.title內部結構對通過窄管粒子之動態過程的影響zh_TW
dc.titleEffect of Inner Structure on Particle Flow Transit Dynamics Through a Constrictive Tubeen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor陳義裕(Yi-Yuh Chen)
dc.contributor.oralexamcommittee謝之真(Chih-Chen Hsieh)
dc.subject.keyword內部結構,穿透動態過程,二維晶格波茲曼法,zh_TW
dc.subject.keywordInner structure,Transit dynamics,2D lattice Boltzmann method,en
dc.relation.page41
dc.identifier.doi10.6342/NTU202001920
dc.rights.note有償授權
dc.date.accepted2020-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
U0001-2707202016341400.pdf
  未授權公開取用
2.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved