請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56213
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖文亮 | |
dc.contributor.author | Shih-Chi Huang | en |
dc.contributor.author | 黃詩錡 | zh_TW |
dc.date.accessioned | 2021-06-16T05:19:10Z | - |
dc.date.available | 2014-08-25 | |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-15 | |
dc.identifier.citation | 王欣芳,2006。飼料中添加不同的甘草量及甘草抽出物對南美白蝦成長與免疫的
影響。國立臺灣海洋大學水產養殖研究所碩士論文。 吳協峻,2006。葡聚多醣體與藻酸鈉對斷溝龍蝦非特異性免疫反應的影響。國立 臺灣海洋大學水產養殖研究所碩士論文。 李民賢,2003。維生素C 及其衍生物與他種營養素間交互作用對草蝦稚蝦成長耐 性及免疫反應之研究。國立臺灣海洋大學食品科學系博士學位論文。 林明男、丁雲源、曾寶順、劉熾揚,1989。塭種蝦培育研究-南美白蝦第三子代之 育成。中國水產學會刊,17, 125-132。 張東柱, 1997。 牛樟之病害, 牛樟生物學及育林技術研討會論文集. 林業叢刊 72, 127-131。 許勝傑、陳清農、陳勁初,2000 樟芝宿主專一性之探討. 台灣農業化學與食品科 學 38, 533-539。 林琬曼,1998。草蝦超氧歧化酶之研究:病毒感染、純化與生物特性r之研究。國 立臺灣海洋大學水產養殖系研究所碩士論文。 張庭杰,2007。飼料中添加藥用植物對海鱺成長及非特異性免疫反應的影響。國 立臺灣海洋大學水產養殖研究所碩士論文。 張晉維,2010。中藥複方四君子湯對點帶石斑魚非特異性免疫反應之影響。國立 臺灣海洋大學水產養殖研究所碩士論文。 梁思析、王愛波,1996。甘草酸-魚類免疫增強劑。廣東飼料,pp. 3-25。 陳映妤,2006。藥用植物對海鱺非特異性免疫反應之影響。國立臺灣大學水產 養殖研究所碩士論文。 曾子渝,2006。葡聚多醣對臺灣鮑非特異性免疫之影響。國立臺灣海洋大學水產 養殖研究所碩士論文。 黃正臺,2005。不同免疫激活物對南美白蝦非特異性免疫反應及生理之影響。國 立臺灣海洋大學水產養殖研究所碩士論文。 葉舒屯,2003。藻酸鈉與昆布多醣對南美白蝦免疫反應之研究。國立臺灣海洋大 學水產養殖研究所碩士論文。 葉舒屯,2010。白蝦接受紅藻多醣處理在受到溶藻弧菌感染與環境緊迫下具先天 性免疫保護效果。國立臺灣海洋大學水產養殖研究所博士論文。 廖述育,2003。葡聚多醣體與維生素C對南美白蝦非特異性免疫反應的影響。國 立台灣海洋大學水產養殖研究所碩士學位論文。 Allen, R.C., Stjernholm, R.L., Steele, R.H., 1972. Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem. Biophys. Res. Commun. 47, 679-684. Anderson, D.P., 1992.Immunostimulants, adjuvants and vaccine carriers in fish: application to aquaculture. Annual. Rev. Fish Dis. 2, 281-307. Anderson, R.S., 1996. Interaction of Perkinsus marinus with humoral factors and hemocytes of Crassostrea virginica. J. Shellfish. Res. 15, 127-134. Ao, Z.H., Xu, Z.H., Lu, Z.M., Xu, H.Y., Zhang, X.M., Dou, W.F., 2009. Niuchangchih(Antrodia camphorata) and its potential in treating liver diseases. Journal of Ethnopharmacology 121, 194-212. Ashida, M., Ishizaki, Y., Iwahana, H., 1983. Activation of prophenoloxidase by bacterial cell walls or β-1,3-glucan in plasma of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun.113, 562-568. Babior, B.M., Kipnes, R.S., Curnutte, J.T. 1973. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52, 741-744. Bachere, E., Mialhe, E., Rodriguez, J., 1995. Identification of defence parameters in the haemolymph of crustacean with particular reference to the shrimp Penaeus japonicus (Bate), prospects and application. Fish Shellfish Immunol. 5, 597-612. Balasubramanian, G., Sarathi, M., Venkatesan, C., Thomas,J., Sahul Harmeed, S., 2008. Studies on the immunomodulatory effect of Cyanodon dactylon in shrimp, Penaeus monodon, and its efficacy to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol. 25, 820-828. Bannister, J.V., Bannister, W.H., Rotilio, G., 1987. Aspect of the structure, function and applications of superoxide dismutase. Crit. Rev. Biochem. 22, 111. Barracco. M. A., Duvic, B., Soderhall, K., 1991. The β-1, 3-glucan binding protein from the crayfish Pacifastacus jeniusculus, when reacted with β-1,3-glucan,induces spreading and degranulation of crayfish granular cells. Cell Tissue Res. 266, 491-497. Bayne, C.J., 1990. Phagocytosis and non-self recognition in invertebrates. Phagocytosis appears to be an ancient line of defense. Bioscience. 40, 723-731. Bell, K.L., Smith, V.J., 1993. In vitro superoxide production by hyaline cell of the shore crab Carcinus maenas. Dev. Comp. Immunol. 17, 211-219. Boone, L., 1931. Anomuran, Macruran Crustacea from Panama and Canalzone. Bull. Ame. Mus. Natu. Histo. 63, 137-189. Boyd, C.E., 1989. Water quality management and aeration in shrimp farming. In: fisheries and allied aquacultures departmental series, Vol. No. 2. Alabama Agricultural Experiment Station, Auburn University, Auburn, AL, USA, pp. 83. Bricknell, I. and Dalmo, R.A., 2005. The use of immunostimulants in fishlarval aquaculture. Fish Shellfish Immunol. 19, 457-472. Cano-Gomez, A., Bourne, D.G., Hall, M.R., Owens, L., Hoj, L., 2009. Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: current methods and future prospects. Chang, C.C., Gao, J.H., Cheng, W.T., 2013. Effects of dietary administration of the hot-water extracts of Sagassum cristaefolium on the immunity of White Shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. J. Fish. Soc. Taiwan. 40, 27-41. Destoumieux, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., Bachere, E., 1997. Penaeidins: a new family of antimicrobial peptides in the shrimp, Penaeus vannamei (Decapod). J. Biol. Chem. 272, 28398-28406. Dunphy, G.B., 1991.Phenoloxidease activity in the serum of two species of insects, the gypsy moth, Lymantria dispar(Lymantriidae)and the greater wax moth, Galleria mellonella (Pyralidae).Comp. Biochem. Physiol. 98B, 535-538. Duvic, B., Soderhall, K., 1990. Purification and characterization of a β-1, 3-glucan binding protein from the plasma of the crayfish Pacifastacus leniusculus. J. Biol. Chem. 265, 9332-9337. Ey, P.L., 1991. Phagocytosis in crustacea: The role of opsonins. In: Gupta,A.P. (Ed.), Immunology of insects and other arthropods. CRC press,Boca Raton, FL. 201-235. Herandez-Lopez, J., Gollas-Galvan, T.S., Vargas-Albores, F., 1996.Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp. Biochem. Physiol. 113C, 61-66. Hikima, S., Hikima, J., Rojtinnakorn, J., Hirono, I., Aoki, T., 2003. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against vibrio species. Gene 316, 187-195. Holmblad, T., Soderhall, K., 1999. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172, 111-123. Hose, J.E., Martin, G.C., 1989. Defence functions of granulocytes in the ridgeback prawn Sicyonia ingentis. J.Invert. Pathol. 53, 335-346. Jian, J., Wu, Z., 2004. Influences of traditional Chinese medicine on non-specific immunity of Jian Carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 16, 185-191. Johansson, M., Keyser, P., Sritunyalucksana, K. and Soderhall, K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191, 45-52. Johansson, M.W., Soderhall, K., 1985. Exocytosis of the prophenoloxidase activating system from crayfish hemocytes. J. Comp.Physiol. 156, 175-181. Johansson, M.W., Soderhall, K., 1989. A cell adhesion factor from crayfish hemocytes has degranulating activity towards crayfish granular cells. Insect Biochem. 2, 183-190. Jolles, P., Jolles, J., 1984. What is new in lysozyme research? Always a model system, today as yesterday. Molecular and Cellular Biochemistry 63, 165-189. Kobayashi, M., Johansson , M.W., Soderhall, K., 1990. The 76-kDa cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Tissue Res. 260, 13-18. Kopacek, P., Hall, M., Soderhall, K., 1993. Characterization of a clotting proteinsisolated from plasma of the freshwater crayfish Pacifastacus leniusculus. Eur. J. Biochem. 213, 591-597. Martin, G.G., Hose, J.E., Ormori, S., Chong, C., Hoodbhoy, T., MeKrell, N., 1991. Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapod crustacean. Comp. Biochem. Physiol. 100B, 517-522. McCord, J.M., 1977. Superoxide dismutase: occurance function and evolution. Curr. Top. Biol. Med. Res. 3, 1-25. Mistra, C.K., Das, B.K., Mukherjee, S.C., Pattnaik, P., 2006. Effect of longterm administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture. 255, 82-94. Miyata, T., Tokunaga, F., Yoneya, F., Yoshikawa, K., Iwanaga, S., Niwa, M., Takao, T., Shimonishi, Y., 1989. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity. J. Biochem. Tokyo. 106, 663-668. Mori, K., Steawrt, J.E., 1978. Natural and induced bactericidal activity of the hepatopancreas of the dungenes crab, Cancer magister. J. Invert. 35, 134-143. Ochiai, M., Ashida, M., 1988. Purification of a β-1,3-glucan recognition protein in the prophenoloxidase activating system from hemolymph of the silkworm, Bombyx mori, J. Biol. Chem. 263, 12056-12062. Pante M. J. R., 1990. Influence of Environmental Stress on the Heritability of Molting Frequency and Growth Rate of the Penaeid Shrimp, Penaeus vannamei. University of Houston-Clear lake, Houston, TX, USA, M.Sc. Thesis. Perazzolo, L.M., Barracco, M.A., 1997. The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev. Comp. Immunol. 21, 385-395. Perez-Farfante I. and Kensley B., 1997. Penaeoid and Sergestoid shrimps and prawns of the world, keys and diagnoses for the species and genera. Memoires Museum National d' Histoire Naturalle, Zoologie, Tome. 175, pp. 1-235. Ponce-Palafox, J., Martinez-Palacios, C. A., Ross, L. G., 1997. The effects of salinity and temperature on the growth and survival rate of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture. 157, 107-115. Qasba, P.K., Kumar, S., 1997. Molecular divergence of lysozymes and alactalbumin. Crit. Rev. Biochem. Mol. Biol. 32, 255-306. Ravindranath, M.H., Cooper, E.L., Paulson, J.C., 1985. Purification and characterization of an Oacetylsialic acid-specific lectin from a marine crab Cancer antennarius. J. Biol. Chem. 260, 8850-8856. Rodriguez, J., Le Moullac, G., 2000. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture. 191, 109-119. Sakai, M. 1999. Current research status of fish immunostimulants. Aquaculture.172, 63-92. Smith, V.J., Soderhall, K., 1983. Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus astacus, by components of the prophenoloxidase activating system in vitro. Cell Tissue Res. 233, 295-303. Smith, V.J., Soderhall, K., 1991.A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev. Comp. Immunol. 15, 251-261. Soderhall, K., 1982. Prophenoloxidase activating system and melanization-A recognition mechanism of arthropods: A review. Dev.Comp. Immunol. 5, 565-573. Soderhall, K., Aspan , A., Duvic, B., 1990. The proPO system and associated protein; role in cellular communication in arthropods. Res. Immunol. 141, 896-907. Soderhall, K., Cerenius, L., 1992.Crustacean immunity. Annual. Rev. Fish Dis. 1, 3-23. Soderhall, K., Cerenius, L., 1998. Role of the prophenoloxidase activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23-28. Soderhall, K., Hall, L., 1984. Lipopolysaccharide-induced activating system as a recognition and defence system in crayfish haemocyte lysate. Biochem. Biophys. Acta. 797, 99-104. Soderhall, K., Smith, V.J., Johansson, M.W., 1986. Exocytosis and uptake of bacteria by isolated hemocytes populations of two crustacean: Evidence for cellular cooperation in the defense reactions of arthropods. Cell Tissue Res.245, 43-49. Soderhall, K., Unestam, T., 1979. Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase. Can J.Microbiol.25, 406-414. Song, Y., Yu, C., 2000. Outbreak of Taura syndrome in pacific white shrimp Litopenaeus vannamei cultured in Taiwan. Fish Pathol. 35, 21-24. Song, Y.L., Hsieh, Y.T., 1994. Immunostimulantion of tiger shrimp (Penaeus monodon)hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol. 18, 201-209. Sritunyalucksana, K., Soderhall, K., 2000. The proPO and clotting system in crustaceans. Aquaculture 191, 53-69. Stentiford, G.D., Bonami, J.-R., Alday-Sanz, V., 2009. A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Aquaculture. 291, 1-17. Stern S., Daniel H., Letellier E., 1990. Tolerance of post larvae and juvenile Penaeus vannamei to low salinity. In: World Aquaculture 90, Halifax, Nova Scotia, Canada, T30, 12. Stewart, J.E., Foley, E.M., 1969. A precipitin reaction of the hemolyph of the lobster Homarus americanus. J. Fish Res. Bd. Can. 26, 1392-1397. Stewart, J.E., Zwicker, B.M., 1972. Natural and induced bactericidal activities of the lobster, Homarus americanus :products of hemocyte-plasma interaction. Can. J. Microbiol. 18, 1499-1509. Takahashi, Y., Itami, T., Kondo, M.,1995. Immunol defense system of crustacea. Fish. Pathol. 30, 141-150. Thornqvist, P.O., Johansson, M.W., Soderhall, K., 1994. Opsonic activity of cell adhesion protein and β-1, 3-glucan binding protein from two crustaceans. Dev. Comp. Immunol.18, 3-12. Tossi, A., Aandri, L., Giangaspero, A., 2000. Amphipatic, α-helical antimicrobial peptides. Biopoly.(Peptide Science)55, 4-30 Unestam, T., Soderhall, K., 1977. Soluble fragments from fungal cell walls elicit defence reactions in crayfish. Nature 267, 45-46. Van de Braak, C.B.T., Botterblom, M.H.A., Liu, W., Taverne, N., Van der Knaap, W.P.W. and Rombout, J.H.W.M., 2002. The role of the haematopoietic tissue in haemocyte production and maturation of the black tiger shrimp (Penaeus monodon). Fish & Shellfish Immunology 12, 253-272. Vagas-Albores, F., Jimenez-Vega, F., Soderhall, K., 1996. A plasma protein isolated from brown shrimp ( Penaeus californiensis) which enhances the activation of prophenoloxidase system by β-1, 3-glucan. Dev. Comp. Immunol. 20, 299-306. Vagas-Albores, F., Jimenez-Vega, F., Yepiz-Plascencia, G., 1997. Purification and comparison of β-1, 3-glucan binding protein from white shrimp ( Penaeus vannamei ). Vargas-Albores, F., Guazman, M.A., Ochoa, J.L. , 1993. A lipopolysaccharide-binding aggulutinin isolated from brown shrimp hemolymp. Comp. Biochem. Physiol. 104A, 407-413. Wang, L.U., Chen, J.C., 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immunol. 18, 269-278. Weber, J.T., Mintz, E.D., Canizares, R., Semiglia, A., Gomez, I., Sempertegui, R., Davila, A., Greene, K.D., Puhr, N.D., Cameron, D.N.,1994. Epidemic cholera in Ecuador: multidrug–resistance and transmission by water and seafood. Epidemiol.Infect. 112, 1-11. Wong, V.L., Burke, J.J., Allen, R.D., 1991. Isolation and sequence analysis of cDNA that encodes pea manganese superoxide dismutase.Plant Mol. Biol. 17, 1271-1274. Yeh, S.T., Chen, J.C., 2008. Immunomodulation by carrageenans in the white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Aquaculture. 276, 22-28. Yeh, S.T., Chen, J.C., 2009. White shrimp Litopenaeus vannamei that received the hot-water extract of Gracilaria tenuistipitata showed earlier recovery in immunity after a Vibrio alginolyticus injection. Fish Shellfish Immunol. 26, 724-730. Yao, C.L., Wu, C.G., Xiang, J.H., Li, F.H., Wang, Z.Y., Han, X.Z., 2008. The lysosome and lysozyme response in Chinese shrimp Fenneropenaeus chinensis to Vibrio anguillarum and laminarin stimulation. J. Exp.Marine. Biol. Ecol. 363, 124-129. Yoshida, H., Kinoshita, K., Ashida, M., 1996. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol.Chem. 271, 13854-13860. Yoshida, H., Ochiai, M., Ashida, M., 1986. β-1, 3-Glucan receptor and peptidoglycan receptor are present as separate entities within insect prophenoloxidase activating system.Biochem. Biophys. Res. Commun. 16, 539-545. Zhang, G., Gong, S., Yu, D., Yuan, H., 2009. Propolis and Herba Epimedii extracts enhance the non-specific immune response and disease resistance of Chinese sucker, Myxocyprinus asiaticus. Fish Shellfish Immunol. 26, 467-472. Zhao, J.M., Song, L.S., Li, C.H., Zou, H.B., Ni, D.J., Wang, W., Xu, W., 2007. Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein. Molecular Immunology 44, 1198-1208. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56213 | - |
dc.description.abstract | 本實驗研究目的在於探討飼料中添加不同濃度樟芝菌絲體培養基對南美白蝦非特異性免疫能力的影響。在飼料中添加0(Ctrl)、0.75%(A)、1.25%(B)、2.5%(C)、5%(D)之樟芝菌絲體培養基連續投餵15天,分別於0、1、3、6、9、15天抽血檢測其原酚氧化酵素(Prophenoloxidase, proPO)活性、超氧陰離子(O2-)生產率、吞噬作用活性(Phagocytic activity)、溶菌酶活性(Lysozyme activity)等非特異性免疫指標,進一步評估樟芝菌絲體培養基是否能提升南美白蝦(Litopenaeus vannamei)的免疫能力。結果顯示A、B、C組皆能有效提升血檢測其原酚氧化酵素(proPO)活性、吞噬作用活性、溶菌酶活性,但提昇效果沒有隨著添加樟芝菌絲體培養基濃度增加而上升,其中以1.25%(B)效果最好。A、B組在第六天可有效提升超氧陰離子(O2-)生產率,但D組別在第十五天有抑制超氧陰離子(O2-)生成的現象。
綜合實驗結果發現,添加樟芝菌絲體培養基於南美白蝦飼料中,可以有效提升南美白蝦非特異性免疫能力,若要使用樟芝菌絲體培養基作為免疫激活物投餵,建議使用劑量為0.75~1.25% | zh_TW |
dc.description.abstract | The study aims to investigate the effects of Antrodia camphorate medium on non-specific immune response of white shrimp (Litopeneaus vannamei). Antrodia camphorate medium have been added to shrimp diets with 0g/kg (Ctrl), 7.5g/kg (A), 12.5g/kg (B), 25g/kg (C) and 50g/kg (D) respectively. The immune responses, prophenoloxidase activity (proPO), superoxide anion production (O2-), phagocytic activity and lysozyme activity were examined after feeding for 0, 1, 3, 6, 9, 15 days. The results indicated that prophenoloxidase activity, phagocytic activity and lysozyme activity all significantly increased (p<0.05) when fed the shrimp were fed A、B、C diets. The superoxide anion production (O2-) were significantly higher (p<0.05) when fed the shrimp were fed A、B、C diets on sixth day.
The present study showed that diet supplemented with Antrodia camphorate medium could elevate non-specific immune index of white shrimp. Thus, this study recommends that using 0.75~1.25 g/kg Antrodia camphorate medium as immunostimulants elevates non-specific immune of white shrimp. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:19:10Z (GMT). No. of bitstreams: 1 ntu-103-R01b45021-1.pdf: 750408 bytes, checksum: c76be60217a8245c14f65c3c6ed1faf8 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 第一章 前言...................................................................1
第二章 材料與方法........................................................14 第一節 實驗動物與材料..................................................14 第二節 實驗方法...........................................................15 第三節 統計分析...........................................................17 第三章 結果.................................................................18 第一節 原酚氧化酵素活性..............................................18 第二節 超氧陰離子生產率..............................................18 第三節 吞噬活性...........................................................18 第四節 溶菌酶活性........................................................19 第四章 討論 ................................................................20 第一節 樟芝菌絲體培養基對原酚氧化酵素活性之影響....... 20 第二節 樟芝菌絲體培養基對超氧陰離子生產率之影響....... .22 第三節 樟芝菌絲體培養基對吞噬活性之影響.....................24 第四節 樟芝菌絲體培養基對溶菌酶活性之影響..................25 第五章 結論.................................................................26 參考文獻............................................................................27 圖表附件............................................................................41 附錄..................................................................................46 | |
dc.language.iso | zh-TW | |
dc.title | 飼料中添加樟芝培養基對南美白蝦免疫反應之影響 | zh_TW |
dc.title | Effects of dietary with medium of Antrodia camphorata on Immune Responses of White Shrimp (Litopenaeus vannamei) | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 丁雲源,葉信利,黃大駿 | |
dc.subject.keyword | 飼料,南美白蝦,樟芝菌絲體,免疫反應, | zh_TW |
dc.subject.keyword | Diet,White shrimp,Antrodia camphorata,Immune responeses, | en |
dc.relation.page | 47 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-17 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 732.82 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。