Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56209
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孫霖(Sun-Lin Chung)
dc.contributor.authorYu-Han Changen
dc.contributor.author張宇涵zh_TW
dc.date.accessioned2021-06-16T05:19:02Z-
dc.date.available2016-08-26
dc.date.copyright2014-08-26
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation參考文獻
宋彪、張玉海、萬渝生和簡平 (2002) 鋯石SHRIMP樣品靶製作、年齡測定及有關現象討論。地質評論,48,第26-30頁。
李寄嵎、蔡榮浩、何孝桓、楊燦堯、鍾孫霖和陳正宏 (1997) 應用X光螢光分析儀從事岩石樣本之定量分析 (I) 主要元素。中國地質學會八十六年年會暨學術研討會論文摘要,第418-420頁。
林俞青 (2011) 亞美尼亞及高加索造山帶火成岩的地球化學特性與岩石成因。國立台灣大學地質科學研究所碩士論文。共112頁。
邱瀚毅 (2013) 利用鋯石鈾鉛定年及鉿同位素研究伊朗新特提斯隱沒帶岩漿演化 與札格洛斯造山作用。台灣大學地質科學研究所博士論文。共211頁。
陳震東 (2014) 小高加索山之剝蝕歷史與東安納托利亞高原之抬升機制。國立中正 大學地球與環境科學系應用地球物理與環境科學研究所碩士論文。共143頁。
Adamia, S., Lordkipanidze, M., and Zakariadze, G. (1977), Evolution of an active continental margin as exemplified by the Alpine history of the Caucasus, Tectonophysics, 40(3), 183-199.
Adamia, S., Alania, V., Chabukiani, A., Chichua, G., Enukidze, O., and Sadradze, N. (2010), Evolution of the Late Cenozoic basins of Georgia (SW Caucasus): a review, Geological Society, London, Special Publications, 340(1), 239-259.
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F. (2005), Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, International journal of earth sciences, 94(3), 401-419.
Allen, M. B., and Armstrong, H. A. (2008), Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265 (1), 52-58.
Andersen, T. (2002), Correction of common lead in U–Pb analyses that do not report 204Pb, Chemical geology, 192(1), 59-79.
Andersen, T. (2008), Appendix A3: ComPbCorr-software for common lead correction of U-Th-Pb analyses that do not report 204Pb: Laser ablation-ICP-MS in the earth sciences, current practices and outstanding issues, Mineralogical Association of Canada Short Course Series, 40, 312-314.
Aslan, Z., Arslan, M., Temizel, İ., and Kaygusuz, A. (2014), K-Ar dating, whole-rock and Sr-Nd isotope geochemistry of calc-alkaline volcanic rocks around the Gumuşhane area: implications for post-collisional volcanism in the Eastern Pontides, Northeast Turkey, Mineralogy and Petrology, 108(2), 245-267.
Aslanian, A., Bagdasarian, G., Gabunia, L., Rubinshtein, M., and Skhirtladze, N. (1984), Radiometric ages of Neogene volcanic formations of Georgian SSR, Armenian SSR and part of Nakhcivan ASSR: Proceedings of Academy of Sciences of Armenian SSR, Earth Sciences, 35, 3-24.
Aydıncakır, E., and Şen, C. (2013), Petrogenesis of the post-collisional volcanic rocks from the Borcka (Artvin) area: Implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey), Lithos, 172, 98-117.
Blichert-Toft, J., and Albarede, F. (1997), The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system, Earth and Planetary Science Letters, 148(1), 243-258.
Boztuğ, D., Jonckheere, R., Wagner, G., and Yeğingil, Z. (2004), Slow Senonian and fast Palaeocene–Early Eocene uplift of the granitoids in the Central Eastern Pontides, Turkey: apatite fission-track results, Tectonophysics, 382(3), 213-228.
Boztuğ, D., Ercin, A. İ., Kurucelik, M. K., Goc, D., Komur, İ., and İskenderoğlu, A. (2006), Geochemical characteristics of the composite Kackar batholith generated in a Neo-Tethyan convergence system, Eastern Pontides, Turkey, Journal of Asian Earth Sciences, 27(3), 286-302.
Boztuğ, D., Harlavan, Y., Arehart, G. B., Satır, M., and Avcı, N. (2007), K–Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriği–Sivas region, eastern-central Anatolia, Turkey, Lithos, 97(1), 193-218.
Brown, G. C., and Mussett, A. E. (1993), The inacessible Earth: An integrated view to its structure and composition, London, Chapman & Hall.
Cawood, P. A., Kroner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., and Windley, B. F. (2009), Accretionary orogens through Earth history, Geological Society, London, Special Publications, 318(1), 1-36.
Chesley, J., Righter, K., and Ruiz, J. (2004), Large-scale mantle metasomatism: a Re–Os perspective: Earth and Planetary Science Letters, 219(1), 49-60.
Chiu, H.-Y., Chung, S.-L., Wu, F.-Y., Liu, D., Liang, Y.-H., Lin, I., Iizuka, Y., Xie, L.-W., Wang, Y., and Chu, M.-F. (2009), Zircon U–Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet, Tectonophysics, 477(1), 3-19.
Chung, S.-L., Sun, S.-S., Tu, K., Chen, C.-H., and Lee, C.-Y. (1994), Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension, Chemical Geology, 112(1), 1-20.
Chung, S.-L., Liu, D., Ji, J., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q., and Zhang, Q. (2003), Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet, Geology, 31(11), 1021-1024.
Davidson, J., Turner, S., and Plank, T. (2013), Dy/Dy*: variations arising from mantle sources and petrogenetic processes, Journal of Petrology, 54(3), 525-537.
Defant, M. J., and Drummond, M. S. (1990), Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347(6294), 662-665.
Dewey, J., Hempton, M., Kidd, W., Saroglu, F. t., and Şengor, A. (1986), Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone, Geological Society, London, Special Publications, 19(1), 1-36.
Dilek, Y., Imamverdiyev, N., and Altunkaynak, Ş. (2010), Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint, International Geology Review, 52(4-6), 536-578.
Eggins, S., Woodhead, J., Kinsley, L., Mortimer, G., Sylvester, P., McCulloch, M., Hergt, J., and Handler, M. (1997), A simple method for the precise determination of≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation, Chemical Geology, 134(4), 311-326.
Eyuboglu, Y., Chung, S.-L., Santosh, M., Dudas, F. O., and Akaryalı, E. (2011a), Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting, Gondwana Research, 19(2), 413-429.
Eyuboglu, Y., Santosh, M., Dudas, F. O., Chung, S.-L., and Akaryalı, E. (2011b), Migrating magmatism in a continental arc: geodynamics of the Eastern Mediterranean revisited, Journal of Geodynamics, 52(1), 2-15.
Eyuboglu, Y., Dudas, F. O., Santosh, M., Yi, K., Kwon, S., and Akaryali, E. (2013), Petrogenesis and U–Pb zircon chronology of adakitic porphyries within the Kop ultramafic massif (Eastern Pontides Orogenic Belt, NE Turkey), Gondwana Research, 24(2), 742-766.
Gelati, R. (1975), Miocene marine sequence from Lake Van, eastern Turkey, Riv. Ital. Paleontol. Stratigr, 81, 477-490.
Govindaraju, K. (1994). 1994 compilation of working values and sample description
for 383 geostandards, Geostandards Newsletter, 18(Special Issue), 1-158.
Griffin, W., Pearson, N., Belousova, E., Jackson, S., Van Achterbergh, E., O’Reilly, S. Y., and Shee, S. (2000), The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites, Geochimica et Cosmochimica Acta, 64(1), 133-147.
Griffin, W., Wang, X., Jackson, S., Pearson, N., O'Reilly, S. Y., Xu, X., and Zhou, X. (2002), Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, Lithos, 61(3), 237-269.
Gudjabidze, G., and Gamkrelidze, I. (2003), Geological map of Georgia, 1: 500.000, Georgian State Department of Geology and National Oil Company “Saqnavtobi.
Hassig, M., Rolland, Y., Sosson, M., Galoyan, G., Muller, C., Avagyan, A., and Sahakyan, L. (2013), New structural and petrological data on the Amasia ophiolites (NW Sevan–Akera suture zone, Lesser Caucasus): Insights for a large-scale obduction in Armenia and NE Turkey, Tectonophysics, 588, 135-153.
Hatzfeld, D., and Molnar, P. (2010), Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Reviews of Geophysics, 48(2), 1-48.
Iddings, J. P. (1895), Absarokite-shoshonite-banakite series, The Journal of Geology, 3, 935-959.
Jourdan, F., and Renne, P. R. (2007), Age calibration of the Fish Canyon sanidine 40Ar/ 39Ar dating standard using primary K–Ar standards, Geochimica et Cosmochimica Acta, 71(2), 387-402.
Karsli, O., Dokuz, A., Uysal, İ., Aydin, F., Kandemir, R., and Wijbrans, J. (2010), Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination, Lithos, 114(1), 109-120.
Kay, R. (1978), Aleutian magnesian andesites: melts from subducted Pacific Ocean crust, Journal of Volcanology and Geothermal Research, 4(1), 117-132.
Kay, R. W., and Kay, S. M. (2002), Andean adakites: three ways to make them, Acta Petrologica Sinica, 18(3), 303-311.
Keskin, M., Pearce, J. A., and Mitchell, J. (1998), Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum–Kars Plateau, northeastern Turkey, Journal of Volcanology and Geothermal Research, 85(1), 355-404.
Keskin, M. (2003), Magma generation by slab steepening and breakoff beneath a subduction‐accretion complex: An alternative model for collision‐related volcanism in Eastern Anatolia, Turkey, Geophysical Research Letters, 30(24). 8046-8059.
Keskin, M., Pearce, J. A., Kempton, P. D., and Greenwood, P. (2006), Magma-crust interactions and magma plumbing in a postcollisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey, Geological Society of America Special Papers, 409, 475-505.
Keskin, M. (2007), Eastern Anatolia: a hotspot in a collision zone without a mantle plume, Geological Society of America Special Papers, 430, 693-722.
Kheirkhah, M., Allen, M., and Emami, M. (2009), Quaternary syn-collision magmatism from the Iran/Turkey borderlands, Journal of Volcanology and Geothermal Research, 182(1), 1-12.
Kuno, H. (1968), Origin of andesite and its bearing on the island arc structure, Bulletin Volcanologique, 32(1), 141-176.
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M., Sabine, P., Schmid, R., Sorensen, H., and Streckeisen, A. (1989), A classification of igneous rocks and glossary of terms, Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, Blackwell Oxford.
Lebedev, V., Chernishev, I., Dudauri, O., Arakelyants, M., Chugaev, A., Golzman, Y., and Vashakidze, G. (2004), Geochronology of Neogene-Quaternary dacitic volcanism of the Javakheti highland (Lesser Caucasus, South Georgia), Proceedings of Geological Institute of Academy of Sciences of Georgia, 119, 535-544.
Lebedev, V. A., Chernyshev, I., Vashakidze, G., Gudina, M., and Yakushev, A. (2012), Geochronology of miocene volcanism in the northern part of the Lesser Caucasus (Erusheti Highland, Georgia), Doklady Earth Sciences, 444(1), 585-590.
Lee, H.-Y., Chung, S.-L., Ji, J., Qian, Q., Gallet, S., Lo, C.-H., Lee, T.-Y., and Zhang, Q. (2012), Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet, Journal of Asian Earth Sciences, 53, 96-114.
Lu, Y.-J., Kerrich, R., Mccuaig, T. C., Li, Z.-X., Hart, C. J., Cawood, P. A., Hou, Z.-Q., Bagas, L., Cliff, J., and Belousova, E. A. (2013), Geochemical, Sr–Nd–Pb, and zircon Hf–O isotopic compositions of Eocene–Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan, SW China: petrogenesis and tectonic implications, Journal of Petrology, 54(7), 1309-1348.
Ludwig, K. (2003), ISOPLOT: a Geochronological Toolkit for Microsoft Excel 3.0, Berkeley Geochronology Center Special Publication, 4.
Martin, H. (1999), Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 46(3), 411-429.
Martin, H., Smithies, R., Rapp, R., Moyen, J.-F., and Champion, D. (2005), An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution, Lithos, 79(1), 1-24.
Muller, D.-G. D., Rock, N., and Groves, D. (1992), Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study, Mineralogy and Petrology, 46(4), 259-289.
Morrison, G. W. (1980), Characteristics and tectonic setting of the shoshonite rock association, Lithos, 13(1), 97-108.
Moyen, J.-F. (2009), High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”, Lithos,112(3), 556-574.
Oberhansli, R., Candan, O., Bousquet, R., Rimmele, G., Okay, A., and Goff, J. (2010), Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey, Geological Society, London, Special Publications, 340(1), 461-483.
Okay, A.İ., Şahinturk, O. (1997). Geology of the eastern Pontides, in: Robinson, A.G. (Ed.),Regional and Petroleum Geology of the Black Sea and Surrounding Region, American Association of Petroleum Geologists Memoir, 68, 291–311
Okay, A. I., and Tuysuz, O. (1999), Tethyan sutures of northern Turkey, Geological Society, London, Special Publications, 156, 475-515.
Pang, K. -N., Chung, S. -L., Zarrinkoub, M. H., Lin, Y. -C., Lee, H. -Y., Lo, C. -H., and Khatib, M. M. (2013), Iranian ultrapotassic volcanism at~ 11 Ma signifies the initiation of post‐collisional magmatism in the Arabia–Eurasia collision zone, Terra Nova, 25(5), 405-413.
Pe-Piper, G., Piper, D. J., Koukouvelas, I., Dolansky, L. M., and Kokkalas, S. (2009), Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece, Geological Society of America Bulletin, 121(1-2), 39-54.
Pe-Piper, G., Zhang, Y., Piper, D. J., and Prelević, D. (2014), Relationship of Mediterranean type lamproites to large shoshonite volcanoes, Miocene of Lesbos, NE Aegean Sea, Lithos, 184, 281-299.
Pearce, J., Bender, J., De Long, S., Kidd, W., Low, P., Guner, Y., Saroglu, F., Yilmaz, Y., Moorbath, S., and Mitchell, J. (1990), Genesis of collision volcanism in Eastern Anatolia, Turkey, Journal of Volcanology and Geothermal Research, 44(1), 189-229.
Prouteau, G., Scaillet, B., Pichavant, M., and Maury, R. (2001), Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust, Nature, 410(6825), 197-200.
Robertson, A. H., Ustaomer, T., Parlak, O., Unlugenc, U. C., Taşlı, K., and Inan, N. (2006), The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous–Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys, Journal of Asian Earth Sciences, 27(1), 108-145.
Searle, M. (1988), Structure of the Musandam culmination (Sultanate of Oman and United Arab Emirates) and the Straits of Hormuz syntaxis, Journal of the Geological Society, 145(5), 831-845.
Şengor, A., Ozeren, S., Genc, T., and Zor, E. (2003), East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure, Geophysical Research Letters, 30(24), 8045-8048.
Sengor, A., and Yilmaz, Y. (1981), Tethyan evolution of Turkey: a plate tectonic approach, Tectonophysics, 75(3), 181-241.
Sengor, A. C., and Natal'In, B. A. (1996), Turkic-type orogeny and its role in the making of the continental crust, Annual Review of Earth and Planetary Sciences, 24, 263-337.
Slama, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., and Norberg, N. (2008), Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, 249(1), 1-35.
Sosson, M., Rolland, Y., Corcini, M., Danelian, T., Stephan, J., Avagyan, A., Melkonian, R., Jrbashian, R., Melikian, L., and Galoian, G. (2005), Tectonic evolution of Lesser Caucausus (Armenia) revisited in the light of new structural and stratigraphic results, Geophysical Research Abstracts, 7, 06224.
Sosson, M., Kaymakci, N., Stephenson, R., Bergerat, F., and Starostenko, V. (2010a), Sedimentary basin tectonics from the Black Sea and Caucasus to the Arabian Platform: introduction, Geological Society, London, Special Publications, 340(1), 1-10.
Sosson, M., Rolland, Y., Muller, C., Danelian, T., Melkonyan, R., Kekelia, S., Adamia, S., Babazadeh, V., Kangarli, T., and Avagyan, A. (2010b), Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights, Geological Society, London, Special Publications, 340(1), 329-352.
Soderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E. (2004), The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions, Earth and Planetary Science Letters, 219(3), 311-324.
Stampfli, G. M., and Borel, G. D. (2004), The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain, The TRANSMED Atlas. The Mediterranean region from crust to mantle, 53-80.
Steiger, R. H., and Jager, E. (1977), Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology, Earth and planetary science letters, 36(3), 359-362.
Stern, R. J. (2002), Subduction zones, Reviews of geophysics, 40(4), 1012-1050.
Sun, S.-S., and McDonough, W. F. (1989), Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geological Society, London, Special Publications, 42(1), 313-345.
Taylor, S. R., and McLennan, S. M. (1985), The continental crust: its composition and evolution, Oxford, 312 pp.
Temizel, İ., Arslan, M., Ruffet, G., and Peucat, J. J. (2012), Petrochemistry, geochronology and Sr–Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics, Lithos, 128, 126-147.
Topuz, G., Okay, A. I., Altherr, R., Schwarz, W. H., Siebel, W., Zack, T., Satır, M., and Şen, C. (2011), Post-collisional adakite-like magmatism in the Ağvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey), Lithos, 125(1), 131-150.
Wang, Q., Xu, J.-F., Jian, P., Bao, Z.-W., Zhao, Z.-H., Li, C.-F., Xiong, X.-L., and Ma, J.-L. (2006), Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization, Journal of Petrology, 47(1), 119-144.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., Quadt, A. v., Roddick, J., and Spiegel, W. (1995), Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, trace element and REE analyses, Geostandards newsletter, 19(1), 1-23.
Winter, J. D. (2010), Principles of igneous and metamorphic petrology, Prentice Hall New York.
Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H., and Xu, P. (2006), Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology, Chemical Geology, 234(1), 105-126.
Yilmaz, S., and Boztug, D. (1996), Space and time relations of three plutonic phases in the Eastern Pontides, Turkey, International Geology Review, 38(10), 935-956.
Yilmaz, A., Adamia, S., Chabukiani, A., Chkhotua, T., ErdoĞan, K., Tuzcu, S., and KarabiyikoĞlu, M. (2000), Structural correlation of the southern Transcaucasus (Georgia)-eastern Pontides (Turkey), Geological Society, London, Special Publications, 173(1),171-182.
Zindler, A., and Hart, S. (1986), Chemical geodynamics, Annual review of earth and planetary sciences, 14, 493-571.
Zor, E., Sandvol, E., Gurbuz, C., Turkelli, N., Seber, D., and Barazangi, M. (2003), The crustal structure of the East Anatolian plateau (Turkey) from receiver functions, Geophysical Research Letters, 30(24), 8044.
Zor, E. (2008), Tomographic evidence of slab detachment beneath eastern Turkey and
the Caucasus, Geophysical Journal International, 175(3), 1273-1282.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56209-
dc.description.abstract高加索山區、伊朗高原與安那托利亞高原 (合稱為CIA地區) 為阿拉伯板塊與歐亞板塊之間的碰撞帶。境內北與南各分佈一條縫合帶,分別為新特提斯洋北方分支在中生代晚期關閉所形成的Ankara-Erzincan/Sevan-Akera縫合帶與新特提斯洋南方分支於35 Ma關閉所形成的Bitlis-Zagros縫合帶。於兩次海洋關閉事件後,CIA地區均發生有岩漿活動。為了更進一步瞭解CIA地區新生代岩漿活動的形成機制,本研究針對地處Ankara-Erzincan/Sevan-Akera縫合帶北側、喬治亞小高加索山區的新生代火成岩進行定年與化學組成分析工作,並結合CIA地區大地構造事件進行岩漿形成機制的探討。
  本研究由鋯石鈾-鉛定年與全岩氬-氬定年工作的結果結合同區域前人的研究,可將喬治亞小高加索山區的新生代岩漿活動分為始新世中期 (46.8-40.4 Ma)、漸新世晚期 (24.4 Ma)、中新世晚期 (9-5 Ma) 與新生代晚期 (< 3 Ma) 岩漿活動。由地球化學的分析結果顯示始新世中期、中新世晚期與新生代晚期 (< 3 Ma) 的火成岩相當分液,從基性至酸性均有分佈;漸新世晚期僅具有中酸性火成岩 (SiO2 = 58-66 wt.%)。由火成岩的K2O與重稀土元素的含量變化,則可將四期火成岩岩性作區分,分別為始新世中期的鈣鹼性系列火成岩與鉀玄岩質火成岩,漸新世晚期、中新世晚期與新生代晚期 (< 3 Ma) 埃達克質火成岩,而中新世晚期與新生代晚期 (< 3 Ma) 亦具有鈣鹼性系列火成岩形成。由微量元素的分析結果可見四期火成岩均有輕稀土元素與大離子半徑元素富集以及鈮、鉭、鈦元素相對虧損的情形,顯示岩漿源區曾受隱沒作用影響,此影響隨時間漸弱。全岩鍶-釹同位素組成與鋯石鉿同位素組成的分析結果則顯示四個時期的岩漿來源接近上部地函端元。由於始新世中期鉀玄岩質火成岩不具基性岩類,且此時期所有火成岩之鋯石鉿同位素組成變化顯示岩漿未混染古老大陸地殼,本研究認為鉀玄岩質的原岩應為角閃岩質的大陸下部地殼。由漸新世晚期、中新世晚期與新生代晚期 (< 3 Ma) 埃達克質火成岩MgO、鎳與鉻含量偏低的情形,本研究認為此三時期埃達克質火成岩為榴輝岩質的大陸下部地殼重熔的產物。而全岩鍶-釹同位素以及鋯石鉿同位素組成與上部地函端元相近的情況則顯示角閃岩與榴輝岩質的大陸下部地殼應為鄰近時期的火成活動之基性岩漿,經底侵作用滯留於大陸地殼底部所形成的產物。
  結合CIA地區中生代晚期至新生代兩期海洋關閉事件,本研究認為於新特提斯洋北方分支關閉後,Ankara-Erzincan/Sevan-Akera縫合帶北側區域因海洋南北兩側陸塊的碰撞使岩石圈增厚,並於始新世中期發生拆層作用引發軟流圈上湧,上部地函因而發生部分熔融形成鈣鹼性系列岩漿。上升的鈣鹼性系列岩漿則使角閃岩質的大陸下部地殼熔融,造成同時期的鉀玄岩質岩漿活動;此期岩漿活動隨南新特提斯洋關閉帶動阿拉伯板塊與歐亞板塊於始新世末期發生碰撞而停止。隨兩板塊的擠壓,小高加索山區的岩石圈持續增厚,於漸新世晚期、中新世晚期與新生代晚期 (< 3 Ma) 發生拆層,使深達50公里而榴輝岩化的大陸下部地殼受熱重熔,形成三期的埃達克質岩漿活動,本研究認為中新世晚期與新生代晚期 (< 3 Ma) 的岩石圈拆層規模可能較大,因而造成同時期廣泛分佈的鈣鹼性系列岩漿活動。
zh_TW
dc.description.abstractThe Caucasus-Iran-Anatolia (CIA) region in the Tethysides Orogenic belt was elevated by Arabia-Eurasia collision. The Ankara-Erzincan/Sevan-Akera suture zone and the Bitlis-Zagros suture zone in this region stand for the closures of northern and southern Neotethys system since late Mesozoic, and Cenozoic magmatism has been related to the subduction and termination of the Neotethyan system. In Georgia, located at the northern part of the CIA region and north of the Ankara-Erzincan/Sevan-Akera suture zone, the Cenozoic igneous rocks are widespread in the Lesser Caucasus region. This study combines a detailed geochemical analysis of Cenozoic igneous rocks in Lesser Caucasus of Georgia with tectonic events to comprehend the Cenozoic magma mechanism of northern CIA region.
The previous research with the zircon U-Pb and whole rock Ar-Ar dating results in this study show that Cenozoic magmatism in Georgia can be divided into four main stages, i.e., middle Eocene (46.8-40.4 Ma), late Oligocene (24.4 Ma), late Miocene (9-5 Ma) and late Cenozoic (< 3 Ma). The first, third and fourth stages consist of basic to felsic rocks, but the SiO2 contents of the Oligocene volcanic rocks range from 58 to 66 wt.%. Rocks of four stages can be subdivide into three groups: middle Eocene calc-alkaline and shoshonitic rocks, late Oligocene adakitic rocks, late Miocene calc-alkaline and adakitic rocks, and the composing of late Cenozoic (< 3 Ma) is the same with the prior stage. Incompatible elements data show that all the Cenozoic igneous rocks display the “arc geochemical signatures” such as enrichment in LILE (e.g., Cs, Rb, Ba, K) and depletion in HFSE (e.g., Ti, Nb, Ta), and the signatures mitigate with stages. The Sr-Nd isotope data and the zircon Hf isotope data indicate that the magma source might be upper mantle. Because of lack of basic type and without assimilation of continental crust, we consider the source of middle Eocene shoshonitic rocks is amphibolitic lower crust. We also suggest the Cenozoic adakitic rocks with low MgO, Ni and Cr concentration are caused by remelting of eclogitized lower crust. Both types of mafic lower crust are form by mantle derived young basaltic underplates at the base of crust.
The lithosphere of northern CIA region thickened after the closure of northern Neotethys in late Mesozoic. We think that the middle Eocene calc-alkaline magmatism of Georgia was induced by asthenospheric upwelling result from lithospheric delamination. The calc-alkaline magma provided as a heat source for the partial melting of the amphibolitic lower crust and produced the shoshonitic magma. The magmatism of middle Eocene ceased by Arabian-Eurasian collision after southern Neotethys closed in late Eocene. With the continental collision, the thickened basaltic underplating crust (> 50 km) of Lesser Caucasus transform into eclogite, and remelted into adakitic magma owing to delamination beneath the Lesser Caucasus in late Oligocene, late Miocene and late Cenozoic (< 3 Ma). The large scale of lithospheric removing in late Miocene and late Cenozoic (< 3 Ma) also triggered the widespread calc-alkaline volcanism in Lesser Caucasus of Georgia.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:19:02Z (GMT). No. of bitstreams: 1
ntu-103-R01224107-1.pdf: 18223438 bytes, checksum: 57495b00bbf92619c783389cb2baef7f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
誌謝 I
摘要 II
Abstract IV
目錄 VII
圖目 XI
表目 XVI
第一章 緒論 1
1.1 前言 1
1.2 前人研究 2
1.2.1 CIA地區地質背景 2
1.2.2 CIA地區新生代岩漿活動 5
1.2.3 喬治亞小高加索山區新生代岩漿活動背景簡述 7
1.3 研究動機與目標 9
1.3.1 研究動機 9
1.3.2 研究目標 9
第二章 研究方法 10
2.1 野外調查與採樣方法 10
2.2 岩石薄片觀察 15
2.3 全岩主要元素與揮發性物質含量分析 15
2.3.1 岩石樣本分析實驗前處理 15
2.3.2 主要元素含量分析實驗 15
2.3.3 揮發性物質含量分析實驗 15
2.4 全岩微量元素分析 16
2.4.1 岩石樣本分析實驗前處理 16
2.4.2 USGS標準樣分析結果 17
2.5 全岩鍶-釹同位素分析 22
2.5.1 樣本前處理 22
2.5.2 鍶-釹同位素化學分離流程 22
2.5.3 質譜儀分析 26
2.6 全岩氬-氬定年分析 26
2.6.1 樣本前處理 26
2.6.2 儀器配置與分析方法 27
2.7 鋯石鈾-鉛定年分析 27
2.7.1 樣本前處理 27
2.7.2 儀器配置與分析方法 29
2.8 鋯石鉿同位素分析 30
第三章 新生代火成岩定年結果與討論 32
3.1 定年結果 32
3.2 定年結果討論 39
第四章 新生代火成岩分析結果 43
4.1 野外觀察 43
4.2 岩石薄片觀察 47
4.3 全岩主要元素與微量元素 51
4.3.1 主要元素與微量元素 45
4.3.2 地球化學岩性分類 53
4.4 全岩鍶-釹同位素組成 76
4.5 鋯石鉿同位素組成 78
第五章 新生代火成岩分析結果討論 86
5.1 始新世中期岩漿活動 88
5.1.1 鉀玄岩 (Shoshonite) 88
5.1.2 鉀玄岩質與鈣鹼性系列岩漿成因 89
5.2 漸新世晚期至新生代晚期 (< 3 Ma) 岩漿活動 93
5.2.1 埃達克岩 (Adakite) 93
5.2.2 埃達克質與鈣鹼性系列岩漿成因 95
5.3 新生代岩漿活動成因綜論 101
第六章 CIA地區新生代岩漿活動 103
6.1 CIA北部地區始新世岩漿活動 103
6.1.1 CIA北部地區對應關係 103
6.1.2 始新世岩漿活動機制 105
6.2 新特提斯洋南方分支關閉後岩漿活動 109
6.3 CIA地區新生代岩漿活動成因演化模型 113
6.3.1 始新世岩漿活動 114
6.3.2 漸新世晚期岩漿活動 114
6.3.3 新生代晚期岩漿活動 114
第七章 結論 117
參考文獻 119
附錄 129
圖目
圖1-1 特提斯造山帶示意圖 1
圖1-2 84 Ma 新特提斯洋系統示意圖 (Stampfli and Borel, 2004) 2
圖1-3 高加索-伊朗-安那托利亞高原 (CIA) 地區火成岩分部地質圖 3
圖1-4 本研究所採用CIA地區地塊邊界示意圖 4
圖1-5 喬治亞區域地質圖 8
圖2-1 喬治亞地質圖與採樣點 14
圖2-2 USGS標準樣之RSD與準確度對各微量元素作圖 (岩石粉末) 19
圖2-3 USGS標準樣之RSD與準確度對各微量元素作圖 (玻璃餅) 21
圖2-4 第一分離柱沖提圖 23
圖2-5 鍶純化分離柱沖提圖 24
圖2-6 第二分離柱沖提圖 25
圖2-7 Neptune-MC-ICP-MS長期測量標準樣之結果 (Lee et al., 2012) 26
圖2-8 本研究使用之鋯石鈾-鉛定年標準樣長期分析結果 30
圖2-9 本研究使用之鋯石鉿同位素組成分析標準樣Mud Tank長期分析結果 31
圖3-1 喬治亞小高加索山區新生代火成岩定年結果與對應採樣位置 32
圖3-2 新生代火成岩之全岩氬-氬定年結果 34
圖3-3 新生代火成岩之鋯石定年諧和圖與CL影像. 36
圖3-4 岩石樣本12GE08、12GE09、12GE12之鋯石鈾-鉛定年結果柱狀分布圖 41
圖3-5 喬治亞小高加索山區新生代火成岩與沉積岩鋯石鈾-鉛定年結果與全岩氬-氬定年結果整理圖 42
圖4-1 Adjara-Trialeti地區採樣露頭 44
圖4-2 Adjara-Trialeti地區採樣露頭 44
圖4-3 Adjara-Trialeti地區採樣露頭 45
圖4-4 Akhalkalaki熔岩高原採樣露頭 45
圖4-5 Akhalkalaki熔岩高原採樣露頭 46
圖4-6 Javakheti熔岩高原採樣露頭 46
圖4-7 Javakheti熔岩高原區域的Armeranis火山 47
圖4-8 始新世中期火成岩岩石薄片照片 49
圖4-9 漸新世晚期火成岩岩石薄片照片 49
圖4-10 新生代晚期 (< 3 Ma) 火成岩岩石薄片照片 49
圖4-11 新生代火成岩全鹼值對SiO2作圖 55
圖4-12 新生代火成岩K2O對SiO2作圖 56
圖4-13 新生代火成岩AFM三角圖 57
圖4-14 新生代火成岩主要元素Harker圖 58
圖4-15 始新世中期火成岩之稀土元素分佈圖 59
圖4-16 始新世中期火成岩之整體不相容元素分佈圖 60
圖4-17 漸新世晚期火成岩之稀土元素分佈圖 61
圖4-18 漸新世晚期火成岩之整體不相容元素分佈圖 61
圖4-19 中新世晚期鈣鹼性系列火成岩之稀土元素分佈圖 62
圖4-20 中新世晚期鈣鹼性系列火成岩之整體不相容元素分佈圖 63
圖4-21 中新世晚期埃達克質火成岩之稀土元素分佈圖 64
圖4-22 中新世晚期埃達克質火成岩之整體不相容元素分佈圖 64
圖4-23 新生代晚期 (< 3 Ma) 鈣鹼性系列 (SiO2 < 69%) 火成岩之稀土元素分佈圖 65
圖4-24 新生代晚期 (< 3 Ma) 鈣鹼性系列 (SiO2 < 69%) 火成岩之整體不相容元素分佈圖 66
圖4-25 新生代晚期 (< 3 Ma) 鈣鹼性系列 (SiO2 > 69%) 與埃達克質火成岩之稀土元素分佈圖 67
圖4-26 新生代晚期 (< 3 Ma) 鈣鹼性系列 (SiO2 > 69%) 與埃達克質火成岩之整體不相容元素分佈圖 68
圖4-27 始新世中期火成岩鑭對K2O含量圖. 69
圖4-28 漸新世晚期、中新世晚期、新生代晚期 (< 3 Ma) 中酸性火成岩之埃達克岩判別圖 69
圖4-29 新生代噴出岩全岩鍶-釹同位素組成 76
圖4-30 新生代火成岩岩漿鋯石
dc.language.isozh-TW
dc.subject阿拉伯與歐亞板塊碰撞zh_TW
dc.subject地球化學分析zh_TW
dc.subject新生代岩漿活動zh_TW
dc.subject喬治亞小高加索山區zh_TW
dc.subject新特提斯洋zh_TW
dc.subjectCenozoic magmatismen
dc.subjectgeochemistryen
dc.subjectNeotethysen
dc.subjectArabian-Eurasian collisionen
dc.subjectGeorgian Caucasusen
dc.title喬治亞小高加索山區新生代火成岩之地球化學特性與岩石成因zh_TW
dc.titleGeochemical characteristics and petrogenesis of Cenozoic igneous rocks in the Georgian Caucasusen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江博明(Bor-Ming Jahn),陳正宏(Cheng-Hong Chen),李元希(Yuan-Hsi Lee),朱美妃(Mei-Fei Chu)
dc.subject.keyword新特提斯洋,阿拉伯與歐亞板塊碰撞,喬治亞小高加索山區,新生代岩漿活動,地球化學分析,zh_TW
dc.subject.keywordNeotethys,Arabian-Eurasian collision,Georgian Caucasus,Cenozoic magmatism,geochemistry,en
dc.relation.page143
dc.rights.note有償授權
dc.date.accepted2014-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
17.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved