請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56181
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳世銘 | |
dc.contributor.author | Yu-Chia Chien | en |
dc.contributor.author | 簡佑佳 | zh_TW |
dc.date.accessioned | 2021-06-16T05:18:02Z | - |
dc.date.available | 2019-09-15 | |
dc.date.copyright | 2014-09-15 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-16 | |
dc.identifier.citation | 李振登。2006。基礎食品微生物學。第三版。1-654頁。台北市:偉明。
吳帛儒、戚祖沅、許朝凱、鄭維智、馮潤蘭、蔡淑貞。2011。九十九年市售即食食品之衛生安全監測。食品藥物研究年報2: 65-71。 胡易平。2011。利用近紅外光技術檢測稻米鮮度之研究。碩士論文。台北:臺灣大學生物產業機電工程學系研究所。 張文宏、陳世銘、郭立穎。1998。洋香瓜糖度檢測之研究(二)---近紅外線分析法。農業機械學刊 7(1): 87-98。 陳世銘、馮丁樹、張家禎。1995。番茄與柑橘共用型顏色選別指標之研究。農業機械學刊 4(4): 47-57。 陳世銘、張文宏、謝廣文。1998。果汁糖度檢測模式之研究。農業機械學刊 7(3): 41-60。 陳加增、陳世銘、楊蕙綺、楊宜璋、蕭世傑。2006。蔬菜葉片氮含量之近紅外光反射光譜分析。農業機械學刊 15(4): 37-49。 陳陸宏。1984。食品衛生檢驗方法之研擬。藥物食品檢驗局調查研究年報2: 106-166。 黃翠萍、黃惠芝、王叔菀、王鈺婷、何旻臻、林旭陽、闕麗卿、施養志。2012。市售食品微生物之衛生品質調查。食品藥物研究年報3: 151-158。 衛生福利部食品藥物管理署。2012。食品微生物檢驗法-生菌數之檢驗。台北:衛生福利部食品藥物管理署。網址:http://www.fda.gov.tw/TC/newsContent.aspx?id=9376&chk=176161bc-3ebd-41ee-86e5-5793953544cc#.U62oB_mSyuo。上網日期:2012-06-11。 蕭世傑、陳世銘、楊宜璋、陳加增、莊永坤、陳毓良。2010。同步多通道螢光光譜影像系統建立及其檢測環境之研究。農業機械學刊 19(4): 95-110。 簡佑佳、陳世銘、蔡兆胤、邱奕志、楊宜璋、莊永坤、李睿芝。2013。應用螢光光譜技術檢測受菌污染之研究。出自“2013生機與農機學術研討會論文集”,H07。台北:台灣生物機電學會。 羅聖傑。2009。茶葉醱酵度之高光譜影像檢測。碩士論文。台北:臺灣大學生物產業機電工程學系研究所。 3M. 2010. 3M Petrifilm Plate. Available at: http://solutions.3m.com/wps/portal/3M/en_US/Microbiology/FoodSafety/product-information/product-catalog/?PC_Z7_RJH9U523003DC023S7P92O3O87000000_nid=C0WJ62882Vbe29BDXSBJ7Fgl. Accessed: 11 June 2014. Ammor, M. S. 2007. Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. Journal of fluorescence 17(5): 455-459. Bautista, D., D. Sprung, S. Barbut, and M. Griffiths. 1997. A sampling regime based on an ATP bioluminescence assay to assess the quality of poultry carcasses at critical control points during processing. Food research international 30(10): 803-809. Bhartia, R., W. F. Hug, E. C. Salas, R. D. Reid, K. K. Sijapati, A. Tsapin, W. Abbey, K. H. Nealson, A. L. Lane, and P. G. Conrad. 2008. Classification of organic and biological materials with deep ultraviolet excitation. Applied spectroscopy 62(10): 1070-1077. Blanco, M., and I. Villarroya. 2002. NIR spectroscopy: a rapid-response analytical tool. TrAC Trends in Analytical Chemistry 21(4): 240-250. Chien, Y. C., S. Chen, Y. C. Chiu, C. Y. Tsai, I. C. Yang, Y. K. Chuang and R. C. Lee. 2014. Inspection of contamination on fresh-to-eat vegetables using fluorescence spectroscopy. In “Proceedings of the 7th International Symposium on Machinery and Mechatronics for Agricultural and Bio-systems Engineering (ISMAB 2014)”, 323-327. Yilan, Taiwan: National Ilan University. Fujita, K., M. Tsuta, M. Kokawa, and J. Sugiyama. 2010. Detection of Deoxynivalenol Using Fluorescence Excitation–Emission Matrix. Food and Bioprocess Technology 3(6): 922-927. Galactic. 1997. PLSplus / IQ User's Guide. Salem, NH, U.S.A.:Galactic Industries Corporation. Gowen, A., C. Odonnell, P. Cullen, G. Downey, and J. Frias. 2007. Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology 18(12): 590-598. Hamamatsu. 2006. Photomultiplier tubes R3788, R4332. Available at: http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCQQFjAA&url=http%3A%2F%2Fwww.hamamatsu.com%2Fresources%2Fpdf%2Fetd%2FR3788_R4332_TPMS1021E02.pdf&ei=4WCYU9qJL8KxlQXlyoHAAg&usg=AFQjCNFZXDuvf7JofnGUJBRQfu6DVjTpHw. Accessed: 11 June 2014. Jackson, J. E. 1991. A user's guide to principal components. Wiley series in probability and mathematical statistics. Wiley, New York. Kim, M. S., A. M. Lefcourt, Y.-R. Chen, and Y. Tao. 2005. Automated detection of fecal contamination of apples based on multispectral fluorescence image fusion. Journal of Food Engineering 71(1): 85-91. Kokawa, M., K. Fujita, J. Sugiyama, M. Tsuta, M. Shibata, T. Araki, and H. Nabetani. 2012a. Quantification of the distributions of gluten, starch and air bubbles in dough at different mixing stages by fluorescence fingerprint imaging. Journal of Cereal Science 55(1): 15-21. Kokawa, M., J. Sugiyama, M. Tsuta, M. Yoshimura, K. Fujita, M. Shibata, T. Araki, and H. Nabetani. 2012b. Development of a quantitative visualization technique for gluten in dough using fluorescence fingerprint imaging. Food and Bioprocess Technology: 1-11. Lawrence, K. C., W. R. Windham, B. Park, and R. J. Buhr. 2003. A hyperspectral imaging system for identification of faecal and ingesta contamination on poultry carcasses. Journal of near infrared spectroscopy 11(4): 269-281. Leblanc, L., and E. Dufour. 2002. Monitoring the identity of bacteria using their intrinsic fluorescence. FEMS microbiology letters 211(2): 147-153. Leonard, P., S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty, and R. O’Kennedy. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology 32(1): 3-13. Liu, Y., Y.-R. Chen, M. S. Kim, D. E. Chan, and A. M. Lefcourt. 2007. Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. Journal of Food Engineering 81(2): 412-418. Marose, S., C. Lindemann, and T. Scheper. 1998. Two‐Dimensional Fluorescence Spectroscopy: A New Tool for On‐Line Bioprocess Monitoring. Biotechnology Progress 14(1): 63-74. Oshita, S., M. I. Al-Haq, S. Kawagishi, Y. Makino, Y. Kawagoe, X. Ye, S. Shinozaki, and N. Hiruma. 2011. Monitoring of ATP and viable cells on meat surface by UV–Vis reflectance spectrum analysis. Journal of Food Engineering 107(2): 262-267. Oto, N., S. Oshita, S. Kawagishi, Y. Makino, Y. Kawagoe, M. I. Al-Haq, S. Shinozaki, and N. Hiruma. 2012. Non-destructive estimation of ATP contents and plate count on pork meat surface by UV–Vis reflectance spectrum analysis. Journal of Food Engineering 110(1): 9-17. Oto, N., S. Oshita, Y. Makino, Y. Kawagoe, J. Sugiyama, and M. Yoshimura. 2013. Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy. Meat science 93(3): 579-585. Park, B., K. C. Lawrence, W. R. Windham, and D. P. Smith. 2006. Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. Journal of Food Engineering 75(3): 340-348. Schulman, S. G. 1985. Molecular luminescence spectroscopy: methods and applications. Wiley-Interscience. Shibata, M., K. Fujita, J. Sugiyama, M. Tsuta, M. Kokawa, Y. Mori, and H. Sakabe. 2011. Predicting the buckwheat flour ratio for commercial dried buckwheat noodles based on the fluorescence fingerprint. Bioscience, biotechnology, and biochemistry 75(7): 1312-1316. Siripatrawan, U., Y. Makino, Y. Kawagoe, and S. Oshita. 2011. Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 85(1): 276-281. Stockle, R. M., Y. D. Suh, V. Deckert, and R. Zenobi. 2000. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters 318(1): 131-136. Sugiyama, J., K. Fujita, M. Tsuta, and M. Kushiro. 2011. Detection of deoxynivalenol in wheat flour using fluorescence fingerprint. Procedia Food Science 1: 1146-1151. Sugiyama, T., J. Sugiyama, M. Tsuta, K. Fujita, M. Shibata, M. Kokawa, T. Araki, H. Nabetani, and Y. Sagara. 2010. NIR spectral imaging with discriminant analysis for detecting foreign materials among blueberries. Journal of Food Engineering 101(3): 244-252. Wang, N., M. He, and H.-C. Shi. 2007. Novel indirect enzyme-linked immunosorbent assay (ELISA) method to detect Total E. coli in water environment. Analytica chimica acta 590(2): 224-231. Yoshimura, M., M. Tsuta, M. Shibata, K. Fujita, M. Kokawa, and J. Sugiyama. 2012. Development of Rapid Estimation method of Aerobic Bacteria Population on Beef surface by Fluorescence Fingerprints. Valencia, Spain: International Commision of Agricultural Engineering. Zhao, X., L. R. Hilliard, S. J. Mechery, Y. Wang, R. P. Bagwe, S. Jin, and W. Tan. 2004. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 101(42): 15027-15032. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56181 | - |
dc.description.abstract | 食品與飲用水中之微生物可能造成的衛生安全問題,過量的微生物或菌株造成食物中毒的現象時有所聞。衛生單位傳統之檢驗方法,需採樣食品後進行菌株的培養,檢驗其中所含的菌株與數量,然而菌株的分離與培養耗時且過程繁複,培養至肉眼可分辨之菌落至少需要一天到兩天的時間,無法立即檢驗食物是否符合衛生標準,給予消費者保障,若檢驗結果為菌量超標或有病原菌,對於已經把食物吃下肚的消費者也是於事無補。有鑑於此,生物技術演進發展出其他檢測微生物的方法,依據不同種類菌株中特有的酵素或基因,設計適當的實驗使檢驗之微生物產生特殊反應,利用間接的方式檢測其反應,可立即獲得菌種與菌量等資訊,這些方法不但快速、具備專一性,且非常靈敏,感度甚至可以定量至單一菌株,然而其所需技術門檻、成本較高,缺點是間接處理過程仍會對樣本進行破壞,食品檢測完畢後無法供給食用,無法進行全檢。光譜檢測技術兼具快速、非破壞性之優點,雖然相較於上述兩種方法定量準確性稍差,足以用於檢驗食品中微生物,目前有許多相關研究利用光譜檢測水果或肉品之污染情形,然而用於蔬菜的研究與檢驗非常少。
因此檢驗生食用蔬菜之微生物為本研究之重點,其中指標性微生物是衛生單位判定食品衛生標準之依據。本研究以螢光光譜檢測紅蘿蔓萵苣,並以標準方法檢驗萵苣中生菌數與大腸桿菌數作為依據,建立螢光光譜預測蔬菜受菌污染之模型。以PCA投影的二維或三維空間中可區別未受污染與人工污染之萵苣樣本;PLS-DA預測污染與否之成功率相當不錯,選取兩個隱藏函數時校正組與驗證組正確率為84.0 %與82.9 %,選取六個隱藏函數時校正組與驗證組正確率為96.0 %與80.0 %。預測大腸桿菌數最好之模型為PLSR,校正組rc = 0.780、SEC = 1.603 (log CFU),驗證組 rv = 0.701、SECV = 1.806 (log CFU);預測生菌最好之模型為MLR挑選兩個特徵波長條件,校正組rc = 0.701、SEC = 1.384 (log CFU),驗證組 rv = 0.670、SECV = 1.403 (log CFU)。 | zh_TW |
dc.description.abstract | Fresh-to-eat vegetables become popular in our daily diet, however numerous outbreaks of microbial infections are related to food or water contamination. Conventional methods of microbial monitoring need to sample the food by swabbing or mincing into small particles. A series of procedures for sample preparation and microbe measurement is time-consuming and labor-extensive. Although rapid analysis methods using enzyme reactions and DNA technologies have been developed, these methods are sample-destructive and indirect measurements, and they also take time, money, professional skills and instruments to accomplish. Spectral methods with advantages of high-speed and non-destructive can be applied in microbe measurements. There are many studies related to fruits and meats contamination detection by spectral methods but few studies related to vegetables. As a result, a rapid and non-destructive method for vegetables is indispensable.
In this study, nondestructive fluorescence spectroscopy was applied to the inspection of E. coli contamination on fresh-to-eat vegetables. A fluorescence spectrophotometer was used to measure the fluorescence intensity from the surface of red Romaine lettuce (Lactuca sativa L. var. longifolia) samples. The measurements provided a three-dimensional data cube, and could be used to study the biomaterial’s surface properties by both analyses of discrimination and quantification. An excitation Emission Matrix (EEM) was established, fluorescence fingerprints were analyzed by Mahalanobis distance, and fluorescence peak points were identified.The contaminated lettuce samples could be distinguished by PCA analysis. The successful rates of PLS-DA for better prediction models were 84% and 82.9% when selecting two LVs and 96.0% and 80.0% when selecting six LVs. The best model to predict E. coli contamination condition on lettuces was PLSR model. The correlation coefficients for calibration set rc = 0.780, and SEC = 1.603 (log CFU). For validation set, rv = 0.701 and SECV = 1.806 (log CFU). The best model to predict Aerobic Count Plates was MLR model. For calibration set rc = 0.701 and SEC = 1.384 (log CFU). For validation set, rv = 0.670 and SECV = 1.403 (log CFU). The work showed that fluorescence can be applied to rapid inspection of E. coli contamination on fresh vegetables to assure the food safety. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:18:02Z (GMT). No. of bitstreams: 1 ntu-103-R01631012-1.pdf: 5234186 bytes, checksum: 1ca45ff9b325b3767ffe7980afee5327 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌 謝 ii
摘 要 iii Abstract v 目 錄 vii 圖目錄 x 表目錄 xiii 第一章 前 言 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 食品與微生物 3 2.1.1 日常生活與微生物 3 2.1.2 食品指標微生物 3 2.1.3 食品微生物檢驗方法 4 2.2 光譜檢測技術與應用 7 2.3 光譜檢測污染物 8 2.4 螢光光譜分析方法與應用 13 2.4.1 螢光光譜應用 14 2.4.2 螢光光譜分析 16 第三章 材料與方法 20 3.1 樣本選擇與介紹 20 3.1.1 初步實驗樣本 20 3.1.2 生食用蔬菜樣本 20 3.1.3 外來污染物 21 3.2 使用儀器與參數設定 22 3.3 實驗流程 24 3.3.1第一階段實驗(分析大腸桿菌螢光特徵波長區域) 26 3.3.2第二階段實驗(建立螢光檢測生菜受菌污染模式) 27 3.3.3 萵苣葉片採樣與菌數檢測 28 3.4 分析螢光光譜指紋 31 3.4.1 定性分析 32 3.4.2 定量分析 33 第四章 結果與討論 35 4.1 初步資料呈現 35 4.1.1 原始光譜資料 35 4.1.2 養菌結果 37 4.2 螢光光譜資料處理 38 4.2.1刪除非螢光區域光譜 38 4.2.2刪除激發光源產生之散射光區域 39 4.2.3刪除感測器感度不佳區域之光譜 40 4.2.4馬氏距離計算 41 4.2.5選取特徵區域光譜 42 4.2.6區域正規化 43 4.3 定性分析 45 4.3.1 主成份分析結果 45 4.3.2 PLS-DA分析結果 47 4.4 定量分析 53 4.4.1 PLSR分析結果 54 4.4.2 MLR分析結果 58 第五章 結論與建議 63 5.1 綜論 63 5.1.1定性結果與討論 63 5.1.2定量結果與討論 63 5.1.3 誤差討論 65 5.2 建議事項與未來方向 66 參考文獻 67 附錄 72 附錄A :標準方法檢驗萵苣表面含菌結果 72 附錄B :馬氏距離計算結果 76 附錄C :擷取作分析之螢光波長條件 80 | |
dc.language.iso | zh-TW | |
dc.title | 應用螢光光譜指紋技術檢測食用生菜污染之研究 | zh_TW |
dc.title | Inspection of Contamination on Fresh-to-eat Vegetables by Fluorescence Fingerprint | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱奕志,艾群,陳林祈,莊永坤 | |
dc.subject.keyword | 螢光光譜,螢光指紋,生食用蔬菜,大腸桿菌, | zh_TW |
dc.subject.keyword | Fluorescence Spectroscopy,Fluorescence Fingerprint,Fresh-to-eat Vegetable,Escherichia coli, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 5.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。