請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56173完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹穎雯(Yin-Wen Chan) | |
| dc.contributor.author | Min-Ting Tsai | en |
| dc.contributor.author | 蔡旻廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:17:46Z | - |
| dc.date.available | 2014-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-17 | |
| dc.identifier.citation | [1] Cady,P.D. Weyers,R.E.“Chloride penetration and the deterioration of concrete bridge decks”, Cement & Concrete Aggregate,Vol. 5, pp. 81–87, 1983.
[2] Andrade, C. Castellote, M., Sarria, J. and Alonso, C., “Evolution of Pore Solution Chemical, Electroosmosis and Rebar Corrosion Rate Induced by Realkalisation,” Materials and Structures, Vol.32, pp.427-436, 1999. [3] Shalon, R. andRaphael, M., “Influence of Sea Water on Corrosion of Reinforcement,” ACI Journal, Vol. 55, No.12, pp.1251-1268, 1959. [4] Fraczek, J., “A Review of Electrochemical Principles as Applied to Corrosion Corrosion of Steel in a Concrete or Grout Environment,” ACI SP 102-2, pp. 13-24, 1987. [5] Hussain, S.E. andAl-Saadoun, S.S., “Effects of Cement Composition on Chloride Binding and Corrosion of Reinforcing Steel in Concrete, “ Cement and Concrete Research, Vol. 21, No.6, pp.777-794, 1991. [6] Bertolini, L., Elsener, B., Pedeferri, P. and Polder, R., Corrosion of Steel in Concrete, New York: Wiley, 2004. [7] Alonso, C.,Castellote, M. and Andrade, C., “Chloride threshold dependence of pitting potential of reinforcements”, Electrochimica Acta ,vol. 47, pp. 3469–3481,2002. [8] Schiessl, P. and Lay, S.,“Influence of concrete composition, in: H. Bohni (Ed.), Corrosion in Reinforced Concrete Structures, Woodhead Publishing Limited, Cambridge, pp. 91–134, 2005. [9] Tuutti, K.,“Effect of cement type and different additions on service life, in: Proc. Int. Conf. 'Concrete 2000', Dundee, Scotland, UK, E & FN Spon, Chapman &Hall, London, pp.1285-1295, 1993. [10] Hansson, C.M. andSorensen, B., “The threshold concentration of chloride in concrete for the initiation of reinforcement corrosion, in: N.S. Berke, V. Chaker, D. Whiting (Eds.),” Corrosion rates of steel in concrete, ASTM STP 1065, pp. 3–16,1990. [11] Pettersson, K., “Chloride threshold value and the corrosion rate in reinforced concrete,” Proc. of the Nordic Seminar, Lund, 1995, pp. 257–266. [12] Poupard, O.,Ait-Mokhtar, A. and Dumargue, P., “Corrosion by chlorides in reinforced concrete: determination of chloride concentration threshold by impedance spectroscopy,” Cement and Concrete Research, vol.34, pp.991–1000, 2004. [13] Andrade, C., Page, C.L., “Pore solution chemistry and corrosion in hydrated cement systems containing chloride salts: a study of cation specific effects,” British Corrosion Journal, vol. 21, pp. 49–53, 1986. [14] Arya, C.,Buenfeld, N.R. andNewman, J.B., “Factors influencing chloride-binding in concrete,” Cement and Concrete Research, vol. 20, pp. 291–300, 1990. [15] Tritthart, J., “Chloride binding in cement II the influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding,” Cement and Concrete Research, vol. 19, pp. 683–691, 1989. [16] Hansson, C.M., Frolund, T., Markussen, J.B. “The effect of chloride cation type on the corrosion of steel in concrete by chloride salts,” Cement and Concrete Research, vol. 15, pp. 65–73, 1985. [17] Jinxia, X., Linhua, J., Weilun, W., Jiang, Y., “Influence of CaCl 2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete,” Construction and Building Materials, vol.25, pp.663-669, 2011. [18] “Chloride Resistance of Concrete”, Cement Concrete & Aggregates Australia ,June,2009. [19] A.M. Neville, “Properties of Concrete”, 4th Ed., Longman, New York, 1996. [20] K.Y. Ann, J.H. Ahn, J.S Ryou,“The important of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete”, Construction and Building Materials,Vol.23,pp239-245,2008. [21] Mario Collepardi, Aldo Marcialis, Renato Turriziani,“Penetration of chloride ions into cement pastes and concretes”,Journal of the American Ceramic Society,Vol. 55,Issue 10,pp.534-535,1972. [22] D. Whiting,“Rapid measurements of chloride permeability ofconcretePublic”, Roads 45(3), pp.101-112, 1981. [23] C. Andrade,“Calculation of chloride diffusion coefficient in concretefrom ionic migration measurements”,Cem. Concr. Res. 23, pp.724-742, 1993. [24] G. A. Julio-Betancourt, R. D. Hooton,“Study of the Joule effect onrapid chloride permeability values and evaluation of related electricalproperties of concretes”,Cem. Concr. Res. 34, pp.1007-1015, 2004. [25] C. Shi, “Effect of mixing proportions of concrete on its electricalconductivity and the rapid chloride permeability test results”,Cem. Concr. Res. 34, pp.537-545, 2004. [26] 謝秉宏,「使用不同加速時間與電壓探討水泥沙漿中氯離子之傳輸行為」,海洋大學材料所碩士論文,2007。 [27] 張廷峻,「探討鹽霧試驗與貯鹽試驗對混凝土耐久性之關聯」,海洋大學材料所碩士論文,2013。 [28] R.D. Hooton, E. Bentz, and T. Kojundic, “Long-Term Chloride Penetration Resistance of Bridge Decks Made With Silica Fume Concretes”, 2010. [29] 陳育聖,「北台灣沿海地區氯鹽環境與混凝土耐久性質之研究」,博士論文,國立台灣大學土木工程研究所,2011。 [30] J. Arsenault, J.P. Bigas, J.P. Ollivier, “Determination of chloride diffusion coefficient using two different steady-state methods: influence of concentration gradient”, L.O. Nilsson, J.P. Ollivier (Eds.), Proceedings of the international RILEM workshop – chloride penetration into concrete, RILEM, St-Remy-les-Chevreuse, pp. 150–160, 1997. [31] S. Chatterji, Transportation of ions through cement based materials. Part 1 – Fundamental equations and basic measurement techniques”, Cement Concrete Research,Vol. 24, No. 5, pp. 907–912, 1994. [32] L. Tang, “Concentration dependence of diffusion and migration of chloride ions. Part 1. Theoretical considerations”, Cement Concrete Research,Vol. 29, pp. 1463–1468, 1999. [33] Mario Collepardi, Aldo Marcialis, Renato Turriziani,“Penetration of chloride ions into cement pastes and concretes”,Journal of the American Ceramic Society,Vol. 55,Issue 10,pp.534-535,1972. [34] M. Castellote, C. Andrade, C. Alonso, ”Measurement of the steadyand non-steady-stat chloride diffusion coefficients in a migration testby means of monitoring the conductivity in the anolyte chambercomparison with nature diffusion tests”, CementandConcreteResearch, Vol. 31, pp.1411-1420, 2001. [35] M. D. A. Thomas, P. B. Bamforth, ”Modelling chloride diffusion inconcrete Effect of fly ash and slag”, Cement and Concrete Research 29,pp. 487-495, 1999. [36] P.B. Bamforth, “The derivation of input data for modeling chloride ingress from eight-years UK coastal exposure trials”, Magazine of Concrete Research ,Vol. 51, pp.87–96, 1999. [37] PB Bamforth, WF. Price,“Factors influencing chloride ingress into marine structures”. In: Dhir RK, Jones MR, editors. Concrete 2000, pp.1105–18, 1993. [38] Ha-Won Song, Chang-Hong Lee, Ki Yong Ann,“Factors influencing chloride transport in concrete structures exposed to marine environments”,Cement & Concrete Composites ,Vol. 30, pp.113–121, 2008. [39] How-Ji Chen, Shao-Siang Huang, Chao-Wei Tang, M.A. Malek, Lee-Woen Ean ,“ Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study ”,Construction and Building Materials, Volume 35, pp.1063-1070, October, 2012. [40] Maher A Bad,“Performance of concrete in a coastal environment”, Cement and Concrete Composites, Volume 25, Issues 4–5, pp. 539-548, May–July, 2003. [41] T.C Powers, L.E Copeland, J.C Haynes, H.M Mann , “Permeability of portland cement paste”,J. Amer. Concr. Inst. Proc.,Vol. 51, pp. 285–298, 1954. [42] H. Grafe, H. Grube,“The influence of curing on the gas permeability of concrete with different compositions. In: Proceedings, RILEM Seminar on the Durability of Concrete Structures under Normal Outdoor Exposure”, Hanover University, pp. 80–87, 1984. [43] Broderson HA. Zur Abhangigkeit der Transportvorgange Verschiedener lonen im Beton von Struktur und Zusammensetzung des Zemantsteines. Dissertation, RWTH Aachen 1982 and also Beton-lnformationem;23:36–38,1983. [44] Bakker RFM. Uber die Ursache des erhohten Widerstands von Beton mit Hochofenzement gegen die Alkali-Kieselsaurereaktion und den Sulfatangriff, dissertation, RWTH Aachen, pp. 119, 1980. [45] Van Yperen L, Sluijter WL. De Diffusionsnelheid von calcium–chloride in een Cement-Zaandmortel als Functie van de Verhardingstijd en de Contacttijd, TN0 Report N. Bl-70-29, Planning Committee for Building Research TNO, Delft, 1970. [46] SE Hussain, S. Rasheeduzafar, “Corrosion resistance performance of fly ash blended cement concrete”, ACI Mater J, pp.264-273, 1994. [47] R.K. Dhir, M.A.K. El-Mohr, T.D. Dyer, “Chloride binding in GGBS concrete”,Cement & Concrete Research, Vol. 26, pp. 1767–1773, 1996. [48] R. Luo, Y. Cai, C. Wang, X. Huang, “Study of chloride binding and diffusion in GGBS concrete”, Cement & Concrete Research, Vol. 33,pp. 1–7, 2003. [49] Faguang Leng, Naiqian Feng, Xinying Lu ,“ An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete”,Cement and Concrete Research, Volume 30, Issue 6, Pages 989-992, 2000. [50] Q. Feng, “High-Performance ConcreteBuilding Industry Press”, Beijing,1996. [51] N.R. Buenfeld, E. Okundi, “Effect of cement content on transport in concrete”, Magazine of Concrete Research, Vol. 50,pp. 339–351, 1998. [52] W. Chalee, P. Ausapanit, C. Jaturapitakkul , “Utilization of fly ash concrete in marine environment for long term design life analysis”, Materials & Design, Volume 31, Issue 3, pp. 1242-1249, 2010. [53] P.B. Bamforth, “The derivation of input data for modeling chloride ingress from eight-years UK coastal exposure trials”, Magazine of Concrete Research ,Vol. 51, pp. 87–96, 1999. [54] P. Schiessl,W.Breit,“Local repair measures at concrete structures damaged by reinforcement corrosion. In: Page CL, Bamforth PB, Figg JW, editors. Corrosion of reinforcement in concrete construction. Cambridge”, UK: The Royal Society of Chemistry Publication, pp. 525–34, 1996. [55] OE. Gjorv, O.Vennesland,“Diffusion of chloride ions from seawater into concrete”,Cement Concrete Research, Vol. 9, pp. 229–38, 1979. [56] Maher A Bad,“Performance of concrete in a coastal environment”, Cement and Concrete Composites, Volume 25, Issues 4–5, pp. 539-548, 2003. [57] P.K Mehta, “Studies on chemical resistance of low water/cement ratio concrete”, Cement Concrete Research, Vol. 15, No. 6, pp. 969–978,1985. [58] S. Goto, D.M Roy, “The effect of w/c ratio and curing temperature on the permeability of hardened cement paste ”, Cement Concrete Research, p. 575 , 1981. [59] S.S Al-Saadoun, Rasheeduzzafar, A.S Al-Gahtani,“Mix design considerations for durable concrete in the Arabian Gulf environment”, Arabian J. Sci. Eng., Vol. 17,No. 1, pp. 17–33, 1992. [60] PK.Mehta,“Durability of concrete in marine environment: a review. Performance of Concrete in Marine Environment”, ACI Publication, SP-65; pp. 1-5,1986. [61] Angst, U., Elsener, B., Larsen, C.K.,Vennesland,Q., “Critical chloride content in reinforced concrete — A review”, Cement and Concrete Research, vol.39, pp.1122-1138, 2009. [62] Tuutti, K., “Corrosion of Steel in Concrete”, Swedish Cement and Concrete Research Institute, 1982. [63] Ann, K.Y.,Song, H.W., “Chloride threshold level for corrosion of steel in concrete”,corrosion science, vol.49, pp.4113-4133, 2007. [64] Pengping, L., Jianbo, X., Zhihong, F., Shengnian,W, “Influence of MineralAdmixtures on Chloride Threshold Value for the Corrosion of Steel Reinforcement,”Advanced Materials Research, vol. 335-336 ,pp.1168-1173,2011. [65] Jinxia, X., Linhua, J., Weilun, W., Jiang, Y., “Influence of CaCl 2 and NaCl from different sources on chloride threshold value for the corrosion of steel reinforcement in concrete,” Construction and Building Materials, vol.25, pp.663-669, 2011. [66] Oh, B.H.,Jang, S.Y.,Shin, Y.S., “Experimental investigation of the threshold chloride concentration for corrosion initiation in reinforced concrete structures”, Magazine of Concrete Research, vol. 55, pp. 117–124,2003. [67] Pettersson, K., “Chloride threshold value and the corrosion rate in reinforced concrete,” Proc. of the Nordic Seminar, Lund , pp. 257–266, 1995. [68] 陳正平,「談海砂屋鑑定」,台灣省土木技師公會技師報,2011。 [69] 林冠亨,「使用氯化鈉溶液浸漬試驗探討混凝土之擴散行為」,海洋大學材料所碩士論文,2004。 [70] Isach, W.Z.,“The Effect to Fly Ash and Time Dependent Chloride Diffusion Coefficient on the Chloride Ingress in Concrete,” National Central University,2010 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56173 | - |
| dc.description.abstract | 在探討混凝土耐久性實驗中,貯鹽實驗藉由擴散作用使氯鹽滲透進混凝土中,由氯離子的滲透狀況可以判斷混凝土的耐久性,但是齡期需要較長的時間。而常見的較快速試驗方法,使用電場來加速氯離子在混凝土中的遷移,本研究希望使用加壓的方式來加速氯鹽的滲透來縮短試驗齡期。
本研究使用壓力滲透的方式來加速氯離子的滲透,將滲透完之混凝土以厚度每0.5cm為單位,逐層量測各深度下氯離子濃度來探討不同試驗齡期及不同水灰比下氯離子在壓力作用下的遷移機制和滲透狀況,比較氯離子在壓力滲透試驗與貯鹽試驗的差異性與相關性。 由總氯離子含量的實驗結果來看,貯鹽實驗60天的總氯離子含量小於壓力滲透20天大於壓力滲透7天,60天貯鹽實驗之總氯離子含量相當於壓力滲透試驗13天之值。將濃度0.005%之深度定義為滲透深度,從滲透深度來看,貯鹽實驗60天之滲透深度在各水灰比皆大於壓力滲透20天,60天貯鹽實驗之滲透深度相當於壓力滲透試驗25天。藉由公式分析壓力滲透20天之氯離子滲透狀況,70%的總氯離子含量為滲透作用導致,30%為擴散作用所造成。 | zh_TW |
| dc.description.abstract | In the ponding test for concrete durability experiment, chloride ions are allowed to diffuse into concrete, with which concrete durability is assessed. One drawback of the test is that it takes pretty long time. This can be improved by application of electric field that accelerate chloride permeation into concrete. In this study, external pressure was applied to speed up chloride permeation to shorten the test time.
This study applied pressure to accelerate chlorides permeation- concrete with chlorides seepage got evaluated by a series of layers, each was in 0.5cm of thickness; under pressure, chloride concentration was measured at particular depths to be studied its shifting mechanism and its state of permeation at different trial times and at different W/B. The results were compared with those of the ponding test. The results came out as followed: the number of chlorides from 60 days of ponding test is smaller that of 20 days of pressured permeation, but larger than that of 7 days of the same one. The amount of chlorides from 60 days of ponding test is about equivalent to that from 13 days of pressure permeation. On a standpoint of permeation depth, with the depth of chloride permeation at its concentration of 0.005% as an indicator, the depth measured from ponding test of 60 days is deeper than that of 20 days of pressured permeation, and is about equivalent to that from 25 days of pressured permeation. The analysis performed with the formula presents the process of 20-day chloride permeation. It is concluded that 70% of total chlorides are brought about by permeation and 30% by diffusion. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:17:46Z (GMT). No. of bitstreams: 1 ntu-103-R01521241-1.pdf: 4833229 bytes, checksum: 97fa0f18698684d99685ef4000a82444 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 表目錄 vii 圖目錄 viii 照片目錄 xi Chapter 1 第一章緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究流程 2 Chapter 2 第二章文獻回顧 4 2.1 氯離子在混凝土中的來源 4 2.2 混凝土中氯離子的存在型態 4 2.3 混凝土中影響氯離子之因素 5 2.4 氯離子在混凝土中的傳輸機制 6 2.5 混凝土的氯離子耐久性試驗 8 2.5.1 RCPT試驗 8 2.5.2 ACMT試驗 9 2.5.3 鹽霧試驗 10 2.5.4 現地曝放試驗 11 2.6 氯離子在混凝土中擴散行為 12 2.6.1 擴散方程式 12 2.6.2 養護條件對擴散係數影響 14 2.7 曝放混凝土中影響氯離子滲透行為的因素 15 2.7.1 卜作嵐材料 15 2.7.2 混凝土孔隙 17 2.7.3 水灰比 17 2.7.4 水泥用量 18 Chapter 3 第三章實驗計畫 36 3.1 試驗內容 36 3.2 試驗材料 36 3.3 試驗儀器 36 3.4 試驗配比 37 3.4.1 試驗設計 37 3.4.2 試體取樣 38 3.4.3 試驗材料與設備 38 3.4.4 酸溶性氯離子含量試驗 38 3.5 比色法 39 3.6 貯鹽試驗(Ponding test) 39 3.6.1 試驗步驟 39 3.7 鹽水壓力滲透試驗 40 3.7.1 試驗前準備 40 3.7.2 試驗步驟 40 Chapter 4 第四章試驗結果與討論 57 4.1 抗壓強度 57 4.2 氯離子壓力滲透試驗 57 4.2.1 實驗值之氯離子分佈情形 57 4.2.2 不同水灰比對氯離子滲透影響 59 4.2.3 總氯離子含量(m) 60 4.2.4 滲透深度(X0.005%) 60 4.3 貯鹽浸漬試驗(Ponding test) 61 4.3.1 實驗值之氯離子佈情形 62 4.3.2 擴散係數(D) 63 4.4 壓力滲透試驗和貯鹽試驗(Ponding test)綜合比較 63 Chapter 5 第五章結論與建議 100 5.1 結論 100 5.2 建議 100 REFERENCE 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 滲透作用 | zh_TW |
| dc.subject | 耐久性 | zh_TW |
| dc.subject | 壓力滲透 | zh_TW |
| dc.subject | 貯鹽試驗 | zh_TW |
| dc.subject | permeation | en |
| dc.subject | durability | en |
| dc.subject | seepage pressure | en |
| dc.subject | ponding test | en |
| dc.title | 使用壓力滲透試驗探討混凝土中氯離子之滲透行為 | zh_TW |
| dc.title | Using Seepage Pressure Test to Evaluate the Chloride Ion Permeation Behavior in Concrete | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉楨業(Tony C Liu),楊仲家(Chung-Chia Yang),廖文正(Wen-Cheng Liao) | |
| dc.subject.keyword | 耐久性,壓力滲透,貯鹽試驗,滲透作用, | zh_TW |
| dc.subject.keyword | durability,seepage pressure,ponding test,permeation, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
