請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56110完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Che-Wei Kan | en |
| dc.contributor.author | 甘哲維 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:15:45Z | - |
| dc.date.available | 2019-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 1. http://en.wikipedia.org/wiki/Robert_Hooke.
2. Hooke, R., Micrographia. 1665. 3. Helmchen, F. and W. Denk, Deep tissue two-photon microscopy. Nature Methods, 2005. 2(12): p. 932-940. 4. Kobat, D., N.G. Horton, and C. Xu, In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. Journal of Biomedical Optics, 2011. 16(10). 5. Horton, N.G., et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature Photonics, 2013. 7(3): p. 205-209. 6. Boyd, R.W., Nonlinear optics. 2008. 7. Rubart, M., Two-photon microscopy of cells and tissue. Circulation Research, 2004. 95(12): p. 1154-1166. 8. Kobat, D., et al., Comparison of two-photon imaging depths with 775 nm excitation and 1300 nm excitation. Biomedical Sciences IX, 2009. 7183: p. 71832D-71832D-7. 9. Marchese, S.V., et al., Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3. Applied Physics B-Lasers and Optics, 2005. 81(8): p. 1049-1052. 10. Tzeng, Y.-W., et al., Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser. Optics Express, 2009. 17(9): p. 7304-7309. 11. Krauth, J., et al., Broadly tunable femtosecond near- and mid-IR source by direct pumping of an OPA with a 41.7 MHz Yb:KGW oscillator. Optics Express, 2013. 21(9): p. 11516-11522. 12. Birks, T.A., W.J. Wadsworth, and P.S. Russell, Supercontinuum generation in tapered fibers. Optics Letters, 2000. 25(19): p. 1415-1417. 13. Pelouch, W.S., P.E. Powers, and C.L. Tang, Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator. Optics Letters, 1992. 17(15): p. 1070-1072. 14. Chia, S.-H., et al., A sub-100fs self-starting Cr:forsterite laser generating 1.4W output power. Optics Express, 2010. 18(23): p. 24085-24091. 15. Cerullo, G. and S. De Silvestri, Ultrafast optical parametric amplifiers. Review of Scientific Instruments, 2003. 74(1): p. 1-18. 16. Petrov, V., et al., High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB3O6 pumped at 800 nm. Optics Express, 2007. 15(2): p. 556-563. 17. Tyazhev, A., et al., Narrowband, mid-infrared, seeded optical parametric generator based on non-critical CdSiP2 pumped by 120-ps, single longitudinal mode 1,064 nm pulses. Applied Physics B-Lasers and Optics, 2013. 112(4): p. 453-456. 18. Lin, H.Y., et al., Parasitic oscillation in mid-infrared optical parametric generator based on PPMgLN. Optik, 2013. 124(16): p. 2511-2513. 19. Gaydardzhiev, A., et al., High-energy kHz mid-IR tunable PPSLT-based OPO pumped at 1064 nm. Quantum Electronics, 2012. 42(6): p. 535-538. 20. Yu, Y.J., et al., High-repetition-rate tunable mid-infrared optical parametric oscillator based on MgO: periodically poled lithium niobate. Optical Engineering, 2014. 53(6). 21. Tavella, F., A. Marcinkevicius, and F. Krausz, 90 mJ parametric chirped pulse amplification of 10 fs pulses. Optics Express, 2006. 14(26): p. 12822-12827. 22. Adachi, S., et al., 1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz. Optics Letters, 2007. 32(17): p. 2487-2489. 23. Chu, S.W., T.M. Liu, and C.K. Sun, Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti : sapphire laser. Optics Express, 2003. 11(8): p. 933-938. 24. Goldberger, J.J., Ng, Jason, Practical signal and image processing in clinical cardiology. 2010. 25. Fercher, A.F., Optical coherence tomography - development, principles, applications. Zeitschrift Fur Medizinische Physik, 2010. 20(4): p. 251-276. 26. Fercher, A.F., Optical coherence tomography, in encyclopedia of analytical chemistry. John Wiley & Sons, 2006. 27. Reddick, R.C., R.J. Warmack, and T.L. Ferrell, New form of scanning optical microscopy. Physical Review B, 1989. 39(1): p. 767-770. 28. Alvarez-Roman, R., et al., Visualization of skin penetration using confocal laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2004. 58(2): p. 301-316. 29. Leray, A., et al., Spatially distributed two-photon excitation fluorescence in scattering media: Experiments and time-resolved Monte Carlo simulations. Optics Communications, 2007. 272(1): p. 269-278. 30. Oheim, M., et al., Two-photon microscopy in brain tissue: parameters influencing the imaging depth. Journal of Neuroscience Methods, 2001. 111(1): p. 29-37. 31. Theer, P. and W. Denk, On the fundamental imaging-depth limit in two-photon microscopy. Journal of the Optical Society of America a-Optics Image Science and Vision, 2006. 23(12): p. 3139-3149. 32. Pope, R.M. and E.S. Fry, Absorption spectrum (380-700 nm) of pure water .2. Integrating cavity measurements. Applied Optics, 1997. 36(33): p. 8710-8723. 33. Williams, K.F.P.a.D., Optical properties of the water in the near infrared. Optical Society of America, 1974. 64(8): p. 4. 34. Bohren, C.F.a.D.R.H., Absorption and scattering by an arbitrary particle, in absorption and scattering of light by small particales. Wiley-VCH Verlag GmbH & Co. KGaA, 2007: p. 57-81. 35. Bohren, C.F.a.D.R.H., Absorption and scattering by a sphere, in absorption and scattering of light by small particals. Wiley-VCH Verlag GmbH & Co. KGaA, 2007: p. 82-129. 36. Chang, W.L., Tunable pulse laser generation from 1.3 μm to 1.8 μm by periodically poled Lithium niobate. National Taiwan University, 2012. Master thesis. 37. Weis, R.S. and T.K. Gaylord, Lithium-niobate - summary of physical-properties and crystal-structure. Applied Physics a-Materials Science & Processing, 1985. 37(4): p. 191-203. 38. Maiman, T.H., Stimulated optical radiation in ruby. Nature, 1960. 187(4736): p. 493-494. 39. Alfano, R.R. and S.L. Shapiro, Emission in the region 4000 to 7000 A Via four-photon coupling in glass. Physical Review Letters, 1970. 24(11): p. 584-587. 40. http://www.thorlabs.hk/index.cfm. 41. Gelse, K., E. Poschl, and T. Aigner, Collagens - structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 2003. 55(12): p. 1531-1546. 42. http://course1.winona.edu/sberg/308s02/Lec-note/11-new.htm. 43. http://www.azonano.com/article.aspx?ArticleID=2267. 44. Huang, Y.C., et al., Optical parametric generation covering the sodium D-1, D-2 lines from a 532-nm pumped periodically poled lithium niobate (PPLN) crystal with ionic-nonlinearity enhanced parametric gain. IEEE Journal of Quantum Electronics, 2002. 38(12): p. 1614-1619. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56110 | - |
| dc.description.abstract | 西元1665年虎克利用光學顯微鏡觀察植物細胞,之後光學顯微技術被廣泛的使用於生醫影像中。傳統的光學顯微鏡並沒有光學切片能力,無法判定信號來自於哪個深度。Marvin Lee Minsky 在1957年提出了具有光學切片能力的共軛焦螢光顯微鏡。但根據散射理論,可知波長越短散射越強,光的穿透深度受光波長影響極大,共軛焦螢光顯微鏡使用可見光波段,穿透深度受到極大的限制,難以超過100微米。而多光子顯微術通常以紅外光為激發光,波長長散射弱,能有較好的穿透深度。另外由於為非線性效應,信號強度與入射光強度為非線性成長,只有聚焦點才有足夠的信號被偵測到,進而擁有與共軛焦顯微鏡相似的光學切片能力。那可否透過無限的拉長激發光波長,達到更深度的穿透深度呢?若拿生物樣本考慮,樣本內部以水含量最多,而水在對波長1.4 μm以上的光吸收變強,不適用於生醫影像。考慮波長盡量長且須避開水的吸收,1.3~1.4 μm的光將非常適用於高穿透深度生醫影像。
市面上常見的可產生1.3~1.4 μm的雷射光源有鈦:藍寶石雷射搭配光參數共振器(Ti: sapphire laser + optical parametric oscillator,Ti:sa + OPO)、超連續光譜雷射(Supercontinuum generation laser,SC)、鉻:鎂橄欖石雷射(Cr: forsterite)。鈦:藍寶石雷射搭配光參數共振器好處是脈衝非常短,可小於100 fs,調制波長快速,但輸出功率有限且光參數共振器架設較為複雜;超連續光譜一般常用光晶體光纖(Photonic crystal fiber,PCF)來產生,好處在於頻寬極寬,可以同時產生從紫外到紅外光的頻段,然而頻寬極寬也造成單位波長能量低,且光纖的色散會造成脈衝寬度過寬,不適合使用於多光子顯微術;鉻:鎂橄欖石雷射能達到高輸出功率,但在架設上也需要共振器。如何以簡單地單次通過(single pass)方式產生高功率的1.3~1.4 μm短脈衝光呢?上述的雷射技術都有部分缺失,無法達到我們設定的需求。 在實驗中成功締造光參數產生/放大(Optical parametric generation/amplification,OPG/OPA)的紀錄:在高重覆率條件下的輸出功率超過 1 W、量子轉換效率(輸入的光子數/信號光子數)達60%。且波段為1.3~1.4 μm、脈衝寬度約1 ps的短脈衝雷射光。另外,我們也以產生的1.36 μm波長的光作為多光子顯微術的激發光,並以第一型膠原蛋白作為生物樣本取得三度空間的二倍頻影像,並與1 μm激發光的影像比較,可明顯的看出1.36 μm能取得更深的影像,藉此證實我們所產生的光源非常適合使用在高穿透深度的多光子顯微術。 | zh_TW |
| dc.description.abstract | Since Hooke first used optical microscope to observe the plate cells in 1665, optical microscope has been widely applied to biomedical image. Convention optical microscope doesn’t provide optical sectioning which makes it fail to recognize signals from the depth of signals. Later in 1957, Marvin Lee Minsky displayed the confocal fluorescence microscope which has optical section. However, as we know from the theory of scattering, the shorter wavelength is, the stronger scattering will be, the penetration depth is highly related to wavelength. Generally, visible light is the source of confocal fluorescence microscopy, which restricts its penetration depth 100 μm. On the contrary, multiphoton microscopy usually uses infrared light as its source and thus has higher penetration depth because it has longer wavelength and lower scattering. Besides, the whole process is nonlinear, which means the signal power increases nonlinearly by source intensity. Only signal from focus spot is enough for detecting. Therefore, multiphoton microscopy also has optical section. From previous perspective, my core question is that whether we can get unlimited high penetration depth by lengthening the wavelength. Take biological sample into consideration, which mainly contains water. Water strongly absorb EM-wave of wavelength near 1.4 μm, which is unsuitable for biomedical imaging. In order to lengthen the wavelength as much as possible and avoid the absorption of water, light between 1.3~1.4 μm would be very suitable for deep-tissue imaging.
People often use Ti: sapphire laser with optical parametric oscillator (Ti:sa + OPO), Supercontinuum generation laser (SC) and Cr: forsterite to generate 1.3~1.4 μm laser source. Ti:sa + OPO has ultrashort pulse which is often shorter than 100 fs and its peak wavelength can be fast tuned. But its output power is limited and oscillator is complex setup. SC usually uses photonic crystal fiber to generate. Its advantage is that spectrum is very broad, which is from ultraviolet to infrared. However, because it is broadband laser, its spectral power is low, usually ___. And the dispersion of fiber causes long pulse, which is not suitable for multiphoton microscopy. Cr:forsterite can achieve high output power, but its oscillator makes setup complex and less robust. How can we achieve easily single pass and high output power laser source with 1.3~1.4 μm wavelength? The aforementioned lasers all have some defects, which don’t fit our requirement. Our experiment succeeds in creating optical parametric generation/amplification record. We generate the pulse laser, whose output power is over 1 W, quantum efficiency (the number of the output photons/the number of the input photons) achieves 60% at high repetition rate, wavelength 1.3~1.4 μm and pulsewidth 1 ps. Besides, using 1.36 μm as source, which we generate, of multiphoton microscopy is success getting the second harmonic generation bulk image of the type 1 collagen. To compare the image with 1 μm as source obviously, 1.36 μm as source can get deeper image. It proved 1.36 μm is more suitable for deep-tissue multiphoton microscopy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:15:45Z (GMT). No. of bitstreams: 1 ntu-103-R01245008-1.pdf: 2157591 bytes, checksum: fa467bc8d83824adff3b74a0ba0d7eec (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv 目錄 vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 回顧1.3~1.4 μm 短脈衝雷射光源 4 1.2 光參數產生/放大 6 1.3 回顧非侵入式立體影像 6 1.4 目標 8 Chapter 2 Principle 9 2.1 散射理論 9 2.1.1 穿透深度限制 9 2.1.2 米氏散射 10 2.2 非線性光學 14 2.2.1 德汝德模型(Drude model) 15 2.2.2 光參數產生/放大 18 2.2.3 準相位匹配 20 2.3 超連續光譜產生(Supercontinuum generation) 23 2.4 二倍頻顯微術 24 Chapter 3 實驗 27 3.1 儀器 27 3.1.1 Yb: fiber laser 27 3.1.2 週期性極化反轉鈮酸鋰(PPLN) 27 3.2 架設 28 3.2.1 光參數放大 29 3.2.2 Frequency-Resolved Optical Gating(FROG) 30 3.2.3 掃瞄系統 31 3.3 生物樣本 33 Chapter 4 結果和討論 34 4.1 功率以及轉換效率 34 4.2 Supercontinuum 37 4.3 光參數放大波長調制範圍、光譜 38 4.4 脈衝寬度以及相位 40 4.5 激發波長1035 nm和1360 nm穿透深度比較 42 Chapter 5 總結和未來發展 45 5.1 總結 45 5.2 未來發展 45 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可調頻率光源 | zh_TW |
| dc.subject | 光參數放大 | zh_TW |
| dc.subject | 多光子光學顯微術 | zh_TW |
| dc.subject | 週期性極化反轉鈮酸鋰 | zh_TW |
| dc.subject | 超快雷射 | zh_TW |
| dc.subject | ultrafast laser | en |
| dc.subject | multiphoton microscopy | en |
| dc.subject | Periodically Pole Lithium Niobate(PPLN) | en |
| dc.subject | optical parametric amplification | en |
| dc.subject | tunable laser source | en |
| dc.title | 以高效率的光參數放大器為光源使用於多光子顯微術提供高穿透深度影像 | zh_TW |
| dc.title | High-efficiency Optical Parametric Amplification as a Laser Source Applied to Deep-tissue Multiphoton Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 石明豐(Ming-Feng Shih),林彥穎(Yen-Yin Lin),詹明哲(Ming-Che Chan) | |
| dc.subject.keyword | 超快雷射,可調頻率光源,光參數放大,週期性極化反轉鈮酸鋰,多光子光學顯微術, | zh_TW |
| dc.subject.keyword | ultrafast laser,tunable laser source,optical parametric amplification,Periodically Pole Lithium Niobate(PPLN),multiphoton microscopy, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
