請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56097完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王致恬(Chih-Tien Wang) | |
| dc.contributor.author | Hui-Ju Yang | en |
| dc.contributor.author | 楊蕙如 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:15:22Z | - |
| dc.date.available | 2024-12-31 | |
| dc.date.copyright | 2014-09-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Bahler, M., Benfenati, F., Valtorta, F., Czernik, A. J., and Greengard, P. (1989). Characterization of synapsin I fragments produced by cysteine-specific cleavage: a study of their interactions with F-actin. J Cell Biol 108, 1841-9.
Bahler, M., Benfenati, F., Valtorta, F., and Greengard, P. (1990). The synapsins and the regulation of synaptic function. Bioessays 12, 259-63. Bahler, M., and Greengard, P. (1987). Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326, 704-7. Baines, A. J., and Bennett, V. (1985). Synapsin I is a spectrin-binding protein immunologically related to erythrocyte protein 4.1. Nature 315, 410-3. Baines, A. J., and Bennett, V. (1986). Synapsin I is a microtubule-bundling protein. Nature 319, 145-7. Benfenati, F., Bahler, M., Jahn, R., and Greengard, P. (1989a). Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol 108, 1863-72. Benfenati, F., Greengard, P., Brunner, J., and Bahler, M. (1989b). Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. J Cell Biol 108, 1851-62. Benfenati, F., Onofri, F., Czernik, A. J., and Valtorta, F. (1996). Biochemical and functional characterization of the synaptic vesicle-associated form of CA2+/calmodulin-dependent protein kinase II. Brain Res Mol Brain Res 40, 297-309. Benfenati, F., Valtorta, F., and Greengard, P. (1991). Computer modeling of synapsin I binding to synaptic vesicles and F-actin: implications for regulation of neurotransmitter release. Proc Natl Acad Sci U S A 88, 575-9. Benfenati, F., Valtorta, F., Rubenstein, J. L., Gorelick, F. S., Greengard, P., and Czernik, A. J. (1992). Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 359, 417-20. Bloom, F. E., Ueda, T., Battenberg, E., and Greengard, P. (1979). Immunocytochemical localization, in synapses, of protein I, an endogenous substrate for protein kinases in mammalian brain. Proc Natl Acad Sci U S A 76, 5982-6. Bonanomi, D., Menegon, A., Miccio, A., Ferrari, G., Corradi, A., Kao, H. T., Benfenati, F., and Valtorta, F. (2005). Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons. J Neurosci 25, 7299-308. Brose, N., Petrenko, A. G., Sudhof, T. C., and Jahn, R. (1992). Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021-5. Buckley, K. M., Floor, E., and Kelly, R. B. (1987). Cloning and sequence analysis of cDNA encoding p38, a major synaptic vesicle protein. J Cell Biol 105, 2447-56. Bustos, R., Kolen, E. R., Braiterman, L., Baines, A. J., Gorelick, F. S., and Hubbard, A. L. (2001). Synapsin I is expressed in epithelial cells: localization to a unique trans-Golgi compartment. J Cell Sci 114, 3695-704. Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., and Barres, B. A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28, 264-78. Cambiaghi, M., Cursi, M., Monzani, E., Benfenati, F., Comi, G., Minicucci, F., Valtorta, F., and Leocani, L. (2013). Temporal evolution of neurophysiological and behavioral features of synapsin I/II/III triple knock-out mice. Epilepsy Res 103, 153-60. Cesca, F., Baldelli, P., Valtorta, F., and Benfenati, F. (2010). The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91, 313-48. Chapman, E. R. (2008). How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77, 615-41. Cheetham, J. J., Hilfiker, S., Benfenati, F., Weber, T., Greengard, P., and Czernik, A. J. (2001). Identification of synapsin I peptides that insert into lipid membranes. Biochem J 354, 57-66. Chi, P., Greengard, P., and Ryan, T. A. (2001). Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4, 1187-93. Chi, P., Greengard, P., and Ryan, T. A. (2003). Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38, 69-78. Chiang, N., Hsiao, Y. T., Yang, H. J., Lin, Y. C., Lu, J. C., and Wang, C. T. (2014). Phosphomimetic Mutation of Cysteine String Protein-alpha Increases the Rate of Regulated Exocytosis by Modulating Fusion Pore Dynamics in PC12 Cells. PLoS One 9, e99180. Chow, R. H., von Ruden, L., and Neher, E. (1992). Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60-3. Colquhoun, D., and Hawkes, A. G. (1982). On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond B Biol Sci 300, 1-59. Czernik, A. J., Pang, D. T., and Greengard, P. (1987). Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci U S A 84, 7518-22. De Camilli, P., Benfenati, F., Valtorta, F., and Greengard, P. (1990). The synapsins. Annu Rev Cell Biol 6, 433-60. De Camilli, P., Cameron, R., and Greengard, P. (1983). Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol 96, 1337-54. De Camilli, P., and Greengard, P. (1986). Synapsin I: a synaptic vesicle-associated neuronal phosphoprotein. Biochem Pharmacol 35, 4349-57. De Camilli, P., Ueda, T., Bloom, F. E., Battenberg, E., and Greengard, P. (1979). Widespread distribution of protein I in the central and peripheral nervous systems. Proc Natl Acad Sci U S A 76, 5977-81. Dolphin, A. C., and Greengard, P. (1981). Serotonin stimulates phosphorylation of protein I in the facial motor nucleus of rat brain. Nature 289, 76-9. Etholm, L., Linden, H., Eken, T., and Heggelund, P. (2011). Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 1383, 270-88. Fassio, A., Patry, L., Congia, S., Onofri, F., Piton, A., Gauthier, J., Pozzi, D., Messa, M., Defranchi, E., Fadda, M., Corradi, A., Baldelli, P., Lapointe, L., St-Onge, J., Meloche, C., Mottron, L., Valtorta, F., Khoa Nguyen, D., Rouleau, G. A., Benfenati, F., and Cossette, P. (2011). SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20, 2297-307. Fornasiero, E. F., Bonanomi, D., Benfenati, F., and Valtorta, F. (2010). The role of synapsins in neuronal development. Cell Mol Life Sci 67, 1383-96. Fornasiero, E. F., Raimondi, A., Guarnieri, F. C., Orlando, M., Fesce, R., Benfenati, F., and Valtorta, F. (2012). Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 32, 12214-27. Garcia, C. C., Blair, H. J., Seager, M., Coulthard, A., Tennant, S., Buddles, M., Curtis, A., and Goodship, J. A. (2004). Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J Med Genet 41, 183-6. Giannandrea, M., Guarnieri, F. C., Gehring, N. H., Monzani, E., Benfenati, F., Kulozik, A. E., and Valtorta, F. (2013). Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356x mutation in synapsin I. PLoS One 8, e67724. Greengard, P., Valtorta, F., Czernik, A. J., and Benfenati, F. (1993). Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780-5. Hall, F. L., Mitchell, J. P., and Vulliet, P. R. (1990). Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. J Biol Chem 265, 6944-8. Han, X., and Jackson, M. B. (2006). Structural transitions in the synaptic SNARE complex during Ca2+-triggered exocytosis. J Cell Biol 172, 281-93. Haycock, J. W., Greengard, P., and Browning, M. D. (1988). Cholinergic regulation of protein III phosphorylation in bovine adrenal chromaffin cells. J Neurosci 8, 3233-9. Hilbush, B. S., and Morgan, J. I. (1994). A third synaptotagmin gene, Syt3, in the mouse. Proc Natl Acad Sci U S A 91, 8195-9. Hilfiker, S., Benfenati, F., Doussau, F., Nairn, A. C., Czernik, A. J., Augustine, G. J., and Greengard, P. (2005). Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 25, 2658-69. Hilfiker, S., Schweizer, F. E., Kao, H. T., Czernik, A. J., Greengard, P., and Augustine, G. J. (1998). Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat Neurosci 1, 29-35. Hirokawa, N., Sobue, K., Kanda, K., Harada, A., and Yorifuji, H. (1989). The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 108, 111-26. Hosaka, M., Hammer, R. E., and Sudhof, T. C. (1999). A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24, 377-87. Hosaka, M., and Sudhof, T. C. (1998). Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. J Biol Chem 273, 1425-9. Hosaka, M., and Sudhof, T. C. (1999). Homo- and heterodimerization of synapsins. J Biol Chem 274, 16747-53. Hurley, S. L., Brown, D. L., and Cheetham, J. J. (2004). Cytoskeletal interactions of synapsin I in non-neuronal cells. Biochem Biophys Res Commun 317, 16-23. Huttner, W. B., DeGennaro, L. J., and Greengard, P. (1981). Differential phosphorylation of multiple sites in purified protein I by cyclic AMP-dependent and calcium-dependent protein kinases. J Biol Chem 256, 1482-8. Huttner, W. B., and Greengard, P. (1979). Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proc Natl Acad Sci U S A 76, 5402-6. Huttner, W. B., Schiebler, W., Greengard, P., and De Camilli, P. (1983). Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96, 1374-88. Jackson, M. B. (1992). Ion channels. Single-channel analysis. Methods Enzymol 207, 729-46. Johnson, E. M., Ueda, T., Maeno, H., and Greengard, P. (1972). Adenosine 3',5-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J Biol Chem 247, 5650-2. Jovanovic, J. N., Benfenati, F., Siow, Y. L., Sihra, T. S., Sanghera, J. S., Pelech, S. L., Greengard, P., and Czernik, A. J. (1996). Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93, 3679-83. Jovanovic, J. N., Sihra, T. S., Nairn, A. C., Hemmings, H. C., Jr., Greengard, P., and Czernik, A. J. (2001). Opposing changes in phosphorylation of specific sites in synapsin I during Ca2+-dependent glutamate release in isolated nerve terminals. J Neurosci 21, 7944-53. Kennedy, M. B., and Greengard, P. (1981). Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc Natl Acad Sci U S A 78, 1293-7. Kennedy, M. B., McGuinness, T., and Greengard, P. (1983). A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization. J Neurosci 3, 818-31. Ketzef, M., Kahn, J., Weissberg, I., Becker, A. J., Friedman, A., and Gitler, D. (2011). Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience 189, 108-22. Klagges, B. R., Heimbeck, G., Godenschwege, T. A., Hofbauer, A., Pflugfelder, G. O., Reifegerste, R., Reisch, D., Schaupp, M., Buchner, S., and Buchner, E. (1996). Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16, 3154-65. Krueger, B. K., Forn, J., and Greengard, P. (1977). Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J Biol Chem 252, 2764-73. Leube, R. E., Kaiser, P., Seiter, A., Zimbelmann, R., Franke, W. W., Rehm, H., Knaus, P., Prior, P., Betz, H., Reinke, H., and et al. (1987). Synaptophysin: molecular organization and mRNA expression as determined from cloned cDNA. EMBO J 6, 3261-8. Li, L., Chin, L. S., Shupliakov, O., Brodin, L., Sihra, T. S., Hvalby, O., Jensen, V., Zheng, D., McNamara, J. O., Greengard, P., and et al. (1995). Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A 92, 9235-9. Lignani, G., Raimondi, A., Ferrea, E., Rocchi, A., Paonessa, F., Cesca, F., Orlando, M., Tkatch, T., Valtorta, F., Cossette, P., Baldelli, P., and Benfenati, F. (2013). Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22, 2186-99. Lu, B., Greengard, P., and Poo, M. M. (1992). Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses. Neuron 8, 521-9. Maienschein, V., Marxen, M., Volknandt, W., and Zimmermann, H. (1999). A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26, 233-44. Mandell, J. W., Czernik, A. J., De Camilli, P., Greengard, P., and Townes-Anderson, E. (1992). Differential expression of synapsins I and II among rat retinal synapses. J Neurosci 12, 1736-49. Matsubara, M., Kusubata, M., Ishiguro, K., Uchida, T., Titani, K., and Taniguchi, H. (1996). Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem 271, 21108-13. Matsumoto, K., Ebihara, K., Yamamoto, H., Tabuchi, H., Fukunaga, K., Yasunami, M., Ohkubo, H., Shichiri, M., and Miyamoto, E. (1999). Cloning from insulinoma cells of synapsin I associated with insulin secretory granules. J Biol Chem 274, 2053-9. Menegon, A., Bonanomi, D., Albertinazzi, C., Lotti, F., Ferrari, G., Kao, H. T., Benfenati, F., Baldelli, P., and Valtorta, F. (2006). Protein kinase A-mediated synapsin I phosphorylation is a central modulator of Ca2+-dependent synaptic activity. J Neurosci 26, 11670-81. Menegon, A., Verderio, C., Leoni, C., Benfenati, F., Czernik, A. J., Greengard, P., Matteoli, M., and Valtorta, F. (2002). Spatial and temporal regulation of Ca2+/calmodulin-dependent protein kinase II activity in developing neurons. J Neurosci 22, 7016-26. Mobley, P., and Greengard, P. (1985). Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci U S A 82, 945-7. Nairn, A. C., and Greengard, P. (1987). Purification and characterization of Ca2+/calmodulin-dependent protein kinase I from bovine brain. J Biol Chem 262, 7273-81. Navone, F., Greengard, P., and De Camilli, P. (1984). Synapsin I in nerve terminals: selective association with small synaptic vesicles. Science 226, 1209-11. Nestler, E. J., and Greengard, P. (1980). Dopamine and depolarizing agents regulate the state of phosphorylation of protein I in the mammalian superior cervical sympathetic ganglion. Proc Natl Acad Sci U S A 77, 7479-83. Nestler, E. J., and Greengard, P. (1982). Nerve impulses increase the phosphorylation state of protein I in rabbit superior cervical ganglion. Nature 296, 452-4. Nichols, R. A., Chilcote, T. J., Czernik, A. J., and Greengard, P. (1992). Synapsin I regulates glutamate release from rat brain synaptosomes. J Neurochem 58, 783-5. Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C., and Greengard, P. (1990). Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343, 647-51. Onofri, F., Giovedi, S., Vaccaro, P., Czernik, A. J., Valtorta, F., De Camilli, P., Greengard, P., and Benfenati, F. (1997). Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Proc Natl Acad Sci U S A 94, 12168-73. Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R., and Sudhof, T. C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260-3. Petrucci, T. C., and Morrow, J. S. (1987). Synapsin I: an actin-bundling protein under phosphorylation control. J Cell Biol 105, 1355-63. Pieribone, V. A., Shupliakov, O., Brodin, L., Hilfiker-Rothenfluh, S., Czernik, A. J., and Greengard, P. (1995). Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375, 493-7. Romano, C., Nichols, R. A., and Greengard, P. (1987a). Synapsin I in PC12 cells. II. Evidence for regulation by NGF of phosphorylation at a novel site. J Neurosci 7, 1300-6. Romano, C., Nichols, R. A., Greengard, P., and Greene, L. A. (1987b). Synapsin I in PC12 cells. I. Characterization of the phosphoprotein and effect of chronic NGF treatment. J Neurosci 7, 1294-9. Rosahl, T. W., Spillane, D., Missler, M., Herz, J., Selig, D. K., Wolff, J. R., Hammer, R. E., Malenka, R. C., and Sudhof, T. C. (1995). Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488-93. Schiebler, W., Jahn, R., Doucet, J. P., Rothlein, J., and Greengard, P. (1986). Characterization of synapsin I binding to small synaptic vesicles. J Biol Chem 261, 8383-90. Segovia, M., Ales, E., Montes, M. A., Bonifas, I., Jemal, I., Lindau, M., Maximov, A., Sudhof, T. C., and Alvarez de Toledo, G. (2010). Push-and-pull regulation of the fusion pore by synaptotagmin-7. Proc Natl Acad Sci U S A 107, 19032-7. Shin, O. H. (2014). Exocytosis and synaptic vesicle function. Compr Physiol 4, 149-75. Steiner, J. P., Ling, E., and Bennett, V. (1987). Nearest neighbor analysis for brain synapsin I. Evidence from in vitro reassociation assays for association with membrane protein(s) and the Mr = 68,000 neurofilament subunit. J Biol Chem 262, 905-14. Sudhof, T. C., Czernik, A. J., Kao, H. T., Takei, K., Johnston, P. A., Horiuchi, A., Kanazir, S. D., Wagner, M. A., Perin, M. S., De Camilli, P., and et al. (1989). Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins. Science 245, 1474-80. Sudhof, T. C., and Jahn, R. (1991). Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6, 665-77. Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E., and Jahn, R. (1987). A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science 238, 1142-4. Torri Tarelli, F., Bossi, M., Fesce, R., Greengard, P., and Valtorta, F. (1992). Synapsin I partially dissociates from synaptic vesicles during exocytosis induced by electrical stimulation. Neuron 9, 1143-53. Trifaro, J. M., Fournier, S., and Novas, M. L. (1989). The p65 protein is a calmodulin-binding protein present in several types of secretory vesicles. Neuroscience 29, 1-8. Ueda, T., and Greengard, P. (1977). Adenosine 3':5'-monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein. J Biol Chem 252, 5155-63. Ueda, T., Maeno, H., and Greengard, P. (1973). Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3':5'-monophosphate. J Biol Chem 248, 8295-305. Valtorta, F., Greengard, P., Fesce, R., Chieregatti, E., and Benfenati, F. (1992). Effects of the neuronal phosphoprotein synapsin I on actin polymerization. I. Evidence for a phosphorylation-dependent nucleating effect. J Biol Chem 267, 11281-8. Valtorta, F., Pozzi, D., Benfenati, F., and Fornasiero, E. F. (2011). The synapsins: multitask modulators of neuronal development. Semin Cell Dev Biol 22, 378-86. Valtorta, F., Villa, A., Jahn, R., De Camilli, P., Greengard, P., and Ceccarelli, B. (1988). Localization of synapsin I at the frog neuromuscular junction. Neuroscience 24, 593-603. Vician, L., Lim, I. K., Ferguson, G., Tocco, G., Baudry, M., and Herschman, H. R. (1995). Synaptotagmin IV is an immediate early gene induced by depolarization in PC12 cells and in brain. Proc Natl Acad Sci U S A 92, 2164-8. Wang, C. T., Bai, J., Chang, P. Y., Chapman, E. R., and Jackson, M. B. (2006). Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. J Physiol 570, 295-307. Wang, C. T., Grishanin, R., Earles, C. A., Chang, P. Y., Martin, T. F., Chapman, E. R., and Jackson, M. B. (2001). Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science 294, 1111-5. Wang, C. T., Lu, J. C., Bai, J., Chang, P. Y., Martin, T. F., Chapman, E. R., and Jackson, M. B. (2003). Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943-7. Wang, J. K., Walaas, S. I., and Greengard, P. (1988). Protein phosphorylation in nerve terminals: comparison of calcium/calmodulin-dependent and calcium/diacylglycerol-dependent systems. J Neurosci 8, 281-8. Xu, Q., Huang, S., Song, M., Wang, C. E., Yan, S., Liu, X., Gaertig, M. A., Yu, S. P., Li, H., Li, S., and Li, X. J. (2013). Synaptic mutant huntingtin inhibits synapsin-1 phosphorylation and causes neurological symptoms. J Cell Biol 202, 1123-38. Yamagata, Y. (2003). New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo. J Pharmacol Sci 93, 22-9. Yang-Feng, T. L., DeGennaro, L. J., and Francke, U. (1986). Genes for synapsin I, a neuronal phosphoprotein, map to conserved regions of human and murine X chromosomes. Proc Natl Acad Sci U S A 83, 8679-83. Zhang, Z., Hui, E., Chapman, E. R., and Jackson, M. B. (2009). Phosphatidylserine regulation of Ca2+-triggered exocytosis and fusion pores in PC12 cells. Mol Biol Cell 20, 5086-95. Zhang, Z., Hui, E., Chapman, E. R., and Jackson, M. B. (2010). Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Mol Biol Cell 21, 2821-31. Zhang, Z., and Jackson, M. B. (2008). Temperature dependence of fusion kinetics and fusion pores in Ca2+-triggered exocytosis from PC12 cells. J Gen Physiol 131, 117-24. Zhang, Z., Wu, Y., Wang, Z., Dunning, F. M., Rehfuss, J., Ramanan, D., Chapman, E. R., and Jackson, M. B. (2011). Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 22, 2324-36. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56097 | - |
| dc.description.abstract | 神經系統內衝動的傳導,主要決定於神經傳導物質的釋放與接收。神經傳遞物質主要被包覆在兩種不同的囊泡中-突觸囊泡(synaptic vesicle)和緻密核心囊泡(dense-core vesicle),並藉由鈣離子調控的胞吐作用(Ca2+-regulated exocytosis) 調節釋放。雖然此兩種囊泡的釋放機制都是藉由鈣離子調控的胞吐作用,但只有Synapsin (Syn)這類的磷酸化蛋白會特別存在於突觸囊泡。Syn為十種同源蛋白的家族,其中Syn Ia是最廣為研究的。Syn Ia主要藉由不同蛋白激酶的磷酸化將突觸囊泡帶到靠近細胞膜的位置,因此促進突觸囊泡的胞吐作用﹔然而,目前尚未釐清此種調節突觸囊泡胞吐作用的蛋白-Syn Ia,是否也會去影響緻密核心囊泡的胞吐作用。實驗室先前的研究發現關於Syn Ia在下視丘腦下垂體系統中,可調控緻密核心囊泡中神經胜肽的釋放,特別的是,Syn Ia會藉由第62個胺基酸位置磷酸化來調控催產素和血管加壓素的釋放,但其中詳細調控機制尚未研究清楚。因此,為了進一步釐清Syn Ia如何調控緻密核心囊泡釋放的分子機制,我們利用單一囊泡安培測定法(Amperometry)直接偵測在神經內分泌細胞(neuroendocrine cell)中緻密核心囊泡的釋放,藉此可對Syn Ia如何調控緻密核心囊泡的胞吐作用有更深入的認識。
本研究結果顯示,與Syn Ia組別相比,Syn Ia-S62A(仿效無法被MAPK磷酸化的Syn Ia)可縮短融合孔(fusion pore)開啟的時間﹔除此之外,Syn Ia-S62A還增加了kc以及kd,分別為控制fusion pore關閉及擴張步驟之速率反應常數,表示Syn Ia-S62A可促進融合孔離開打開的狀態(open state)進入關閉(close state)或是擴散(dilation state)的狀態。相反地,Syn Ia-S9,566,603A(仿效無法被CaMK磷酸化的Syn Ia)除了會降低secretion rate,還增加了融合孔開啟的時間,並降低full fusion frequency。Syn Ia-S9,566,603A可同時降低kc以及kd,表示Syn Ia-S9,566,603A能夠穩定融合孔的開啟狀態。 綜合上述,可以得知Syn Ia可能藉由MAPK或是CaMK位置的磷酸化來影響緻密核心囊泡的釋放以及融合孔的動態,因此,突觸囊泡的磷酸化蛋白-Syn Ia,在緻密核心囊泡的胞吐作用動態變化上可能扮演著重要的角色。 | zh_TW |
| dc.description.abstract | In the nervous system, chemical synaptic transmission starts with neurotransmitter release. Neurotransmitters are packaged into two distinct classes of vesicles, synaptic vesicles (SVs) and dense-core vesicles (DCVs). Although the release from both vesicle classes shares a common mechanism of Ca2+-dependent exocytosis, a particular phosphoprotein, synapsin (Syn), localizes to SVs exclusively. The Syn protein family consists of ten homologous proteins, of which Syn Ia is the best studied. Upon phosphorylation by various protein kinases, Syn Ia can recruit SVs to plasma membrane, thereby increasing the dynamics of SV exocytosis. However, it remains completely unknown whether SV recruitment to plasma membrane may also facilitate trafficking or fusion of DCVs. Our preliminary results showed that Syn Ia may help neuropeptide release, such as oxytocin and vasopressin, by phosphorylation at the serine 62 site (Ser-62) in the rat hypothalamic-neurohypophysial system (HNS). To further determine the Syn Ia’s regulation of DCV exocytosis at the single-vesicle level, we directly measured neurotransmitter release from DCVs by performing single-vesicle amperometry in neuroendocrine cells. We found that Syn Ia-S62A (MAPK site-phosphodeficient mutation) shortened the opening of the initial fusion pore and increased both kc and kd compared to Syn Ia, suggesting that this phosphomutant promotes fusion pore to leave the open state and enter the close or dilation state. In contrast, Syn Ia-S9,566,603A (CaMK site-phosphodeficient mutation) decreased the secretion rate, prolongs the opening of the initial fusion pore, and decreased the frequency of full fusion compared to Syn Ia. In addition, Syn Ia-S9,566,603A decreased both kc and kd compared to Syn Ia, suggesting that this phosphomutant stabilizes an open fusion pore. Given that the Syn Ia may affect the DCV release or fusion pore dynamics by phosphorylation. Thus, this SV-phosphoprotein, Syn Ia, may play an important role in regulating the dynamics of DCV exocytosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:15:22Z (GMT). No. of bitstreams: 1 ntu-103-R01b43012-1.pdf: 5478621 bytes, checksum: 50e49b6a38c4c06532145ff21fbd9199 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iv Abstract vi Abbreviations viii Chapter I Introduction 1.1 Neurotransmitter release 1 1.2 Ca2+-dependent exocytosis 1 1.3 Dense-core vesicles and synaptic vesicles 2 1.4 Synaptotagmin 3 1.5 Synapsin 3 1.5.1 Isoforms and structure of Synapsin Ia 4 1.5.2 Functions of Synapsin Ia 6 1.6 Objectives of the study 7 Chapter II Materials and Methods 2.1 Plasmid construction and subcloning 11 2.2 Cell culture 12 2.3 Transfection 12 2.4 Amperometry 13 2.5 Immunofluorescence staining 15 Chapter III Results 3.1 Syn Ia was mainly colocalized with SVs, but only little colocalized with DCVs in PC12 cells 17 3.2 Syn Ia regulated the secretion rate of DCVs by phosphorylation at multiple serine sites (Ser-9, Ser-566, and Ser-603) 18 3.3 Syn Ia did not change the post-dilation process of DCV exocytosis in PC12 cells 22 3.4 Syn Ia phosphomutants modulated the opening of the initial fusion pore 23 3.5 Syn Ia decreased he frequency of full-fusion events by phosphorylation at the Ser-9, Ser-566, and Ser-603 sites 24 3.6 Syn Ia phosphomutants regulated the fraction of kiss-and-run events 27 3.7 Syn Ia phosphomutants modulated fusion pore dynamics 28 Chapter IV Discussion 4.1 The localization of Syn Ia and the regulation of DCV exocytosis 32 4.2 Syn Ia differentially regulates DCV exocytosis by different kinases- CaMK and MAPK 34 4.3 Different kinase activities may lead to the diverse effects of Syn Ia phosphorylation in the rat HNS and PC12 cells 37 4.4 Significance 38 Chapter V Conclusion 40 References 41 List of Figures Figure 1. Neurotransmitters are packaged into vesicles and released at the synapse 51 Figure 2. The process of Ca2+-regulated exocytosis 52 Figure 3. Full fusion v.s. kiss and run in Ca2+-regulated exocytosis 53 Figure 4. The Ca2+ binding sites in Synaptotagmin 54 Figure 5. The domain structure of Synapsin Ia and distinct phosphorylation sites 55 Figure 6. The action of synapsin in SV exocytosis 56 Figure 7. The hypothesis for the role of Syn Ia in regulating DCV exocytosis 57 Figure 8. Subcellular localization of Syn I and ChB/Syp in transfected PC12 cells 58 Figure 9. The colocalization ratio of Syn I versus ChB or Syn I versus Syp in transfected PC12 cells 60 Figure 10. Secretion rate in PC12 cells that overexpress Syn Ia and its phosphomutants 62 Figure 11. Spike characteristics in PC12 cells that overexpress Syn Ia and its phosphomutants 64 Figure 12. Prespike foot (PSF) characteristics in PC12 cells that overexpress Syn Ia and its phosphomutants 66 Figure 13. Two modes of exocytosis - “kiss and run” v.s. “full fusion” in PC12 cells that overexpress Syn Ia and its phosphomutants 68 Figure 14. KR events v.s. full-fusion events in cells overexpressing Syn Ia and its phosphomutants 70 Figure 15. Fraction of KR events and spike frequency in cells overexpressing Syn Ia and its phosphomutants 72 Figure 16. Kinetics of the fusion pores in cells overexpressing Syn Ia and its phosphomutants 71 Figure 17. The kinetic models in Syn Ia phosphorylation 76 List of Tables Table 1. Primers for construction of pCMV-IRES2-Syn Ia-S9,566,603A 78 Table 2. Characteristics of spikes in cells overexpressing Syn Ia and its phosphomutants 79 Table 3. The list of primary and secondary antibodies 80 Table 4. Comparison of the effects caused by Syn Ia and its phosphomutants 81 Appendix Appendix 1. The CSP localization in cells overexpressing CSP and its phosphomutants II Appendix 2. The 9th International Symposium on the Kanagawa University-National Taiwan University Exchange Program 2014: Abstract and Poster (Japan, Mar 2014) III Appendix 3. The 2014 Poster Competition in the Institute of Molecular and Cellular Biology at National Taiwan University, Taipei, Taiwan (5/30 2014): Abstract and Poster V Appendix 4. Subcellular localization of CSP and ChB after KCl treatment in transfected PC12 cells VII Appendix 5. Subcellular localization of CSP and ChB without KCl treatment in transfected PC12 cells IX Appendix 6. Subcellular localization of CSP and Syt I after KCl treatment in transfected PC12 cells XI Appendix 7. Subcellular localization of CSP and Syt I without KCl treatment in transfected PC12 cells XIII Appendix 8. Subcellular localization of CSP and Syx after KCl treatment in transfected PC12 cells XV Appendix 9. The constructs of pCMV-IRES2-mCherry- Syn Ia and pCMV-IRES2-mCherry -Syn Ia-S62A) XVII | |
| dc.language.iso | en | |
| dc.subject | synapsin Ia 磷酸化 | zh_TW |
| dc.subject | 緻密核心囊泡 | zh_TW |
| dc.subject | 突觸囊泡 | zh_TW |
| dc.subject | 鈣離子調控的胞吐作用 | zh_TW |
| dc.subject | secretion rate | zh_TW |
| dc.subject | 融合孔的動態 | zh_TW |
| dc.subject | 單一囊泡安培測定法 | zh_TW |
| dc.subject | fusion pore dynamics | en |
| dc.subject | Ca2+-regulated exocytosis | en |
| dc.subject | synaptic vesicle | en |
| dc.subject | single-vesicle amperometry | en |
| dc.subject | dense-core vesicle | en |
| dc.subject | synapsin Ia phosphorylation | en |
| dc.subject | secretion rate | en |
| dc.title | 突觸囊泡蛋白Synapsin Ia調控緻密核心囊泡胞吐作用動態的分子機制 | zh_TW |
| dc.title | Synapsin Ia, a Synaptic Vesicle Protein, Regulates the Dynamics of Dense-Core Vesicle Exocytosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧主欽(Juu-Chin Lu),徐立中(Li-Chung Hsu),周申如(Shen-Ju Chou),陳示國(ShihKuo Chen) | |
| dc.subject.keyword | synapsin Ia 磷酸化,緻密核心囊泡,突觸囊泡,鈣離子調控的胞吐作用,secretion rate,融合孔的動態,單一囊泡安培測定法, | zh_TW |
| dc.subject.keyword | synapsin Ia phosphorylation,dense-core vesicle,synaptic vesicle,Ca2+-regulated exocytosis,secretion rate,fusion pore dynamics,single-vesicle amperometry, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
