請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張雅珮(Ya-Pei Chang),劉逸軒(I-Hsuan Liu),林中天(Chung-Tien Lin) | |
| dc.contributor.author | Hsuan-Ping Hong | en |
| dc.contributor.author | 洪亘屏 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:15:11Z | - |
| dc.date.available | 2019-09-02 | |
| dc.date.copyright | 2014-09-02 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 周世認、吳瑞得、廖珮如、黃筱君、王開鼎、張鴻猷、謝耀清、李朝全、王建雄、詹昆衛 (2012)。台灣雲嘉南地區流浪犬壁蝨媒介性疾病之調查。台灣獸醫誌,38(4),276-282。
衛生署(2006)血液製劑條例第十四條第二項規定訂定之捐血者健康標準。取自http://www.blood.org.tw/Internet/main/docDetail.aspx?uid=6551&pid=6385&docid=23931 蘇璧伶、黃宣憲、劉振軒、闕玲玲 (2012)。大台北地區臨床就診犬隻犬瘟熱病感染之調查。台灣獸醫誌,38(2),100-107。 Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev, 13(4), 436-448. An, D. J., Kim, T. Y., Song, D. S., Kang, B. K., & Park, B. K. (2008). An immunochromatography assay for rapid antemortem diagnosis of dogs suspected to have canine distemper. J Virol Methods, 147(2), 244-249. Avery, R. K., & Snydman, D. R. (2002). Recipient screening prior to solid organ transplantation. Clin Infect Dis, 35(12), 1513-1519. Bianco, P., Barker, R., Brustle, O., Cattaneo, E., Clevers, H., Daley, G. Q., Smith, A. (2013). Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. Embo J, 32(11), 1489-1495. Birkenheuer, A. J., Correa, M. T., Levy, M. G., & Breitschwerdt, E. B. (2005). Geographic distribution of babesiosis among dogs in the United States and association with dog bites: 150 cases (2000-2003). J Am Vet Med Assoc, 227(6), 942-947. Black, L. L., Gaynor, J., Gahring, D., Adams, C., Aron, D., Harman, S., Harman, R. (2007). Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther, 8(4), 272-284. Blixenkrone-Moller, M., Svansson, V., Have, P., Orvell, C., Appel, M., Rode Pedersen, I., Henriksen, P. (1993). Studies on manifestations of canine distemper virus infection in an urban dog population. Vet Microbiol, 37(1–2), 163-173. Bowman, D., Little, S. E., Lorentzen, L., Shields, J., Sullivan, M. P., & Carlin, E. P. (2009). Prevalence and geographic distribution of Dirofilaria immitis, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum in dogs in the United States: results of a national clinic-based serologic survey. Vet Parasitol, 160(1-2), 138-148. Bulut, O., Yapici, O., Avci, O., Simsek, A., Atli, K., Dik, I., Mamak, N. (2013). The serological and virological investigation of canine adenovirus infection on the dogs. ScientificWorldJournal, 2013, 6. Camassola, M., Macedo Braga, L., Chagastelles, P., & Nardi, N. (2012). Methodology, biology and clinical applications of human mesenchymal stem cells. In S. R. Singh (Ed.), Somatic Stem Cells (Vol. 879, pp. 491-504): Humana Press. Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol, 213(2), 341-347. Chang, Y. S., Ahn, S. Y., Yoo, H. S., Sung, S. I., Choi, S. J., Oh, W. I., & Park, W. S. (2014). Mesenchymal stem cells for bronchopulmonary dysplasia: Phase 1 dose-escalation clinical trial. J. Pediatr., 164(5), 966-972.e966. Chappuis, G. (1995). Control of canine distemper. Vet Microbiol, 44(2–4), 351-358. Chen, S.I., Fang, W.W., Ye, F., Liu, Y.-H., Qian, J., Shan, S.J., Sun, J.P. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol., 94(1), 92-95. Connick, P., Kolappan, M., Crawley, C., Webber, D. J., Patani, R., Michell, A. W., Chandran, S. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol, 11(2), 150-156. Cooper, K., & Viswanathan, C. (2011). Establishment of a mesenchymal stem cell bank. Stem Cells Int, 2011. Costa-Junior, L. M., Rembeck, K., Passos, L. M., & Ribeiro, M. F. (2013). Factors associated with epidemiology of Anaplasma platys in dogs in rural and urban areas of Minas Gerais State, Brazil. Prev Vet Med, 109(3-4), 321-326. Crovace, A., Favia, A., Lacitignola, L., Di Comite, M. S., Staffieri, F., & Francioso, E. (2008). Use of autologous bone marrow mononuclear cells and cultured bone marrow stromal cells in dogs with orthopaedic lesions. Vet Res Commun, 32 Suppl 1, S39-44. Dai, W., Hale, S. L., Martin, B. J., Kuang, J.-Q., Dow, J. S., Wold, L. E., & Kloner, R. A. (2005). Allogeneic Mesenchymal Stem Cell Transplantation in Postinfarcted Rat Myocardium: Short- and Long-Term Effects. Circulation, 112(2), 214-223. Dalal, J., Gandy, K., & Domen, J. (2012). Role of mesenchymal stem cell therapy in Crohn's disease. Pediatr Res, 71(4 Pt 2), 445-451. Davatchi, F., Abdollahi, B. S., Mohyeddin, M., Shahram, F., & Nikbin, B. (2011). Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis, 14(2), 211-215. Decaro, N., & Buonavoglia, C. (2012). Canine parvovirus—A review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet Microbiol, 155(1), 1-12. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. Fischer, S. A., & Avery, R. K. (2009). Screening of donor and recipient prior to solid organ transplantation. Am J Transplant, 9 Suppl 4, S7-18. Food and Drug Administration. Requirements for testing human blood donors for evidence of infection due to communicable disease agents. Final rule. (2001). Fed Regist, 66(112), 31146-31165. Frisk, A. L., Konig, M., Moritz, A., & Baumgartner, W. (1999). Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper. J Clin Microbiol, 37(11), 3634-3643. Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., Pascual, I., Peiro, C., & Rodriguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum, 48(7), 1416-1423. Garcia-Olmo, D., Herreros, D., Pascual, I., Pascual, J. A., Del-Valle, E., Zorrilla, J., Pascual, M. (2009). Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Dis Colon Rectum, 52(1), 79-86. George, B. (2011). Regulations and guidelines governing stem cell based products: Clinical considerations. Perspect Clin Res, 2(3), 94-99. Guercio, A., Di Marco, P., Casella, S., Cannella, V., Russotto, L., Purpari, G., Piccione, G. (2012). Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int, 36(2), 189-194. Halme, D. G., & Kessler, D. A. (2006). FDA Regulation of Stem-Cell–Based Therapies. N Engl J Med, 355(16), 1730-1735. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., . . . Sherman, W. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol, 54(24), 2277-2286. Harrus, S., Aroch, I., Lavy, E., & Bark, H. (1997). Clinical manifestations of infectious canine cyclic thrombocytopenia. Vet Rec, 141(10), 247-250. Harrus, S., & Waner, T. (2011). Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): An overview. Vet J, 187(3), 292-296. Herrmann, R., Sturm, M., Shaw, K., Purtill, D., Cooney, J., Wright, M., Cannell, P. (2012). Mesenchymal stromal cell therapy for steroid-refractory acute and chronic graft versus host disease: a phase 1 study. Int J Hematol, 95(2), 182-188. Hodgkiss-Geere, H. M., Argyle, D. J., Corcoran, B. M., Whitelaw, B., Milne, E., Bennett, D., & Argyle, S. A. (2012). Characterisation and differentiation potential of bone marrow derived canine mesenchymal stem cells. Vet J, 194(3), 361-368. Honmou, O., Houkin, K., Matsunaga, T., Niitsu, Y., Ishiai, S., Onodera, R., Kocsis, J. D. (2011). Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain, 134(6), 1790-1807. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Keating, A. (2005). Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy, 7(5), 393-395. Houston, D. M., Ribble, C. S., & Head, L. L. (1996). Risk factors associated with parvovirus enteritis in dogs: 283 cases (1982-1991). J Am Vet Med Assoc, 208(4), 542-546. Hsu, S. L., Liang, R., & Woo, S. L. (2010). Functional tissue engineering of ligament healing. Sports Med Arthrosc Rehabil Ther Technol, 2, 12. Hsu, T.Y. (2014). The characteristics of bone marrow and epiphysis-derived mesenchymal stem cells from canine body donation after euthanasia (unpublished master thesis). National Taiwan University, Taiwan, ROC. Huang, H., Unver, A., Perez, M. J., Orellana, N. G., & Rikihisa, Y. (2005). Prevalence and molecular analysis of Anaplasma platys in dogs in Lara, Venezuela. Braz J Microbiol, 36(volume?), 211-216. Irwin, P. (2009). Canine babesiosis: from molecular taxonomy to control. Parasites & Vectors, 2(Suppl 1), S4. Jung, D. I., Ha, J., Kang, B. T., Kim, J. W., Quan, F. S., Lee, J. H., Park, H. M. (2009). A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci, 285(1-2), 67-77. Kadiyala, S., Young, R. G., Thiede, M. A., & Bruder, S. P. (1997). Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant, 6(2), 125-134. Kamishina, H., Deng, J., Oji, T., Cheeseman, J. A., & Clemmons, R. M. (2006). Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res, 67(11), 1921-1928. Kang, B. J., Ryu, H. H., Park, S. S., Koyama, Y., Kikuchi, M., Woo, H. M., Kweon, O. K. (2012). Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton's jelly for treating bone defects. J Vet Sci, 13(3), 299-310. Kariuki Njenga M, Nyaga PN, Buoro IBJ, et al.(1990) Effectiveness of fluids and antibiotics as supportive therapy of canine parvovirus-2 enteritis in puppies. Bull Anim Hlth Prod Afr, 38, 379-389. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J. M., Kassis, I., Slavin, S. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol, 67(10), 1187-1194. Kawate, K., Yajima, H., Ohgushi, H., Kotobuki, N., Sugimoto, K., Ohmura, T., Takakura, Y. (2006). Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs, 30(12), 960-962. Kim, J. W., Lee, J. H., Lyoo, Y. S., Jung, D. I., & Park, H. M. (2013). The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds. Vet Dermatol, 24(2), 242-253. Kisiel, A. H., McDuffee, L. A., Masaoud, E., Bailey, T. R., Esparza Gonzalez, B. P., & Nino-Fong, R. (2012). Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res, 73(8), 1305-1317. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., Ringden, O. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371(9624), 1579-1586. Lechner, E. S., Crawford, P. C., Levy, J. K., Edinboro, C. H., Dubovi, E. J., & Caligiuri, R. (2010). Prevalence of protective antibody titers for canine distemper virus and canine parvovirus in dogs entering a Florida animal shelter. J Am Vet Med Assoc, 236(12), 1317-1321. Li, Y., & Ma, T. (2012). Bioprocessing of cryopreservation for large-scale banking of human pluripotent stem cells. Biores Open Access, 1(5), 205-214. Liang, C.T., Cheuh, L.L., Brayton C., Pang, F., Wu, S.C., Huang, S.W., Liang, S.C., Yu, C.K., Lee,C.C., Liu, C.H., (2011). Canine distmper in Taiwan from 2000-2009: Co-infections and the use of RT-PCR and immunohistochemistry to detect tissue involvement in two groups of dogs. Int J Appl Res Vet M., 9(3), 265-277. Liang, J., Zhang, H., Hua, B., Wang, H., Lu, L., Shi, S., Sun, L. (2010). Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis, 69(8), 1423-1429. Lui, P. P., Rui, Y. F., Ni, M., & Chan, K. M. (2011). Tenogenic differentiation of stem cells for tendon repair-what is the current evidence? J Tissue Eng Regen Med, 5(8), e144-163. Martin, A. R., Brown, G. K., Hugh Dunstan, R., & Roberts, T. K. (2005). Anaplasma platys: an improved PCR for its detection in dogs. Exp Parasitol., 109(3), 176-180. Mendicino, M., Bailey, A.M., Wonnacott, K., Puri, R.K., & Bauer, S.R. (2014). MSC-based product characterization for clinical trials: An FDA perspective. Cell Stem Cell, 14(2), 141-145. Messick, J. B., Walker, P. G., Raphael, W., Berent, L., & Shi, X. (2002). 'Candidatus mycoplasma haemodidelphidis' sp. nov., 'Candidatus mycoplasma haemolamae' sp. nov. and Mycoplasma haemocanis comb. nov., haemotrophic parasites from a naturally infected opossum (Didelphis virginiana), alpaca (Lama pacos) and dog (Canis familiaris): phylogenetic and secondary structural relatedness of their 16S rRNA genes to other mycoplasmas. Int J Syst and Evol Microbiol, 52(3), 693-698. Messick, J. B. (2003). New perspectives about Hemotrophic mycoplasma (formerly, Haemobartonella and Eperythrozoon species) infections in dogs and cats. Vet Clin North Am Small Anim Pract, 33(6), 1453-1465. Mitchell, S. A., Zwijnenberg, R. J., Huang, J., Hodge, A., & Day, M. J. (2012). Duration of serological response to canine parvovirus-type 2, canine distemper virus, canine adenovirus type 1 and canine parainfluenza virus in client-owned dogs in Australia. Aust Vet J, 90(12), 468-473. Mochizuki, M., Yachi, A., Ohshima, T., Ohuchi, A., & Ishida, T. (2008). Etiologic study of upper respiratory infections of household dogs. J Vet Med Sci, 70(6), 563-569. Mohamadnejad, M., Alimoghaddam, K., Bagheri, M., Ashrafi, M., Abdollahzadeh, L., Akhlaghpoor, S., Malekzadeh, R. (2013). Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver Int, 33(10), 1490-1496. Mohr, A. J., Leisewitz, A. L., Jacobson, L. S., Steiner, J. M., Ruaux, C. G., & Williams, D. A. (2003). Effect of early enteral nutrition on intestinal permeability, intestinal protein loss, and outcome in dogs with severe parvoviral enteritis. J Vet Internal Med, 17(6), 791-798. Mountford, D. (2006). VetCell Bioscience Ltd--regenerative medicine for the world of animal health. Regen Med, 1(3), 393-396. Posuwan, N., Payungporn, S., Thontiravong A., Kitikoon, P., Amonsin, A., Poovorawan, Y. (2010). Prevalence of respiratory viruses isolated from dogs in Thailand during 2008-2009. Asian Biomed, 4(4), 563-569. Park, S.-B., Seo, M.-S., Kim, H.-S., & Kang, K.-S. (2012). Isolation and characterization of canine amniotic membrane-derived multipotent stem cells. PLoS ONE, 7(9), e44693. Perin, E. C., Silva, G. V., Assad, J. A., Vela, D., Buja, L. M., Sousa, A. L., Willerson, J. T. (2008). Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol, 44(3), 486-495. Pratelli, A., Martella, V., Elia, G., Tempesta, M., Guarda, F., Capucchio, M. T., Buonavoglia, C. (2001). Severe enteric disease in an animal shelter associated with dual infections by canine adenovirus type 1 and canine coronavirus. J Vet Med B Infect Dis Vet Public Health, 48(5), 385-392. Quintero, A. J., Wright, V. J., Fu, F. H., & Huard, J. (2009). Stem cells for the treatment of skeletal muscle injury. Clin Sports Med, 28(1), 1-11. Roura, X., Peters, I. R., Altet, L., Tabar, M.-D., Barker, E. N., Planellas, M., Tasker, S. (2010). Prevalence of Hemotropic Mycoplasmas in healthy and unhealthy cats and dogs in Spain. J Vet Diagn Invest, 22(2), 270-274. Sabatino, M., Ren, J., David-Ocampo, V., England, L., McGann, M., Tran, M., Stroncek, D. (2012). The establishment of a bank of stored clinical bone marrow stromal cell products. J Transl Med, 10(1), 1-12. Saito, F., Nakatani, T., Iwase, M., Maeda, Y., Murao, Y., Suzuki, Y., Ide, C. (2012). Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci, 30(2), 127-136. Schmitz, S., Coenen, C., Konig, M., Thiel, H. J., & Neiger, R. (2009). Comparison of three rapid commercial canine parvovirus antigen detection tests with electron microscopy and polymerase chain reaction. J Vet Diagn Invest, 21(3), 344-345. Seneviratna, P., Weerasinghe, & Ariyadasa, S. (1973). Transmission of Haemobartonella canis by the dog tick, Rhipicephalus sanguineus. Res Vet Sci, 14(1), 112-114. Seo, M. S., Jeong, Y. H., Park, J. R., Park, S. B., Rho, K. H., Kim, H. S., Kang, K. S. (2009). Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. J Vet Sci, 10(3), 181-187. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., Martin, B. J. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg, 73(6), 1919-1926. Stegeman, J. R., Birkenheuer, A. J., Kruger, J. M., & Breitschwerdt, E. B. (2003). Transfusion-associated Babesia gibsoni infection in a dog. J Am Vet Med Assoc, 222(7), 959-963, 952. Steinert, A. F., Rackwitz, L., Gilbert, F., Noth, U., & Tuan, R. S. (2012). Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med, 1(3), 237-247. Sudres, M., Norol, F., Trenado, A., Gregoire, S., Charlotte, F., Levacher, B., Cohen, J. L. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J Immunol, 176(12), 7761-7767. Sykes, J. E., Ball, L. M., Bailiff, N. L., & Fry, M. M. (2005). ‘Candidatus Mycoplasma haematoparvum’, a novel small haemotropic mycoplasma from a dog. Int J Syst Evol Micr, 55(1), 27-30. Tisato, V., Naresh, K., Girdlestone, J., Navarrete, C., & Dazzi, F. (2007). Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia, 21(9), 1992-1999. Trapp, S. M., Dagnone, A. S., Vidotto, O., Freire, R. L., Amude, A. M., & de Morais, H. S. A. (2006). Seroepidemiology of canine babesiosis and ehrlichiosis in a hospital population. Vet Parasitol, 140(3–4), 223-230. Wu, T.J., Sun, H.J., Wu,Y.C., Huang, H.P.(2009). Prevalence and risk factors of canine ticks and tick-borne diseases in Taipei, Taiwan. J. Vet. Clin. Sci., 2(3), 75-78. Venkataramana, N. K., Kumar, S. K., Balaraju, S., Radhakrishnan, R. C., Bansal, A., Dixit, A., Totey, S. M. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res, 155(2), 62-70. Wang, W. J., Zhao, Y. M., Lin, B. C., Yang, J., & Ge, L. H. (2012). Identification of multipotent stem cells from adult dog periodontal ligament. Eur J Oral Sci, 120(4), 303-310. Wenceslau, C. V., Miglino, M. A., Martins, D. S., Ambrosio, C. E., Lizier, N. F., Pignatari, G. C., & Kerkis, I. (2011). Mesenchymal progenitor cells from canine fetal tissues: yolk sac, liver, and bone marrow. Tissue Eng Part A, 17(17-18), 2165-2176. Wengi, N., Willi, B., Boretti, F. S., Cattori, V., Riond, B., Meli, M. L., Hofmann-Lehmann, R. (2008). Real-time PCR-based prevalence study, infection follow-up and molecular characterization of canine hemotropic mycoplasmas. Vet Microbiol., 126(1–3), 132-141. Wright, K. T., El Masri, W., Osman, A., Chowdhury, J., & Johnson, W. E. (2011). Concise review: Bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells, 29(2), 169-178. World Health Organization (2010). Screening donated blood for transfusion-transmissible infections: Recommendations. Geneva: World Health Organization. Yabsley, M. J., McKibben, J., Macpherson, C. N., Cattan, P. F., Cherry, N. A., Hegarty, B. C., Sylvester, W. (2008). Prevalence of Ehrlichia canis, Anaplasma platys, Babesia canis vogeli, Hepatozoon canis, Bartonella vinsonii berkhoffii, and Rickettsia spp. in dogs from Grenada. Vete Parasitol, 151(2–4), 279-285. Zucconi, E., Vieira, N. M., Bueno, D. F., Secco, M., Jazedje, T., Ambrosio, C. E., Zatz, M. (2010). Mesenchymal stem cells derived from canine umbilical cord vein--a novel source for cell therapy studies. Stem Cells Dev, 19(3), 395-402. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56091 | - |
| dc.description.abstract | 近年來犬隻骨髓間葉幹細胞逐漸受到關切,許多研究結果顯示了犬隻骨髓間葉幹細胞在未來臨床獸醫學上應用的可行性。但因單一動物身上取得的骨髓間葉幹細胞數量有限,故必須經由體外細胞培養增加其數量以利臨床醫學的運用。此外,幹細胞在許多疾病上的治療是有時效性的,如使用自體的幹細胞,經過了體外細胞培養以增加數量,常會造成治療的延遲;又因幹細胞本身特性,可進行異體移植而不會造成排斥,如此情形下,若建立犬隻骨髓間葉幹細胞的保存庫,對未來臨床獸醫學的應用應有幫助。 然而,針對幹細胞捐贈動物,目前尚未建立篩檢的準則,以規範幹細胞在未來臨床上使用的安全性。人醫方面目前已有組織與細胞捐贈者的篩檢準則,其中以傳染性疾病為主要的風險考量。因此,參考美國以及歐洲人醫的規範準則,理想上骨髓間葉幹細胞的捐贈犬隻應健康且臨床生理檢查正常,但犬隻仍應進行特定病原的篩檢,以降低嚴重傳染性疾病傳播的風險。
此研究目標是藉由檢測捐贈犬隻血液與骨髓間葉幹細胞中的特定病原核酸,探討特定病原核酸在骨髓來源間葉幹細胞應用上傳播的風險,以協助建立犬隻間葉幹細胞捐贈動物適當且實用的病原篩檢方式。 本研究收集來自動物收容所及動物醫院的犬隻共三十四隻,在安樂後立即採集血液、骨髓液以及骨骺端海綿骨組織,進行間葉幹細胞之分離和繼代,並且對同一隻狗之血液、第二代 (P2) 與第四代 (P4) 的骨髓間葉幹細胞檢體以nested-PCR方式進行病原核酸檢測。本研究主要針對台灣常見且會造成嚴重臨床症狀之傳染性疾病進行檢測,包括: canine distemper、parvovirus、adenovirus、 Babesia canis、Babesia gibsoni、Mycoplasma felis、Mycoplasma haemocanis、Mycoplasma haematoparvum、 Mycoplasma haemomominitum、Ehrlichia canis以及 Anaplasma platys。 結果在十二隻狗以及十三隻狗的血液中分別檢測出canine distemper和parvovirus,而在這些犬隻當中,超過60%的犬隻在P2和/或P4的骨髓間葉幹細胞中仍可檢測出病原核酸。相對的,在血液中被檢測出有Babeisa gibsoni (n=11)、Anaplasma platys (n=1) 、Ehrlichia canis (n=1) 和Mycoplasma haemocanis (n=1) 的捐贈者中,其間葉幹細胞皆未檢測出病原核酸的存在。 基於以上的結果,利用血液作為捐贈者病毒性疾病的篩選準則應為適當的方法,若在捐贈者血液中發現病毒病原核酸,應將此捐贈者剔除。然而,若於捐贈者血液中檢測出Babeisa gibsoni,依據目前研究結果,因病原經過體外細胞培養後無法繼續出現在間葉幹細胞中,此捐贈者的骨髓間葉幹細胞仍可考慮作為臨床應用。 | zh_TW |
| dc.description.abstract | During the past decade, the therapeutic potential of canine mesenchymal stem cells (MSCs) has gradually gained recognition. Various studies have indicated the potential of MSCs for clinical applications in medicine. Although the exact dose of MSCs in clinical application remains unclear, more than several millions of cells at each transplantation site are generally described in the literature. Thus, ex vivo expansion of MSCs is necessary due to its scarce nature to achieve applicable numbers for clinical application. MSCs have also been indicated to be suitable for allogeneic transplantation due to its immunomodulation characteristic. What’s more, allogeneic transplantation is reasonable since many injuries should be treated in a timely manner and autologous transplantation may cause a delay in treatment. Therefore, it is necessary to establish a cryopreservation bank for MSCs for clinical application.
However, no guidelines of donor eligibility have been established in veterinary medicine. In human medicine, general guidelines for donor eligibility have been established for donors of cells and tissues, with the risk of infectious diseases transmission being one of the major concerns. According to the Food and Drug Administration (FDA) guidelines in the United States for the eligibility determination for donors of Human Cells, Tissues, and Cellular and Tissue-based products, screening for communicable infectious agents is required prior to donation. Also, in the European Union (EU) Tissues and Cells Directives, similar guidelines are mentioned with additional requirements to exclude donors with systemic infections not yet controlled. Taking these guidelines into consideration, ideally MSCs should be harvested from healthy canine donors with relatively normal physical state. However, pathogen screening should be performed to reduce the risk of severe transmissible infectious diseases. This study aimed to understand the pathogen nucleic acid transmission between blood and isolated mesenchymal stem cells, in order to establish an efficient, effective and practical pathogen screening protocol for donor selection of canine marrow mesenchymal stem cells. Based on the prevalence in Taiwan and the clinical severity of the infectious diseases, pathogens studied in this research included canine distemper virus, parvovirus, adenovirus, Babesia canis, Babesia gibsoni, Mycoplasma felis, Mycoplasma haemocanis, Mycoplasma haematoparvum, Mycoplasma haemomominitum, Ehrlichia canis and Anaplasma platys. Blood, bone marrow and cancellous bone tissue were collected soon after euthanasia from 34 canine donors from animal shelters or animal hospital. MSCs were isolated from bone marrow and/or cancellous bone tissue and ex vivo expanded to 4 passages. Nested-polymerase chain reaction (PCR) was performed on paired blood, second passage (P2) and forth passage (P4) MSCs samples to detect the pathogens mentioned above. Nucleic acid of distemper virus and parvovirus were detected in blood samples from 12 and 13 donors respectively. In over 60% of these donors, nucleic acid of both viruses was further detected in the P2 and/or P4 MSCs. In contrast, in donors with nucleic acid of Babeisa gibsoni (n=11), Anaplasma platys (n=1), Ehrichia canis (n=1), and Mycoplasma haemocanis (n=1) detected in blood samples, the pathogen nucleic acid was not found in MSCs. Based on the results, performing screening tests for viral diseases on blood samples is an appropriate method for donor selection. Due to the high risk of transmitting infectious viral agents into the MSCs, donors with positive blood samples for viral diseases should be excluded. However, since based on the current results, after the ex vivo expansion, the nucleic acid of Babeisa gibsoni no longer existed in the MSCs samples, detecting Babeisa gibsoni in blood sample does not necessarily exclude the donor from being a suitable candidate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:15:11Z (GMT). No. of bitstreams: 1 ntu-103-R01643001-1.pdf: 1512183 bytes, checksum: a06c34c1ab06bb1fb822f17d091b6802 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Stem Cell 1 1.1.1 Mesenchymal Stem Cells 1 1.1.2 Canine mesenchymal stem cells 4 1.2 Donor eligibility determination 6 1.2.1 Eligibility determination for donors of blood and blood products 7 1.2.2 Eligibility determination for donors of organs 8 1.2.3 Eligibility determination for donors of tissues and cell products 10 1.2.4 Eligibility determination for donors of mesenchymal stem cells in dogs 16 1.3 Common severe infectious diseases in Taiwan for dogs 18 1.3.1 Canine Distemper Virus (CDV) 18 1.3.2 Canine Parvovirus (CPV) 20 1.3.3 Canine adenovirus (CAV) 21 1.3.4 Canine Babesiosis 22 1.3.5 Canine Ehrlichiosis 23 1.3.6 Canine Anaplasmosis 24 1.3.7 Hemotropic Mycoplasmosis 25 1.4 Prevalence of common severe infectious diseases in Taiwan 26 Chapter 2 Aim 28 2.1 Specific aim I: 29 2.2 Specific aim II: 29 Chapter 3 Material and Methods 30 3.1 Animals and inclusion criteria 30 3.2 Blood Sampling 30 3.3 Harvesting, isolation, incubation, and cryopreservation of canine marrow mesenchymal stem cells (MSCs) 30 3.3.1 Colony-Forming Unit (CFU) analysis 32 3.3.2 Statistical Analysis 33 3.4 Pathogen Screening of Blood and Mesenchymal Stem Cells 33 3.4.1 Total cellular Ribonucleic acid (RNA) Isolation 33 3.4.2 Total Deoxyribonucleic acid (DNA) Isolation 34 3.4.3 Reverse Transcription Reaction 34 3.4.4 Pathogen selection 34 3.4.5 Primers 35 3.4.6 Polymerase chain reaction (PCR) 35 3.4.7 Nested-polymerase chain reaction (nested-PCR) 35 3.4.8 PCR product analysis 36 Chapter 4 Result 45 4.1 Animals 45 4.2 Canine Mesenchymal Stem Cells Harvesting and Isolation 45 4.3 Pathogen Screening of Blood and Mesenchymal Stem Cell 47 4.3.1 Canine Distemper Virus 47 4.3.2 Parvovirus 48 4.3.3 Babesia gibsoni 49 4.3.4 Ehrlichia canis, Anaplasma platys, Mycoplasma haemocanis 49 4.3.5 Adenovirus, Babesia canis, and Mycoplasma haematoparvum 50 Chapter 5 Discussion 65 5.1 Canine Mesenchymal Stem Cells Harvesting 65 5.2 Pathogen Nucleic Acid Screening of Canine MSCs 65 Chapter 6 Conclusion 73 Chapter 7 Future Work 75 Reference 76 Appendix A 83 Appendix B 88 Appendix C 91 Appendix D 92 | |
| dc.language.iso | en | |
| dc.subject | 犬隻 | zh_TW |
| dc.subject | 病原篩檢 | zh_TW |
| dc.subject | 捐贈者條件 | zh_TW |
| dc.subject | 骨髓間葉幹細胞 | zh_TW |
| dc.subject | 骨髓捐贈 | zh_TW |
| dc.subject | canine | en |
| dc.subject | bone marrow mesenchymal stem cells | en |
| dc.subject | donor eligibility | en |
| dc.subject | pathogen screening | en |
| dc.subject | bone marrow donation | en |
| dc.title | 犬隻骨髓間葉幹細胞之病原核酸篩檢 | zh_TW |
| dc.title | Pathogen Nucleic Acid Screening of Canine Marrow Mesenchymal Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇璧伶(Bi-Ling Su),詹昆衛(Kun-Wei Chan) | |
| dc.subject.keyword | 犬隻,骨髓間葉幹細胞,捐贈者條件,病原篩檢,骨髓捐贈, | zh_TW |
| dc.subject.keyword | canine,bone marrow mesenchymal stem cells,donor eligibility,pathogen screening,bone marrow donation, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床動物醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
