Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗卿(Lih-Ching Hsu)
dc.contributor.authorTing-Yu Kaoen
dc.contributor.author高廷宇zh_TW
dc.date.accessioned2021-06-16T05:15:03Z-
dc.date.available2019-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation1. Idris I and Donnelly R., Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab, 2009. 11(2): p 79-88.
2. Kinne RK and Castaneda F., SGLT inhibitors as new therapeutic tools in the treatment of diabetes. Handb Exp Pharmacol, 2011(203): p 105-26.
3. Washburn WN., Evolution of sodium glucose co-transporter 2 inhibitors as anti-diabetic agents. Expert Opin Ther Pat, 2009. 19(11): p 1485-99.
4. Freitas HS, Anhe GF, Melo KF, Okamoto MM, Oliveira-Souza M, Bordin S and Machado UF., Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity. Endocrinology, 2008. 149(2): p 717-24.
5. Vallon V., Molecular determinants of renal glucose reabsorption. Focus on 'Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2'. Am J Physiol Cell Physiol, 2011. 300(1): p C6-8.
6. Cangoz S, Chang YY, Chempakaseril SJ, Guduru RC, Huynh LM, John JS, John ST, Joseph ME, Judge R, Kimmey R, Kudratov K, Lee PJ, Madhani IC, Shim PJ, Singh S, Singh S, Ruchalski C and Raffa RB, The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors. J Clin Pharm Ther, 2013. 38(5): p 350-9.
7. Nicholson RI, Gee JM and Harper ME., EGFR and cancer prognosis. Eur J Cancer, 2001. 37(Suppl 4): p S9-15.
8. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ and Hung MC., Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell, 2008. 13(5): p 385-93.
9. Guo GF, Cai YC, Zhang B, Xu RH, Qiu HJ, Xia LP, Jiang WQ, Hu PL, Chen XX, Zhou FF and Wang F., Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol, 2011. 28(Suppl 1): p S197-203.
10. Ishikawa N, Oguri T, Isobe T, Fujitaka K and Kohno N., SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res, 2001. 92(8): p 874-9.
11. Casneuf VF, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, De Vos M, Van de Wiele C and Peeters M., Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Invest, 2008. 26(8): p 852-9.
12. Helmke BM, Reisser C, Idzko M, Dyckhoff G and Herold-Mende C., Expression of SGLT-1 in preneoplastic and neoplastic lesions of the head and neck. Oral Oncol, 2004. 40(1): p 28-35.
13. Lai B, Xiao Y, Pu H, Cao Q, Jing H and Liu X., Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet, 2012. 285(5): p 1455-61.
14. Leroux C, Brazeau AS, Gingras V, Desjardins K, Strychar I and Rabasa-Lhoret R., Lifestyle and cardiometabolic risk in adults with type 1 diabetes: a review. Can J Diabetes, 2014. 38(1): p 62-9.
15. Malik FS and Taplin CE., Insulin therapy in children and adolescents with type 1 diabetes. Paediatr Drugs, 2014. 16(2): p 141-50.
16. Shaw JE and Chisholm DJ., 1: Epidemiology and prevention of type 2 diabetes and the metabolic syndrome. Med J Aust, 2003. 179(7): p 379-83.
17. Vijan S., Type 2 diabetes. Ann Intern Med, 2010. 152(5): p ITC31-15; quiz ITC316.
18. Chen L, Magliano DJ and Zimmet PZ., The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol, 2011. 8(4): p 228-36.
19. Hossain P, Kawar B and El Nahas M., Obesity and diabetes in the developing world--a growing challenge. N Engl J Med, 2007. 356(3): p 213-5.
20. The Diabetes Control and Complications Trial Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med, 1993. 329(14): p 977-86.
21. Ripsin CM, Kang H and Urban RJ., Management of blood glucose in type 2 diabetes mellitus. Am Fam Physician, 2009. 79(1): p 29-36.
22. Diamanti-Kandarakis E, Christakou CD, Kandaraki E and Economou FN., Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol, 2010. 162(2): p 193-212.
23. Salvo MC, Brooks AD and Thacker SM., Patient considerations in the management of type 2 diabetes - critical appraisal of dapagliflozin. Patient Prefer Adherence, 2014. 8: p 493-502.
24. Xin B and Wang H., Multiple sequence variations in SLC5A1 gene are associated with glucose-galactose malabsorption in a large cohort of Old Order Amish. Clin Genet, 2011. 79(1): p 86-91.
25. Abdul-Ghani MA, Norton L and Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev, 2011. 32(4): p 515-31.
26. Kim Y and Babu AR., Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes. Diabetes Metab Syndr Obes, 2012. 5: p 313-27.
27. Balakumar P, Sundram K and Dhanaraj SA., Dapagliflozin: Glucuretic action and beyond. Pharmacol Res, 2014. 82C: p 34-39.
28. Burki TK., FDA rejects novel diabetes drug over safety fears. Lancet, 2012. 379(9815): p 507
29. Markham A and Elkinson S. Luseogliflozin: first global approval. Drugs, 2014 . 74(8): p 945-50.
30. Poole RM and Prossler JE. Tofogliflozin: first global approval. Drugs, 2014. 74(8): p 939-44.
31. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, Takasu T, Imamura M, Li Q, Tomiyama H, Kobayashi Y, Noda A, Sasamata M, Shibasaki M., Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats. J Pharm Pharmacol, 2014. 66(7): p 975-87.
32. Zambrowicz B, Freiman J, Brown PM, Frazier KS, Turnage A, Bronner J, Ruff D, Shadoan M, Banks P, Mseeh F, Rawlins DB, Goodwin NC, Mabon R, Harrison BA, Wilson A, Sands A and Powell DR., LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin Pharmacol Ther, 2012. 92(2): p 158-69.
33. Shibazaki T, Tomae M, Ishikawa-Takemura Y, Fushimi N, Itoh F, Yamada M and Isaji M., KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J Pharmacol Exp Ther, 2012. 342(2): p 288-96.
34. Yoshioka K, Takahashi H, Homma T, Saito M, Oh KB, Nemoto Y and Matsuoka H., A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta, 1996. 1289(1): p 5-9.
35. Yoshioka K, Saito M, Oh KB, Nemoto Y, Matsuoka H, Natsume M and Abe H., Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci Biotechnol Biochem, 1996. 60(11): p 1899-901.
36. Waeburg O., On the origin of cancer cells. Science, 1956. 123(3191): p 309-14.
37. Wienhard K., Measurement of glucose consumption using [(18)F]fluorodeoxyglucose. Methods, 2002. 27(3): p 218-25.
38. O'Neil RG, Wu L and Mullani N., Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol, 2005. 7(6): p 388-92.
39. Millon SR, Ostrander JH, Brown JQ, Raheja A, Seewaldt VL and Ramanujam N. Uptake of 2-NBDG as a method to monitor therapy response in breast cancer cell lines. Breast Cancer Res Treat, 2011. 126(1): p 55-62.
40. Wang MS, Luo Z and Nitin N., Rapid assessment of drug response in cancer cells using microwell array and molecular imaging. Anal Bioanal Chem, 2014. 406(17): p 4195-206.
41. Castaneda F and Kinne RK., A 96-well automated method to study inhibitors of human sodium-dependent D-glucose transport. Mol Cell Biochem, 2005. 280(1-2): p 91-8.
42. Chang HC, Yang SF, Huang CC, Lin TS, Liang PH, Lin CJ and Hsu LC., Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG. Mol Biosyst, 2013. 9(8): p 2010-20.
43. Yamada K, Saito M, Matsuoka H and Inagaki N. A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Protoc, 2007. 2(3): p 753-62.
44. Blodgett AB, Kothinti RK, Kamyshko I, Petering DH, Kumar S and Tabatabai NM., A fluorescence method for measurement of glucose transport in kidney cells. Diabetes Technol Ther, 2011. 13(7): p 743-51.
45. Zou C, Wang Y and Shen Z., 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods, 2005. 64(3): p 207-15.
46. Fowler JS and Ido T., Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med, 2002. 32(1): p 6-12.
47. Posho L, Darcy-Vrillon B, Morel MT, Cherbuy C, Blachier F and Duee PH., Control of glucose metabolism in newborn pig enterocytes: evidence for the role of hexokinase. Biochim Biophys Acta, 1994. 1224(2): p 213-20.
48. Hagihira H, Wilson TH and Lin EC., Studies on the glucose-transport system in Escherichia Coli with alpha-methylglucoside as substrate. Biochim Biophys Acta, 1963,78: p 505-15.
49. Baker PF and Carruthers A., Sugar transport in giant axons of Loligo. J Physiol, 1981.316: p 481-502.
50. Bar-Even A, Flamholz A, Noor E and Milo R., Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol, 2012. 8(6): p 509-17.
51. Ehrenkranz JR, Lewis NG, Kahn CR and Roth J., Phlorizin: a review. Diabetes Metab Res Rev, 2005. 21(1): p 31-8.
52. Maines-Bandiera SL, Kruk PA and Auersperg N., Simian virus 40-transformed human ovarian surface epithelial cells escape normal growth controls but retain morphogenetic responses to extracellular matrix. Am J Obstet Gynecol, 1992. 167(3): p 729-35.
53. Mueckler M and Thorens B., The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med, 2013. 34(2-3): p 121-38.
54. Yamada K, Nakata M, Horimoto N, Saito M, Matsuoka H and Inagaki N., Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J Biol Chem, 2000. 275(29): p 22278-83.
55. Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H and Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care, 1990. 13(3):198-208.
56. Barnett JE, Holman GD and Munday KA., Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J, 1973 . 131(2): p 211-21.
57. Mueckler M and Makepeace C., Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis. Biochemistry, 2009. 48(25): p 5934-42.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56086-
dc.description.abstract葡萄糖對細胞來說是提供能量的重要來源,細胞主要是以兩種轉運蛋白將葡萄糖送入細胞內,一種是透過sodium-glucose co-transporters (以下簡稱 SGLT) 以主動運輸的方式,而另外一種是透過glucose transportes (以下簡稱 GLUT ) 以被動運輸的方式將葡萄糖送入細胞中。因此若能夠以簡單的方法得知葡萄糖運送入細胞的狀態,便能夠成為一個有效的研究工具。
1-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose
(以下簡稱為 1-NBDG ) 是一種新合成的螢光標定葡萄糖,它可以透過葡萄糖轉運蛋白進入細胞中,達到標定細胞的目的。和 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (以下簡稱為 2-NBDG ) 相比,1-NBDG是更好的SGLT受質,能有效地被SGLT運送進入細胞。但是對於其他的特性尚有許多不了解的地方,因此本文會對其物質的安定性、在細胞中的代謝情況作探討。並嘗試使用流式細胞儀來偵測標定的細胞,以提高運用的廣泛度。最後則是利用1-NBDG所建立的SGLT1和SGLT2抑制劑細胞篩選平台對天然物的萃取物進行篩選,得到可能的前導性藥物。
zh_TW
dc.description.abstractGlucose is an important energy source for cells. Cells transport glucose by two types of glucose transporters: the active transporters sodium-glucose co-transporters (SGLT), and the passive transporters glucose transportes (GLUT) . If we can develop an easy way to detect glucose in the cell, it could be a useful tool for research.
1-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (1-NBDG) is a newly developed fluorescence-labeled glucose. It can be transported into cells through glucose transporters. Compared with -(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxy-D-glucose (2-NBDG), 1-NBDG can be transported by SGLTs more effectively. 1-NBDG is not fully characterized yet. Therefore, in this thesis, we investigate the stability of 1-NBDG, determine its intracellular metabolites, and set up a flow cytometric method for the detection of 1-NBDG uptake in cells. Furthermore, 1-NBDG is also used in a high-throughput cell-based method to screen for potential SGLT1 and SGLT2 inhibitors from natural products.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:15:03Z (GMT). No. of bitstreams: 1
ntu-103-R01423010-1.pdf: 2416149 bytes, checksum: 05866c523a0b5db36443267a877a41a9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書i
誌謝ii
中文摘要iii
英文摘要iv
目錄 v
表目錄viii
圖目錄ix
縮寫表x
第一章 緒論1
1.1 葡萄糖轉運蛋白1
1.1.1 葡萄糖的吸收 1
1.1.2 Sodium-glucose co-transporter 1 1
1.1.3 Sodium-glucose co-transporter 2 2
1.1.4 SGLT1 和癌症的關係 2
1.2 糖尿病簡介 2
1.2.1 第一型糖尿病 (T1DM) 2
1.2.2 第二型糖尿病 (T2DM) 3
1.2.3 目前糖尿病的治療藥物 3
1.3 SGLT1 和 SGLT2 抑制劑 4
1.3.1 選擇性 SGLT2 抑制劑 4
1.3.2 SGLT1/SGLT2 雙重抑制劑與選擇性 SGLT1 抑制劑 5
1.4 螢光葡萄糖目前的發展 6
1.4.1 2-NDBG 的發現 6
1.4.2 2-NBDG 與癌症研究 6
1.4.3 新穎性螢光葡萄糖 1-NBDG 7
第二章 目的 15
第三章 實驗材料與方法 16
3.1 細胞培養 16
3.2 Transfection 17
3.3 1-NBDG在細胞中的安定性 18
3.4 1-NBDG 在不同 pH 值下的安定性 21
3.5 1-NBDG 在強酸強鹼下的安定性 22
3.6 藥物篩選 23
3.7 使用流式細胞儀觀察1-NBDG的吸收 25
3.8 細胞中代謝物的抽提 27
第四章 實驗結果 28
4.1 1-NBDG性質分析及其與2-NBDG之比較 28
4.1.1 1-NBDG和2-NBDG在細胞中的安定性 28
4.1.2 1-NBDG 和 2-NBDG 在 lysate 中的安定性 28
4.1.3 1-NBDG 和 2-NBDG 在不同pH值下的螢光強度 29
4.1.4 1-NBDG 和 2-NBDG 經強酸強鹼處理後的螢光強度 29
4.2 以流式細胞儀偵測 1-NBDG 和 2-NBDG 30
4.3 藥物篩選 31
4.3.1 純化之天然化合物 31
4.3.2 天然粗萃取物 32
第五章 討論 56
5.1 1-NBDG 和 2-NBDG 在細胞中的安定性 56
5. 2 1-NBDG 和 2-NBDG 在強酸強鹼中的安定性 58
5.3 以流式細胞儀偵測 1-NBDG 59
5.4 藥物篩選 60
5.5 以螢光葡萄糖偵測癌細胞 61
第六章 結論 69
References 70
dc.language.isozh-TW
dc.subject第二型糖尿病zh_TW
dc.subject1-NBDGzh_TW
dc.subject2-NBDGzh_TW
dc.subject選擇性 SGLT2 抑制劑zh_TW
dc.subject流式細胞儀zh_TW
dc.subjectType2 diabetes mellitusen
dc.subjectflow cytometryen
dc.subjectselective SGLT2 inhibitoren
dc.subject2-NBDGen
dc.subject1-NBDGen
dc.title新穎螢光葡萄糖類似物之特性研究與應用zh_TW
dc.titleCharacterization of a novel fluorescent glucose derivative and its applicationsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顧記華(Jih-Hwa Guh),梁碧惠(Pi-Hui Liang)
dc.subject.keyword1-NBDG,2-NBDG,選擇性 SGLT2 抑制劑,流式細胞儀,第二型糖尿病,zh_TW
dc.subject.keyword1-NBDG,2-NBDG,selective SGLT2 inhibitor,Type2 diabetes mellitus,flow cytometry,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2014-08-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved