請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫 | |
| dc.contributor.author | Min-Jyun Fan-Jiang | en |
| dc.contributor.author | 范姜旻君 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:15:01Z | - |
| dc.date.available | 2024-08-15 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Ahima, R.S. (2008). Revisiting leptin's role in obesity and weight loss. The Journal of Clinical Investigation 118, 2380-2383.
Arend, W.P., Malyak, M., Guthridge, C.J., and Gabay, C. (1998). Interleukin-1 receptor antagonist: role in biology. Annu Review Immunol 16, 27-55. Augello, A., Tasso, R., Negrini, S.M., Amateis, A., Indiveri, F., Cancedda, R., and Pennesi, G. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology 35, 1482-1490. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology 30, 42-48. Birbrair, A., Wang, Z.M., Messi, M.L., Enikolopov, G.N., and Delbono, O. (2011). Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PloS One 6, e16816. Bishop-Bailey, D., and Bystrom, J. (2009). Emerging roles of peroxisome proliferator-activated receptor-beta/delta in inflammation. Pharmacology & Therapeutics 124, 141-150. Bougarne, N., Paumelle, R., Caron, S., Hennuyer, N., Mansouri, R., Gervois, P., Staels, B., Haegeman, G., and De Bosscher, K. (2009). PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proceedings of the National Academy of Sciences of the United States of America 106, 7397-7402. Buler, M., Aatsinki, S.M., Skoumal, R., Komka, Z., Toth, M., Kerkela, R., Georgiadi, A., Kersten, S., and Hakkola, J. (2012). Energy-sensing factors coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1alpha) and AMP-activated protein kinase control expression of inflammatory mediators in liver: induction of interleukin 1 receptor antagonist. The Journal of Biological Chemistry 287, 1847-1860. Carvalho-Filho, M.A., Ueno, M., Hirabara, S.M., Seabra, A.B., Carvalheira, J.B., de Oliveira, M.G., Velloso, L.A., Curi, R., and Saad, M.J. (2005). S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 54, 959-967. Cawthorn, W.P., and Sethi, J.K. (2008). TNF-alpha and adipocyte biology. FEBS Letters 582, 117-131. Chong, H.C., Tan, M.J., Philippe, V., Tan, S.H., Tan, C.K., Ku, C.W., Goh, Y.Y., Wahli, W., Michalik, L., and Tan, N.S. (2009). Regulation of epithelial-mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis and wound healing. The Journal of Cell Biology 184, 817-831. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G.L., Pistoia, V., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood 107, 367-372. Crisafulli, C., Bruscoli, S., Esposito, E., Mazzon, E., Di Paola, R., Genovese, T., Bramanti, P., Migliorati, G., and Cuzzocrea, S. (2009). PPAR-alpha contributes to the anti-inflammatory activity of 17beta-estradiol. The Journal of Pharmacology and Experimental Therapeutics 331, 796-807. da Silva Meirelles, L., Chagastelles, P.C., and Nardi, N.B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science 119, 2204-2213. De Rosa, V., Procaccini, C., Cali, G., Pirozzi, G., Fontana, S., Zappacosta, S., La Cava, A., and Matarese, G. (2007). A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241-255. Deng, T., Lyon, C.J., Minze, L.J., Lin, J., Zou, J., Liu, J.Z., Ren, Y., Yin, Z., Hamilton, D.J., Reardon, P.R., et al. (2013). Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metabolism 17, 411-422. Deng, W.N., Han, Q., Liao, L.M., You, S.G., Deng, H.Y., and Zhao, R.C.H. (2005). Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biology 24, 458-463. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P.D., Matteucci, P., Grisanti, S., and Gianni, A.M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838-3843. Dinarello, C.A. (2011). Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720-3732. Djouad, F., Charbonnier, L.M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C., and Noel, D. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25, 2025-2032. Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D., and Jorgensen, C. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837-3844. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317. Duncan, R.E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E., and Sul, H.S. (2007). Regulation of lipolysis in adipocytes. Annual Review of Nutrition 27, 79-101. Faber, D.R., Kalkhoven, E., Westerink, J., Bouwman, J.J., Monajemi, H.M., and Visseren, F.L. (2012). Conditioned media from (pre)adipocytes stimulate fibrinogen and PAI-1 production by HepG2 hepatoma cells. Nutrition & Diabetes 2, e52. Fain, J.N., Leffler, C.W., Bahouth, S.W., Rice, A.M., and Rivkees, S.A. (2000). Regulation of leptin release and lipolysis by PGE2 in rat adipose tissue. Prostaglandins & Other Lipid Mediators 62, 343-350. Fibbe, W.E., Nauta, A.J., and Roelofs, H. (2007). Modulation of immune responses by mesenchymal stem cells. Annals of the New York Academy of Sciences 1106, 272-278. Freshney, R.I. (2005). Culture of animal cells : a manual of basic technique, 5th edn (Hoboken, N.J.: Wiley-Liss). Garg, A. (2006). Adipose tissue dysfunction in obesity and lipodystrophy. Clinical Cornerstone 8 Suppl 4, S7-S13. Giuliani, M., Bennaceur-Griscelli, A., Nanbakhsh, A., Oudrhiri, N., Chouaib, S., Azzarone, B., Durrbach, A., and Lataillade, J.J. (2014). TLR ligands stimulation protects MSC from NK killing. Stem Cells 32, 290-300. Glennie, S., Soeiro, I., Dyson, P.J., Lam, E.W.F., and Dazzi, F. (2005). Bone marrow mesenchymal stem cefls induce division arrest anergy of activated T cells. Blood 105, 2821-2827. Green, H., and Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5, 19-27. Greenberg, A.S., and Obin, M.S. (2006). Obesity and the role of adipose tissue in inflammation and metabolism. The American Journal of Clinical Nutrition 83, 461S-465S. Grudzinska, M.K., Kurzejamska, E., Bojakowski, K., Soin, J., Lehmann, M.H., Reinecke, H., Murry, C.E., Soderberg-Naucler, C., and Religa, P. (2013). Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology 33, 1271-1279. Han, J.M., and Levings, M.K. (2013). Immune regulation in obesity-associated adipose inflammation. Journal of Immunology 191, 527-532. Harris, S.G., Padilla, J., Koumas, L., Ray, D., and Phipps, R.P. (2002). Prostaglandins as modulators of immunity. Trends Immunology 23, 144-150. Herder, C., Carstensen, M., and Ouwens, D.M. (2013). Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes, Obesity & Metabolism 15 Suppl 3, 39-50. Huang, W., and Glass, C.K. (2010). Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arteriosclerosis, Thrombosis, and Vascular Biology 30, 1542-1549. Kalinski, P. (2012). Regulation of immune responses by prostaglandin E2. Journal of Immunology 188, 21-28. Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., Egashira, K., et al. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation 116, 1494-1505. Klingemann, H., Matzilevich, D., and Marchand, J. (2008). Mesenchymal Stem Cells - Sources and Clinical Applications. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie 35, 272-277. Knowles, R.G., and Moncada, S. (1994). Nitric-Oxide Synthases in Mammals. Biochemcal Journal 298, 249-258. Korhonen, R., Lahti, A., Kankaanranta, H., and Moilanen, E. (2005). Nitric oxide production and signaling in inflammation. Current Drug Targets Inflammation and Allergy 4, 471-479. Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., Mazzinghi, B., Pizzolo, G., Vinante, F., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24, 386-398. Le Blanc, K., Rasmusson, I., Gotherstrom, C., Seidel, C., Sundberg, B., Sundin, M., Rosendahl, K., Tammik, C., and Ringden, O. (2004). Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scandinavian Journal of Immunology 60, 307-315. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S.E., and Ringden, O. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology 57, 11-20. Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L., Lee, W.H., Fitzgerald, K.A., and Hwang, D.H. (2004). Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. The Journal of Biological Chemistry 279, 16971-16979. Lichtenstein, L., Mattijssen, F., de Wit, N.J., Georgiadi, A., Hooiveld, G.J., van der Meer, R., He, Y., Qi, L., Koster, A., Tamsma, J.T., et al. (2010). Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metabolism 12, 580-592. Liu, W.H., Liu, J.J., Wu, J., Zhang, L.L., Liu, F., Yin, L., Zhang, M.M., and Yu, B. (2013). Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PloS One 8, e55487. Lord, G.M., Matarese, G., Howard, J.K., Baker, R.J., Bloom, S.R., and Lechler, R.I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897-901. Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of Clinical Investigation 117, 175-184. Maccario, R., Podesta, M., Moretta, A., Cometa, A., Comoli, P., Montagna, D., Daudt, L., Ibatici, A., Piaggio, G., Pozzi, S., et al. (2005). Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4(+), T-cell subsets expressing a regulatory/suppressive phenotype. Haematol-Hematol J 90, 516-525. Makki, K., Froguel, P., and Wolowczuk, I. (2013). Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflammation 2013, 139239. Meier, C.A., Chicheportiche, R., Juge-Aubry, C.E., Dreyer, M.G., and Dayer, J.M. (2002). Regulation of the interleukin-1 receptor antagonist in THP-1 cells by ligands of the peroxisome proliferator-activated receptor gamma. Cytokine 18, 320-328. Meijer, K., de Vries, M., Al-Lahham, S., Bruinenberg, M., Weening, D., Dijkstra, M., Kloosterhuis, N., van der Leij, R.J., van der Want, H., Kroesen, B.J., et al. (2011). Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PloS One 6, e17154. Michalik, L., Auwerx, J., Berger, J.P., Chatterjee, V.K., Glass, C.K., Gonzalez, F.J., Grimaldi, P.A., Kadowaki, T., Lazar, M.A., O'Rahilly, S., et al. (2006). International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological Reviews 58, 726-741. Modugno, F., Ness, R.B., Chen, C., and Weiss, N.S. (2005). Inflammation and endometrial cancer: a hypothesis. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 14, 2840-2847. Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., and Cinti, S. (2008). Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. Journal of Lipid Research 49, 1562-1568. Nauta, A.J., and Fibbe, W.E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood 110, 3499-3506. Nauta, A.J., Kruisselbrink, A.B., Lurvink, E., Willemze, R., and Fibbe, W.E. (2006a). Mesenchymal stem cells inhibit generation and function of both CD34(+)-derived and monocyte-derived dendritic cells. Journal of Immunology 177, 2080-2087. Nauta, A.J., Kruisselbrink, A.B., Lurvink, E., Willemze, R., and Fibbe, W.E. (2006b). Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. Journal of Immunology 177, 2080-2087. Nemeth, K., Leelahavanichkul, A., Yuen, P.S., Mayer, B., Parmelee, A., Doi, K., Robey, P.G., Leelahavanichkul, K., Koller, B.H., Brown, J.M., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine 15, 42-49. Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., et al. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine 15, 914-920. Ohashi, K., Parker, J.L., Ouchi, N., Higuchi, A., Vita, J.A., Gokce, N., Pedersen, A.A., Kalthoff, C., Tullin, S., Sams, A., et al. (2010). Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. The Journal of Biological Chemistry 285, 6153-6160. Otto, T.C., and Lane, M.D. (2005). Adipose development: from stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology 40, 229-242. Pascual, G., Fong, A.L., Ogawa, S., Gamliel, A., Li, A.C., Perissi, V., Rose, D.W., Willson, T.M., Rosenfeld, M.G., and Glass, C.K. (2005). A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759-763. Perreault, M., and Marette, A. (2001). Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nature Medicine 7, 1138-1143. Piryaei, A., Valojerdi, M.R., Shahsavani, M., and Baharvand, H. (2011). Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and their transplantation into a carbon tetrachloride-induced liver fibrosis model. Stem Cell Reviews 7, 103-118. Polchert, D., Sobinsky, J., Douglas, G., Kidd, M., Moadsiri, A., Reina, E., Genrich, K., Mehrotra, S., Setty, S., Smith, B., et al. (2008). IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. European Journal of Immunology 38, 1745-1755. Potian, J.A., Aviv, H., Ponzio, N.M., Harrison, J.S., and Rameshwar, P. (2003). Veto-like activity of mesenchymal stem cells: Functional discrimination between cellular responses to alloantigens and recall antigens. Journal of Immunology 171, 3426-3434. Pradier, A., Passweg, J., Villard, J., and Kindler, V. (2011). Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant 20, 681-691. Prasanna, S.J., Gopalakrishnan, D., Shankar, S.R., and Vasandan, A.B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS One 5, e9016. Rasmusson, I., Ringden, O., Sundberg, B., and Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 76, 1208-1213. Ren, G., Su, J., Zhang, L., Zhao, X., Ling, W., L'Huillie, A., Zhang, J., Lu, Y., Roberts, A.I., Ji, W., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27, 1954-1962. Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A.I., Zhao, R.C., and Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141-150. Rodriguez-Pardo, V.M., Aristizabal, J.A., Jaimes, D., Quijano, S.M., de los Reyes, I., Herrera, M.V., Solano, J., and Vernot, J.P. (2013). Mesenchymal stem cells promote leukaemic cells aberrant phenotype from B-cell acute lymphoblastic leukaemia. Hematology/Oncology and Stem Cell Therapy 6, 89-100. Ryan, J.M., Barry, F.P., Murphy, J.M., and Mahon, B.P. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation (Lond) 2, 8. Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., and Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109, 228-234. Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H., and Flier, J.S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of Clinical Investigation 116, 3015-3025. Soleymaninejadian, E., Pramanik, K., and Samadian, E. (2012). Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. American Journal of Reproductive Immunology 67, 1-8. Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis, C.N., and Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24, 74-85. Spaggiari, G.M., Abdelrazik, H., Becchetti, F., and Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113, 6576-6583. Stefanovic-Racic, M., Yang, X., Turner, M.S., Mantell, B.S., Stolz, D.B., Sumpter, T.L., Sipula, I.J., Dedousis, N., Scott, D.K., Morel, P.A., et al. (2012). Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes 61, 2330-2339. Stienstra, R., Mandard, S., Tan, N.S., Wahli, W., Trautwein, C., Richardson, T.A., Lichtenauer-Kaligis, E., Kersten, S., and Muller, M. (2007). The Interleukin-1 receptor antagonist is a direct target gene of PPARalpha in liver. Journal of Hepatology 46, 869-877. Student, A.K., Hsu, R.Y., and Lane, M.D. (1980). Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. The Journal of Biological Chemistry 255, 4745-4750. Trujillo, M.E., and Scherer, P.E. (2006). Adipose tissue-derived factors: impact on health and disease. Endocrine Reviews 27, 762-778. Tse, W.T., Pendleton, J.D., Beyer, W.M., Egalka, M.C., and Guinan, E.C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75, 389-397. Tyndall, A., and Uccelli, A. (2009). Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks. Bone Marrow Transplantation 43, 821-828. van den Berk, L.C., Jansen, B.J., Siebers-Vermeulen, K.G., Roelofs, H., Figdor, C.G., Adema, G.J., and Torensma, R. (2010). Mesenchymal stem cells respond to TNF but do not produce TNF. Journal of Leukocyte Biology 87, 283-289. Vielma, S.A., Klein, R.L., Levingston, C.A., and Young, M.R. (2013). Adipocytes as immune regulatory cells. International Immunopharmacology 16, 224-231. Wan, Y., Saghatelian, A., Chong, L.W., Zhang, C.L., Cravatt, B.F., and Evans, R.M. (2007). Maternal PPAR gamma protects nursing neonates by suppressing the production of inflammatory milk. Genes & Development 21, 1895-1908. Wang, B., and Trayhurn, P. (2006). Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Archiv : European Journal of Physiology 452, 418-427. Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., and Ferrante, A.W., Jr. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation 112, 1796-1808. Wilk, S., Scheibenbogen, C., Bauer, S., Jenke, A., Rother, M., Guerreiro, M., Kudernatsch, R., Goerner, N., Poller, W., Elligsen-Merkel, D., et al. (2011). Adiponectin is a negative regulator of antigen-activated T cells. European Journal of Immunology 41, 2323-2332. Winer, S., Chan, Y., Paltser, G., Truong, D., Tsui, H., Bahrami, J., Dorfman, R., Wang, Y., Zielenski, J., Mastronardi, F., et al. (2009). Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine 15, 921-929. Xu, G., Zhang, Y., Zhang, L., Ren, G., and Shi, Y. (2007). The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochemical and Biophysical Research Communications 361, 745-750. Yang, H., Youm, Y.H., Vandanmagsar, B., Ravussin, A., Gimble, J.M., Greenway, F., Stephens, J.M., Mynatt, R.L., and Dixit, V.D. (2010). Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. Journal of Immunology 185, 1836-1845. Zhang, H.H., Halbleib, M., Ahmad, F., Manganiello, V.C., and Greenberg, A.S. (2002). Tumor necrosis factor-alpha stimulates lipolysis in differentiated human Adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51, 2929-2935. Zhang, Y.Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). Positional Cloning of the Mouse Obese Gene and Its Human Homolog. Nature 372, 425-432. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56085 | - |
| dc.description.abstract | 間葉幹細胞 (Mesenchymal stem cells, MSC) 為可自我更新、繁殖的成體幹細胞,具有非常高的可塑性,可分化成不同細胞型態。間葉幹細胞存在於多種器官及組織,骨髓、周邊臍帶血、脂肪組織都可見其蹤跡。許多研究證實間葉幹細胞具有免疫調節功能,可藉由分泌調控因子以及細胞間交互作用,抑制T細胞增生和自然殺手細胞 (natural killer cells, NK cells) 的毒殺功能。有趣的是,間葉幹細胞可分化成為脂肪細胞,從具有調節免疫功能細胞轉變為易誘發炎症細胞,但在分化過程中關鍵決定機制並不明瞭。現已證實許多肥胖相關的代謝型疾病如:第二型糖尿病,主要是脂肪組織慢性發炎所致,而脂肪細胞 (adipocyte) 是構成脂肪組織的主要細胞,肥胖的脂肪細胞會分泌細胞激素,吸引巨噬細胞的聚集,並與其交互作用,形成慢性發炎的惡性循環。本篇研究希望透過間葉幹細胞分化為脂肪細胞,觀察其細胞激素以及誘發炎基因的消長,以初步了解其免疫功能轉變的走向。首先,取出小鼠骨髓培養出骨髓間葉幹細胞 (bone marrow-derived mesenchymal stem cells),在適當的培養條件下,體外培養分化硬骨細胞、軟骨細胞以及脂肪細胞;鑑定間葉幹細胞的表面標誌;在抗體CD3/28刺激條件下,將間葉幹細胞與脾臟淋細胞混合培養,間葉幹細胞可有效抑制脾臟淋細胞增生,分別證實了間葉幹細胞分化能力、細胞表型以及免疫調控功能。接著,分別將間葉幹細胞和3T3脂肪細胞施予IFN-γ和TNF-α共同刺激,發現間葉幹細胞會大量表現 iNOS、COX2、IL-1RA、IL-6等免疫調節因子,卻不會表現 TNF-α、MCP-1等促進發炎因子,而3T3-L1脂肪細胞相較於間葉幹細胞會小量表現 iNOS、COX-2、IL-1RA、IL-6等免疫調節因子,同時也表現TNF-α、MCP-1等促進發炎因子。接著,將間葉幹細胞培養於脂肪分化培養液,分三組不同脂肪分化程度的細胞,以 IFN-γ和TNF-α共同刺激,測定其培養上清液中細胞激素以及細胞內免疫相關基因的表達,發現 IL-1RA 隨著間葉幹細胞的脂肪分化程度而表現量逐步下降,證明間葉幹細胞分化脂肪細胞過程中,免疫功能的轉變。而後利用PPARs拮抗劑以及促進劑等藥物處理間葉幹細胞,證實於間葉幹細胞中 PPARs可能參與調控IL-RA的表現。此研究成果可提供其轉變的關鍵機制研究方向,為未來間葉幹細胞臨床應用之參考。 | zh_TW |
| dc.description.abstract | Mesenchymal stem cells (MSCs) are self-renewable multipotent progenitor cells that have the potential to differentiate into various of cell types including adipocytes, osteocytes and chondrocytes. Recent studies have demonstrated that MSCs could exert an immunosuppressive activity. However, many obesity-related metabolic diseases such as type II diabetes are attributed to adipocyte-induced inflammation. And macrophages were recruited by adipose tissue-derived hormones or chemokines, may play the key roles on the chronic inflammation. We hypothesized that some mediators might be changed during the adipogenesis processes of MSCs. Hence, this study was performed to examine the gene and cytokine profiles of MSCs in different differential processes. First, MSCs were isolated from mouse bone marrow, characterized by their phenotypes, and differentiated into adipocytes, osteocyte and chondrocytes in the appropriate induction media. In addition, the immunosuppressive function of MSCs was determined in vitro by T cell proliferation assay. After IFN-γ and TNF-α induction, high expression of iNOS, COX-2, IL-1RA and IL-6 in MSCs but low expression in 3T3-L1 adipocytes were noted. However, MCP-1 and TNF-α were expressed in 3T3-L1 adipocytes but not MSCs. When IFN-γ and TNF-α were given to three different differential processes of MSCs, respectively, the expression of IL-1RA was negative correlated with adipogenesis progress of MSCs. Peroxisone proliferator-activated receptors (PPARs) can promote adipogenesis by inhibiting IL-1RA expression through NF-κB signaling pathway. The results indicated that PPARs involved in IL-1RA regulation was also involved in adipogenesis of MSCs by the use of PPRAs antagonist and PPARs agonist. This research provides rational mechanisms supporting the clinical application of allogeneic MSCs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:15:01Z (GMT). No. of bitstreams: 1 ntu-103-R01450006-1.pdf: 2185474 bytes, checksum: efac3f80304d78628459c47acb02c3ad (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v 目錄 1 圖目錄 3 第一章 研究背景 4 1 間葉幹細胞 (Mesenchymal stem cells, MSCs) 5 1.1間葉幹細胞之免疫調控特性 5 2 脂肪細胞 (Adipocyte) 8 2.1慢性脂肪組織發炎之機制 8 2.2脂肪細胞之免疫調控特性 9 3 介白素1受體拮抗蛋白 (IL-1Ra) 10 4 脂小體增生活化受體 (PPARs) 11 5 研究目的 13 第二章 材料與方法 14 1 實驗動物以及實驗細胞株 15 2 實驗試劑 15 3 間葉幹細胞之分離與培養 18 4 間葉幹細胞之脂肪分化以及硬骨分化 18 5 3T3-L1 脂肪前驅細胞之培養以及分化 18 6 間葉幹細胞表面抗原之鑑定 18 7 T淋巴細胞增生檢驗 19 8 酵素免疫分析法( ELISA) 19 9 RNA萃取與cDNA製備 20 10 定量即時聚合酶鏈鎖反應 (Quantitative real-time PCR) 20 11 脂肪分化程度之分析 21 12 細胞存活測試 21 13 統計分析 21 第三章 實驗結果 22 1 間葉幹細胞之型態及功能 23 2 3T3-L1脂肪前驅細胞的培養及分化 23 3 發炎因子對間葉幹細胞分泌細胞激素之影響 24 4 發炎因子對脂肪細胞分泌細胞激素之影響 25 5 間葉幹細胞脂肪分化過程之免疫調節因子消長 25 6 間葉幹細胞中PPARs可能影響IL-1RA的表現 26 第四章 討論與結論 28 圖表 34 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | 脂小體增生活化受體 | zh_TW |
| dc.subject | 介白素1受體拮抗劑 | zh_TW |
| dc.subject | 脂肪細胞 | zh_TW |
| dc.subject | adipocyte | en |
| dc.subject | mesenchymal stem cells | en |
| dc.subject | peroxisome proliferator-activated receptors | en |
| dc.subject | interleukin-1 receptor antagonist | en |
| dc.title | 探討間葉幹細胞在分化過程中免疫調控和發炎的機轉 | zh_TW |
| dc.title | Study on the Mechanism of Immune Regulation and Inflammation in the Differentiation of Mesenchymal Stem Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周秀慧,莊雅惠 | |
| dc.subject.keyword | 間葉幹細胞,脂肪細胞,介白素1受體拮抗劑,脂小體增生活化受體, | zh_TW |
| dc.subject.keyword | mesenchymal stem cells,adipocyte,interleukin-1 receptor antagonist,peroxisome proliferator-activated receptors, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
