請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56057完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賈景山(Jean-San Chia) | |
| dc.contributor.author | Kung-Chi Kao | en |
| dc.contributor.author | 高孔奇 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:14:13Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Afzali, B., Mitchell, P.J., Edozie, F.C., Povoleri, G.A.M., Dowson, S.E., Demandt, L., Walter, G., Canavan, J.B., Scotta, C., Menon, B., et al. (2013). CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner. Eur. J. Immunol. 43, 2043-2054.
Álvaro, T., Lejeune, M., Salvadó, M.T., Bosch, R., García, J.F., Jaén, J., Banham, A.H., Roncador, G., Montalbán, C., and Piris, M.A. (2005). Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin. Cancer. Res. 11, 1467-1473. Badoual, C., Hans, S., Rodriguez, J., Peyrard, S., Klein, C., Agueznay, N.E.H., Mosseri, V., Laccourreye, O., Bruneval, P., and Fridman, W.H. (2006). Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin. Cancer. Res. 12, 465-472. Baecher-Allan, C., Brown, J.A., Freeman, G.J., and Hafler, D.A. (2001). CD4+ CD25high regulatory cells in human peripheral blood. J. Immunol. 167, 1245-1253. Baecher-Allan, C., Wolf, E., and Hafler, D.A. (2006). MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 176, 4622-4631. Baine, I., Basu, S., Ames, R., Sellers, R.S., and Macian, F. (2013). Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells. J. Immunol. 190, 1008-1016. Banerjee, A., Schambach, F., DeJong, C.S., Hammond, S.M., and Reiner, S.L. (2010). Micro‐RNA‐155 inhibits IFN‐γ signaling in CD4+ T cells. Eur. J. Immunol. 40, 225-231. Bardel, E., Larousserie, F., Charlot-Rabiega, P., Coulomb-L'Herminé, A., and Devergne, O. (2008). Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J. Immunol. 181, 6898-6905. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. Baumjohann, D., and Ansel, K.M. (2013). MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat. Rev. Immunol. 13, 666-678. Bayry, J., Triebel, F., Kaveri, S.V., and Tough, D.F. (2007). Human dendritic cells acquire a semimature phenotype and lymph node homing potential through interaction with CD4+ CD25+ regulatory T cells. J. Immunol. 178, 4184-4193. Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. (2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20-21. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J., and Laufer, T.M. (2001). Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+ 25+ immunoregulatory T cells. J. Exp. Med. 194, 427-438. Blot, W.J., McLaughlin, J.K., Winn, D.M., Austin, D.F., Greenberg, R.S., Preston-Martin, S., Bernstein, L., Schoenberg, J.B., Stemhagen, A., and Fraumeni, J.F., Jr. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 48, 3282-3287. Bopp, T., Becker, C., Klein, M., Klein-Heßling, S., Palmetshofer, A., Serfling, E., Heib, V., Becker, M., Kubach, J., and Schmitt, S. (2007). Cyclic adenosine monophosphate is a key component of regulatory T cell–mediated suppression. J. Exp. Med. 204, 1303-1310. Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Höpner, S., Centonze, D., Bernardi, G., and Dell'Acqua, M.L. (2007). Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225-1232. Buckner, J.H. (2010). Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849-859. Chang, K.-P., Kao, H.-K., Yen, T.-C., Chang, Y.-L., Liang, Y., Liu, S.-C., Lee, L.-Y., Chang, Y.-L., Kang, C.-J., and Chen, I.-H. (2011). Overexpression of macrophage inflammatory protein-3α in oral cavity squamous cell carcinoma is associated with nodal metastasis. Oral Oncol. 47, 108-113. Chaudhry, A., Samstein, Robert M., Treuting, P., Liang, Y., Pils, Marina C., Heinrich, J.-M., Jack, Robert S., Wunderlich, F.T., Brüning, Jens C., Müller, W., and Rudensky, Alexander Y. (2011). Interleukin-10 signaling in regulatory T Cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34, 566-578. Chong, M.M., Rasmussen, J.P., Rudensky, A.Y., and Littman, D.R. (2008). The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J. Exp. Med. 205, 2005-2017. Chung, D.J., Rossi, M., Romano, E., Ghith, J., Yuan, J., Munn, D.H., and Young, J.W. (2009). Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 114, 555-563. Cook, D.N., Prosser, D.M., Forster, R., Zhang, J., Kuklin, N.A., Abbondanzo, S.J., Niu, X.-D., Chen, S.-C., Manfra, D.J., and Wiekowski, M.T. (2000). CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495-503. Cosmi, L., De Palma, R., Santarlasci, V., Maggi, L., Capone, M., Frosali, F., Rodolico, G., Querci, V., Abbate, G., and Angeli, R. (2008). Human interleukin 17–producing cells originate from a CD161+ CD4+ T cell precursor. J. Exp. Med. 205, 1903-1916. Curiel, T.J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J.R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942-949. Daniel, V., Sadeghi, M., Wang, H., and Opelz, G. (2013). CD4+ CD25+ Foxp3+ IFNγ+ CD178+ human induced Treg (iTreg) contribute to suppression of alloresponses by apoptosis of responder cells. Hum. Immunol. 74, 151-162. de la Rosa, M., Rutz, S., Dorninger, H., and Scheffold, A. (2004). Interleukin‐2 is essential for CD4+ CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480-2488. Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F., and Campbell, D.J. (2012). Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119, 4430-4440. Earle, K., Tang, Q., Zhou, X., Liu, W., Zhu, S., Bonyhadi, M., and Bluestone, J. (2005). In vitro expanded human CD4+ CD25+ regulatory T cells suppress effector T cell proliferation. Clin. Immunol. 115, 3-9. Ermann, J., Hoffmann, P., Edinger, M., Dutt, S., Blankenberg, F.G., Higgins, J.P., Negrin, R.S., Fathman, C.G., and Strober, S. (2005). Only the CD62L+ subpopulation of CD4+ CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105, 2220-2226. Fabian, M.R., Sonenberg, N., and Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351-379. Fayyad-Kazan, H., Rouas, R., Fayyad-Kazan, M., Badran, R., El Zein, N., Lewalle, P., Najar, M., Hamade, E., Jebbawi, F., and Merimi, M. (2012). MicroRNA profile of circulating CD4-positive regulatory T cells in human adults and impact of differentially expressed microRNAs on expression of two genes essential to their function. J. Biol. Chem. 287, 9910-9922. Fontenot, J.D., Rasmussen, J.P., Williams, L.M., Dooley, J.L., Farr, A.G., and Rudensky, A.Y. (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329-341. Fujiie, S., Hieshima, K., Izawa, D., Nakayama, T., Fujisawa, R., Ohyanagi, H., and Yoshie, O. (2001). Proinflammatory cytokines induce liver and activation-regulated chemokine/macrophage inflammatory protein-3α/CCL20 in mucosal epithelial cells through NF-κB. Int. Immunol. 13, 1255-1263. Garín, M.I., Chu, C.-C., Golshayan, D., Cernuda-Morollón, E., Wait, R., and Lechler, R.I. (2007). Galectin-1: a key effector of regulation mediated by CD4+ CD25+ T cells. Blood 109, 2058-2065. Ghiringhelli, F., Ménard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P.E., Novault, S., Escudier, B., and Vivier, E. (2005). CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner. J. Exp. Med. 202, 1075-1085. Gottschalk, R.A., Corse, E., and Allison, J.P. (2012). Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J. Immunol. 188, 976-980. Grossman, W.J., Verbsky, J.W., Barchet, W., Colonna, M., Atkinson, J.P., and Ley, T.J. (2004a). Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589-601. Grossman, W.J., Verbsky, J.W., Tollefsen, B.L., Kemper, C., Atkinson, J.P., and Ley, T.J. (2004b). Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840-2848. Hashibe, M., Brennan, P., Chuang, S.c., Boccia, S., Castellsague, X., Chen, C., Curado, M.P., Dal Maso, L., Daudt, A.W., Fabianova, E., et al. (2009). Interaction between Tobacco and Alcohol Use and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol. Biomarkers Prev. 18, 541-550. Himmel, M.E., MacDonald, K.G., Garcia, R.V., Steiner, T.S., and Levings, M.K. (2013). Helios+ and Helios− cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J. Immunol. 190, 2001-2008. Hiraoka, N., Onozato, K., Kosuge, T., and Hirohashi, S. (2006). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer. Res. 12, 5423-5434. Houot, R., Perrot, I., Garcia, E., Durand, I., and Lebecque, S. (2006). Human CD4+ CD25high regulatory T cells modulate myeloid but not plasmacytoid dendritic cells activation. J. Immunol. 176, 5293-5298. Ichihara, F., Kono, K., Takahashi, A., Kawaida, H., Sugai, H., and Fujii, H. (2003). Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer. Res. 9, 4404-4408. Ito, T., Hanabuchi, S., Wang, Y.-H., Park, W.R., Arima, K., Bover, L., Qin, F., Gilliet, M., and Liu, Y.-J. (2008). Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28, 870-880. Izadpanah, A., Dwinell, M.B., Eckmann, L., Varki, N.M., and Kagnoff, M.F. (2001). Regulated MIP-3alpha/CCL20 production by human intestinal epithelium: mechanism for modulating mucosal immunity. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G710-719. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J. Clin. 61, 69-90. Kim, V.N., Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology 10, 126-139. Kim, Y.C., Bhairavabhotla, R., Yoon, J., Golding, A., Thornton, A.M., Tran, D.Q., and Shevach, E.M. (2012). Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood 119, 2810-2818. Kimmig, S., Przybylski, G.K., Mowes, B., Laurisch, K., Schmidt, C.A., Radbruch, A., and Thiel, A. (2002). Two subsets of peripheral blood naive T helper cells with distinct T-cell receptor excision circle (TREC) content indicate peripheral homeostatic expansion of recent thymic emigrants in adult humans. Clin. Immunol. 103, S41-S41. Klein, M., Vaeth, M., Scheel, T., Grabbe, S., Baumgrass, R., Berberich-Siebelt, F., Bopp, T., Schmitt, E., and Becker, C. (2012). Repression of cyclic adenosine monophosphate upregulation disarms and expands human regulatory T cells. J. Immunol. 188, 1091-1097. Kleinewietfeld, M., Puentes, F., Borsellino, G., Battistini, L., Rötzschke, O., and Falk, K. (2005). CCR6 expression defines regulatory effector/memory-like cells within the CD25+ CD4+ T-cell subset. Blood 105, 2877-2886. Kleinewietfeld, M., Starke, M., Di Mitri, D., Borsellino, G., Battistini, L., Rötzschke, O., and Falk, K. (2009). CD49d provides access to “untouched” human Foxp3+ Treg free of contaminating effector cells. Blood 113, 827-836. Kryczek, I., Wei, S., Zou, L., Zhu, G., Mottram, P., Xu, H., Chen, L., and Zou, W. (2006). Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J. Immunol. 177, 40-44. Kryczek, I., Wu, K., Zhao, E., Wei, S., Vatan, L., Szeliga, W., Huang, E., Greenson, J., Chang, A., and Roliński, J. (2011). IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J. Immunol. 186, 4388-4395. Kwon, J., Keates, S., Bassani, L., Mayer, L., and Keates, A. (2002). Colonic epithelial cells are a major site of macrophage inflammatory protein 3α (MIP-3α) production in normal colon and inflammatory bowel disease. Gut 51, 818-826. La Vecchia, C., Tavani, A., Franceschi, S., Levi, F., Corrao, G., and Negri, E. (1997). Epidemiology and prevention of oral cancer. Oral Oncol. 33, 302-312. Lee, J.J., Chang, Y.L., Lai, W.L., Ko, J.Y., Kuo, M.Y.P., Chiang, C.P., Azuma, M., Chen, C.W., and Chia, J.S. (2011). Increased prevalence of interleukin‐17–producing CD4+ tumor infiltrating lymphocytes in human oral squamous cell carcinoma. Head Neck 33, 1301-1308. Lei, J., Hasegawa, H., Matsumoto, T., and Yasukawa, M. (2010). Peroxisome proliferator-activated receptor α and γ agonists together with TGF-β convert human CD4+ CD25− T cells into functional Foxp3+ regulatory T cells. J. Immunol. 185, 7186-7198. Levings, M.K., Sangregorio, R., and Roncarolo, M.-G. (2001). Human CD25+ CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295-1302. Liang, B., Workman, C., Lee, J., Chew, C., Dale, B.M., Colonna, L., Flores, M., Li, N., Schweighoffer, E., and Greenberg, S. (2008). Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916-5926. Liao, F., Rabin, R.L., Smith, C.S., Sharma, G., Nutman, T.B., and Farber, J.M. (1999). CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J. Immunol. 162, 186-194. Liston, A., Lu, L.-F., O'Carroll, D., Tarakhovsky, A., and Rudensky, A.Y. (2008). Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993-2004. Liu, T.Y., Chen, C.L., and Chi, C.W. (1996). Oxidative damage to DNA induced by areca nut extract. Mutat. Res. 367, 25-31. Liu, W., Putnam, A.L., Xu-Yu, Z., Szot, G.L., Lee, M.R., Zhu, S., Gottlieb, P.A., Kapranov, P., Gingeras, T.R., and Groth, B.F.d.S. (2006). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 203, 1701-1711. Liyanage, U.K., Moore, T.T., Joo, H.-G., Tanaka, Y., Herrmann, V., Doherty, G., Drebin, J.A., Strasberg, S.M., Eberlein, T.J., and Goedegebuure, P.S. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756-2761. Maggi, L., Santarlasci, V., Capone, M., Peired, A., Frosali, F., Crome, S.Q., Querci, V., Fambrini, M., Liotta, F., and Levings, M.K. (2010). CD161 is a marker of all human IL‐17‐producing T‐cell subsets and is induced by RORC. Eur. J. Immunol. 40, 2174-2181. Malek, T.R., Yu, A., Zhu, L., Matsutani, T., Adeegbe, D., and Bayer, A.L. (2008). IL-2 family of cytokines in T regulatory cell development and homeostasis. J. Clin. Immunol. 28, 635-639. Manches, O., Munn, D., Fallahi, A., Lifson, J., Chaperot, L., Plumas, J., and Bhardwaj, N. (2008). HIV-activated human plasmacytoid DCs induce Tregs through an indoleamine 2,3-dioxygenase-dependent mechanism. J. Clin. Invest. 118, 3431-3439. Martin-Orozco, N., Li, Y., Wang, Y., Liu, S., Hwu, P., Liu, Y.J., Dong, C., and Radvanyi, L. (2010). Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells. Cancer Res. 70, 9581-9590. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M.D., and Kaveri, S.V. (2004). Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676-4680. Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C., Taflin, C., Heike, T., Valeyre, D., et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899-911. Muljo, S.A., Ansel, K.M., Kanellopoulou, C., Livingston, D.M., Rao, A., and Rajewsky, K. (2005). Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261-269. Mullen, A.C., High, F.A., Hutchins, A.S., Lee, H.W., Villarino, A.V., Livingston, D.M., Kung, A.L., Cereb, N., Yao, T.-P., and Yang, S.Y. (2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907-1910. Murugaiyan, G., Beynon, V., Mittal, A., Joller, N., and Weiner, H.L. (2011). Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 187, 2213-2221. Nagai, H., Horikawa, T., Hara, I., Fukunaga, A., Oniki, S., Oka, M., Nishigori, C., and Ichihashi, M. (2004). In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp. Dermatol. 13, 613-620. Nakamura, K., Kitani, A., Fuss, I., Pedersen, A., Harada, N., Nawata, H., and Strober, W. (2004). TGF-β1 plays an important role in the mechanism of CD4+ CD25+ regulatory T cell activity in both humans and mice. J. Immunol. 172, 834-842. O'Connell, R.M., Kahn, D., Gibson, W.S.J., Round, J.L., Scholz, R.L., Chaudhuri, A.A., Kahn, M.E., Rao, D.S., and Baltimore, D. (2010). MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33, 607-619. Oberle, N., Eberhardt, N., Falk, C.S., Krammer, P.H., and Suri-Payer, E. (2007). Rapid suppression of cytokine transcription in human CD4+ CD25− T cells by CD4+ Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-β, and various inhibitors of TCR signaling. J. Immunol. 179, 3578-3587. Ormandy, L.A., Hillemann, T., Wedemeyer, H., Manns, M.P., Greten, T.F., and Korangy, F. (2005). Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 65, 2457-2464. Pesenacker, A.M., Bending, D., Ursu, S., Wu, Q., Nistala, K., and Wedderburn, L.R. (2013). CD161 defines the subset of FoxP3+T cells capable of producing proinflammatory cytokines. Blood 121, 2647-2658. Petti, S. (2009). Lifestyle risk factors for oral cancer. Oral Oncol. 45, 340-350. Picca, C.C., Larkin, J., Boesteanu, A., Lerman, M.A., Rankin, A.L., and Caton, A.J. (2006). Role of TCR specificity in CD4+ CD25+ regulatory T‐cell selection. Immunol. Rev. 212, 74-85. Rivino, L., Gruarin, P., Häringer, B., Steinfelder, S., Lozza, L., Steckel, B., Weick, A., Sugliano, E., Jarrossay, D., and Kühl, A.A. (2010). CCR6 is expressed on an IL-10–producing, autoreactive memory T cell population with context-dependent regulatory function. J. Exp. Med. 207, 565-577. Rodriguez, A., Vigorito, E., Clare, S., Warren, M.V., Couttet, P., Soond, D.R., van Dongen, S., Grocock, R.J., Das, P.P., and Miska, E.A. (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316, 608-611. Rouas, R., Fayyad‐Kazan, H., El Zein, N., Lewalle, P., Rothé, F., Simion, A., Akl, H., Mourtada, M., El Rifai, M., and Burny, A. (2009). Human natural Treg microRNA signature: Role of microRNA‐31 and microRNA‐21 in FOXP3 expression. Eur. J. Immunol. 39, 1608-1618. Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775-787. Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708-712. Sasada, T., Kimura, M., Yoshida, Y., Kanai, M., and Takabayashi, A. (2003). CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies. Cancer 98, 1089-1099. Sato, E., Olson, S.H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., Jungbluth, A.A., Frosina, D., Gnjatic, S., Ambrosone, C., et al. (2005). Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. U. S. A. 102, 18538-18543. Sawant, D.V., Wu, H., Kaplan, M.H., and Dent, A.L. (2013). The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway. Mol. Immunol. 54, 435-442. Schaefer, C., Kim, G.G., Albers, A., Hoermann, K., Myers, E.N., and Whiteside, T.L. (2005). Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br. J. Cancer 92, 913-920. Schutyser, E., Struyf, S., and Van Damme, J. (2003). The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409-426. Seddiki, N., Santner-Nanan, B., Martinson, J., Zaunders, J., Sasson, S., Landay, A., Solomon, M., Selby, W., Alexander, S.I., and Nanan, R. (2006). Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 203, 1693-1700. Sekiya, T., Kashiwagi, I., Yoshida, R., Fukaya, T., Morita, R., Kimura, A., Ichinose, H., Metzger, D., Chambon, P., and Yoshimura, A. (2013). Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 14, 230-237. Seyerl, M., Kirchberger, S., Majdic, O., Seipelt, J., Jindra, C., Schrauf, C., and Stockl, J. (2010). Human rhinoviruses induce IL-35-producing Treg via induction of B7-H1 (CD274) and sialoadhesin (CD169) on DC. Eur. J. Immunol. 40, 321-329. Sharma, M.D., Huang, L., Choi, J.-H., Lee, E.-J., Wilson, J.M., Lemos, H., Pan, F., Blazar, B.R., Pardoll, D.M., and Mellor, A.L. (2013). An inherently bifunctional subset of Foxp3+ T helper cells is controlled by the transcription factor Eos. Immunity 38, 998-1012. Smith, E.M., Hoffman, H.T., Summersgill, K.S., Kirchner, H.L., Turek, L.P., and Haugen, T.H. (1998). Human papillomavirus and risk of oral cancer. Laryngoscope 108, 1098-1103. Steiner, D.F., Thomas, M.F., Hu, J.K., Yang, Z., Babiarz, J.E., Allen, C.D., Matloubian, M., Blelloch, R., and Ansel, K.M. (2011). MicroRNA-29 regulates T-box transcription factors and interferon-γ production in helper T cells. Immunity 35, 169-181. Steinfelder, S., Floess, S., Engelbert, D., Haeringer, B., Baron, U., Rivino, L., Steckel, B., Gruetzkau, A., Olek, S., and Geginat, J. (2011). Epigenetic modification of the human CCR6 gene is associated with stable CCR6 expression in T cells. Blood 117, 2839-2846. Strainic, M.G., Shevach, E.M., An, F., Lin, F., and Medof, M.E. (2013). Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nat. Immunol. 14, 162-171. Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J.T., and Whiteside, T.L. (2007). A unique subset of CD4+ CD25high Foxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin. Cancer. Res. 13, 4345-4354. Strauss, L., Bergmann, C., and Whiteside, T.L. (2009). Human circulating CD4+ CD25high Foxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J. Immunol. 182, 1469-1480. Sugimoto, N., Oida, T., Hirota, K., Nakamura, K., Nomura, T., Uchiyama, T., and Sakaguchi, S. (2006). Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197-1209. Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., and Glimcher, L.H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669. Taams, L.S., van Amelsfort, J.M., Tiemessen, M.M., Jacobs, K.M., de Jong, E.C., Akbar, A.N., Bijlsma, J.W., and Lafeber, F.P. (2005). Modulation of monocyte/macrophage function by human CD4+ CD25+ regulatory T cells. Hum. Immunol. 66, 222-230. Tanaka, Y., Imai, T., Baba, M., Ishikawa, I., Uehira, M., Nomiyama, H., and Yoshie, O. (1999). Selective expression of liver and activation‐regulated chemokine (LARC) in intestinal epithelium in mice and humans. Eur. J. Immunol. 29, 633-642. Thornton, A.M., Korty, P.E., Tran, D.Q., Wohlfert, E.A., Murray, P.E., Belkaid, Y., and Shevach, E.M. (2010). Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433-3441. Tiemessen, M.M., Jagger, A.L., Evans, H.G., van Herwijnen, M.J., John, S., and Taams, L.S. (2007). CD4+ CD25+ Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. U. S. A. 104, 19446-19451. Toda, A., and Piccirillo, C.A. (2006). Development and function of naturally occurring CD4+ CD25+ regulatory T cells. J. Leukoc. Biol. 80, 458-470. Tosello, V., Odunsi, K., Souleimanian, N.E., Lele, S., Shrikant, P., Old, L.J., Valmori, D., and Ayyoub, M. (2008). Differential expression of CCR7 defines two distinct subsets of human memory CD4+CD25+ Tregs. Clin. Immunol. 126, 291-302. Tran, D.Q., Ramsey, H., and Shevach, E.M. (2007). Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 110, 2983-2990. Varona, R., Villares, R., Carramolino, L., Goya, Í., Zaballos, Á., Gutiérrez, J., Torres, M., Martínez-A, C., and Márquez, G. (2001). CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J. Clin. Invest. 107, R37-R45. Verhagen, J., and Wraith, D.C. (2010). Comment on “Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells”. J. Immunol. 185, 7129-7129. Vignali, D.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat. Rev. Immunol. 8, 523-532. Walker, M.R., Carson, B.D., Nepom, G.T., Ziegler, S.F., and Buckner, J.H. (2005). De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. Proc. Natl. Acad. Sci. U. S. A. 102, 4103-4108. Wang, J., Huizinga, T.W., and Toes, R.E. (2009). De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid. J. Immunol. 183, 4119-4126. Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T., and Sakaguchi, S. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271-275. Wolf, A.M., Wolf, D., Steurer, M., Gastl, G., Gunsilius, E., and Grubeck-Loebenstein, B. (2003). Increase of regulatory T cells in the peripheral blood of cancer patients. Clin. Cancer. Res. 9, 606-612. Yang, D., Chertov, O., Bykovskaia, S., Chen, Q., Buffo, M., Shogan, J., Anderson, M., Schröder, J., Wang, J., and Howard, O. (1999). β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525-528. Yang, S., Wang, B., Guan, C., Wu, B., Cai, C., Wang, M., Zhang, B., Liu, T., and Yang, P. (2011). Foxp3+ IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J. Leukoc. Biol. 89, 85-91. Yuan, X., and Malek, T.R. (2012). Cellular and molecular determinants for the development of natural and induced regulatory T cells. Hum. Immunol. 73, 773-782. Zhou, X., Jeker, L.T., Fife, B.T., Zhu, S., Anderson, M.S., McManus, M.T., and Bluestone, J.A. (2008). Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J. Exp. Med. 205, 1983-1991. Zienolddiny, S., Aguelon, A.M., Mironov, N., Mathew, B., Thomas, G., Sankaranarayanan, R., and Yamasaki, H. (2004). Genomic instability in oral squamous cell carcinoma: relationship to betel-quid chewing. Oral Oncol. 40, 298-303. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56057 | - |
| dc.description.abstract | 人類調節性T細胞是多元的群體,能進一步利用多種細胞標誌來區分出表型上或功能性上有所不同的亞群。先前本實驗室的研究中發現,浸潤在口腔鱗狀上皮細胞癌腫瘤的淋巴細胞中,有一群同時表現介白素-17及FOXP3的調節性T細胞存在。若利用化學趨化因子受體CCR6作為標誌,便能將會表現介白素-17的調節性T細胞分選出來,即是CCR6+調節性T細胞亞群。然而,目前對CCR6+及CCR6-調節性T細胞亞群在表型上以及功能上都不甚了解。因此本研究的研究目的便是要從表型及功能上去了解CCR6+及CCR6-調節性T細胞。在健康成人血液中,大多數的調節性T細胞都是CCR6+調節性T細胞。藉由表型分析發現,CCR6+調節性T細胞屬於活化過的作用型或記憶型T細胞。相反的是,大多數CCR6-調節性T細胞是屬於初始調節性T細胞。相較於CCR6-調節性T細胞,CCR6+調節性T細胞擁有較強的免疫抑制活性,而且介白素-10是其免疫抑制功能重要的分子。另外,有一部分的CCR6+調節性T細胞具有表現介白素-17及丙型干擾素的潛力,且能同時表現介白素-10跟介白素-17,或同時表現介白素-10跟丙型干擾素。同樣的,在口腔鱗狀上皮細胞癌病人週邊血、淋巴結、癌轉移淋巴結及腫瘤浸潤淋巴細胞中都可以發現CCR6+及CCR6-調節性T細胞。相較於病人周邊血液單核細胞,腫瘤浸潤淋巴細胞中有顯著較高比例的CCR6+調節性T細胞。然而,相較於來自週邊血液單核細胞的CCR6+調節性T細胞,來自腫瘤浸潤淋巴細胞的CCR6+調節性T細胞擁有較弱的免疫抑制活性,但卻有顯著更高的介白素-17製造能力。總結以上結果,我們可藉由CCR6的表現將人類調節性T細胞進一步區分出表型及功能上相異的雅族群。 | zh_TW |
| dc.description.abstract | Human regulatory T (Treg) cells are a heterogeneous population which can be subdivided into phenotypically or functionally distinct subsets based on the expression of various markers. Previously, we identified a subset of IL-17-producing Treg cells, in tumor-infiltrating lymphocytes (TILs) of oral squamous cell carcinoma (OSCC), and CC chemokine receptor type 6 (CCR6) can be used as a marker to enrich IL-17+ Treg cells by cell sorting. However, the phenotype and the function of CCR6+ and CCR6- Treg cells are largely unknown. The specific aim of this study is to characterize the phenotypic markers and the suppressive function of CCR6+ and CCR6- Treg cells. In peripheral blood mononuclear cells (PBMCs) of healthy adults, CCR6+ Treg cells comprised the major population of the total Treg cells and exhibited activated effector/memory phenotype. In contrast, CCR6- Treg cells were predominantly CD45RA+ naive Treg cells. The CCR6+ Treg cells displayed consistently higher suppressive activity than CCR6- Treg cells partly through an elevated level of IL-10 production. In addition, portion of CCR6+ Treg cells exhibited the potential to express IL-17 or IFN-γ. Similar functional characteristics of CCR6+ or CCR6- Treg cells are well preserved in PBMCs, lymph node cells (LNCs), and TILs from OSCC patients, except that the frequency of CCR6+ Treg cells are significantly increased in TILs. Moreover, CCR6+ Treg cells from TILs possessed significantly higher IL-17 productivity than those from PBMCs. These results suggested that CCR6 marked phenotypically and functionally distinct cell subsets in human Treg cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:14:13Z (GMT). No. of bitstreams: 1 ntu-103-R01449002-1.pdf: 4009314 bytes, checksum: 1e12846426a7c5a4897c750e32b2966a (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 i 致謝 ii 中文摘要 iii Abstract iv Chapter 1. Introduction 1 1.1. Regulatory T cells 1 1.1.1. Development of human Treg cells 1 1.1.2. Identification of human Treg cells 2 1.1.3. Heterogeneity of human Treg cells 3 1.1.4. Suppressive activity of human Treg cells 4 1.2. MicroRNA 7 1.2.1. MicroRNAs in T helper 1 cells 8 1.2.2. MicroRNAs in T helper 2 cells 9 1.2.3. MicroRNAs in T helper 17 cells 9 1.2.4. MicroRNAs in Treg cells 10 1.3. Oral Cancer 11 Chapter 2. Purposes and Aims 13 Chapter 3. Materials and methods 14 3.1. Isolation of Peripheral Blood Mononuclear Cells and CD4+ T Cells 14 3.2. Isolation of Lymph Node Cells and Tumor-infiltrating Lymphocytes 15 3.3. Surface and Intracellular Staining 15 3.4. Cell Sorting 17 3.5. DNA Isolation and Methylation Analysis 17 3.6. Treg Suppression Assay 17 3.7. Enzyme-Linked Immunosorbent Assay 18 3.8. RNA Extraction and Reverse Transcription 18 3.9. Real-time Polymerase Chain Reaction 19 3.10. MicroRNA Target Prediction and Sequence Alignment 20 3.11. Plasmids Construction 20 3.12. Transfection and Luciferase Assay 21 3.13. Statistical analysis 22 Chapter 4. Results 23 4.1. The frequency of CCR6+ cells was significantly higher in Treg cells than in Tconv cells. 23 4.2. CCR6+FOXP3+ Treg cells exhibited effector/memory phenotype. 24 4.3. CCR6+ Treg cells possessed stronger suppressive activity and cytokine productivity than CCR6- Treg cells. 26 4.4. CCR6+ Treg cells inhibited Tconv cells proliferation through IL-10-dependent manner. 28 4.5. CD45RA-CCR6- Treg cells possessed intermediate suppressive activity between CD45RA+ and CD45RA-CCR6+ Treg cells. 29 4.6. CCR6+ Treg cells were enriched in memory T cell subset. 30 4.7. The frequency of CCR6+ and FOXP3+ cells were significantly higher in oral cancer TILs than PBMCs 32 4.8. CCR6+ TIL Treg cells exhibited lower suppressive activity but higher IL-17 productivity. 33 4.9. Treg cells in TILs were dominant in TEM phenotype. 35 4.10. Treg cells expressed lower mir-335 than Tconv cells. 36 4.11. MiR-335 may regulate the expression of CCR6, NR4A3, and ADCY3 37 Chapter 5. Discussion 39 Chapter 6. References 50 Chapter 7. Tables 65 Chapter 8. Figures 69 | |
| dc.language.iso | en | |
| dc.subject | 癌症 | zh_TW |
| dc.subject | 人類 | zh_TW |
| dc.subject | 調節性T細胞 | zh_TW |
| dc.subject | Regulatory T cell | en |
| dc.subject | Human | en |
| dc.subject | Treg | en |
| dc.subject | cancer | en |
| dc.subject | CCR6 | en |
| dc.title | 人類週邊血、淋巴結及腫瘤中不同調節性T細胞的鑑定與功能分析 | zh_TW |
| dc.title | Identification and Functional Characterization of Different Regulatory T Cells in Human Peripheral Blood, Lymph Node, and Tumor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許秉寧(Ping-Ning Hsu),賴明宗(Ming-Zong Lai),詹世鵬(Shih-Peng Chan) | |
| dc.subject.keyword | 人類,調節性T細胞,癌症, | zh_TW |
| dc.subject.keyword | Human,Regulatory T cell,Treg,cancer,CCR6, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| 顯示於系所單位: | 免疫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
