請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56049完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張祖亮(Tsu-Liang Chang) | |
| dc.contributor.author | Xing-Rong Chen | en |
| dc.contributor.author | 陳信榮 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:13:59Z | - |
| dc.date.available | 2019-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 李時珍原著. 1990. 本草綱目.大台北出版社. 台北.
杜姿瑩. 1999. 糙薏仁降血脂作用之研究. 國立臺灣大學食品科技研究所碩士論文. 台北. 吳天祚. 2007. 薏苡主要生理活性成分定量及其抗氧化與降血脂功效之探討. 國立屏東科技大學食品科學系所博士論文. 屏東. 邱祝櫻、翁仁憲、黃明得. 2004. 光源對印度棗生育之研究. 高雄區農業改良場研究彙報 15:49-59. 林紓慧. 2007. 薏苡麩皮乙醇萃取物及乙醇萃取殘餘物對F344鼠大腸癌前期病變預防效果之探討. 臺北醫學大學保健營養學系碩士論文.台北. 施宛宜. 2001. 以細胞模式探討薏苡籽實萃取物對COX-2和iNOS之表現量的影響. 國立臺灣大學食品科技研究所碩士論文. 台北. 施純光. 2004. 薏仁對大腸癌形成之影響. 國立臺灣大學食品科技研究所博士論文. 台北. 徐明麗. 1997. 薏仁抗過敏及抗腫瘤之研究. 國立臺灣大學食品科技研究所博士論文. 台北. 徐明麗、林璧鳳、江文章. 1998. 糙薏仁對致敏鼠過敏反應之影響. 中華民國營養學會雜誌 23:161-170. 夏施閔. 2001. 薏苡籽實萃取物對於大鼠卵巢性類固醇激素、腦下腺黃體促進素和濾泡刺激素分泌之效應. 國立臺灣大學食品科技研究所碩士論文. 台北. 夏施閔. 2006. 薏苡麩皮及薏苡殼甲醇萃取物對大鼠卵巢顆粒細胞分泌孕酮之效應. 國立臺灣大學食品科技研究所博士論文.台北. 陳宏彰. 2010. 薏仁麩皮調節過敏免疫反應之研究及其活性成分之分離與鑑定. 國立臺灣大學食品科技研究所博士論文. 台北. 陳金男. 2005. LED光環境控制系統之建立與其應用於星辰花組培苗生理影響之探討. 國立臺灣大學生物產業機電工程學研究所. 台北. 陳淑德、林秀芸、賴裕順、鄭永祥. 2008. 冬蟲夏草薏仁發酵物抗氧化活性及其對巨噬細胞功能之影響. 台灣農業化學與食品科學 46:223-233. 陳惠英、嚴國欽. 1998. 自由基、抗氧化防禦與人體健康. 中華民國營養學會雜誌 23:105-121。 曾勝雄、陳裕星. 2007. 薏苡台中2號之育成. 行政院農業委員會台中區農業改 良場研究彙報 97:1-11. 曾勝雄、陳裕星、廖宜倫. 2009. 薏苡台中3號之育成. 行政院農業委員會台中 區農業改良場研究彙報 102:59-69. 黃士禮、江文章. 1999. 薏苡籽實各部位之組成分及其丙酮萃取液之抗突變作用.食品科學 26:121-130. 劉家余. 2010. 薏仁麩皮萃取物乙酸乙酯區分層之抗發炎效果. 國立臺灣大學食品科技研究所碩士論文. 台北. 蔡宜峯、高德錚. 2002. 本土化蔬果有機介質配方之開發. 台中區農業專訊第三八期. 鍾成沛. 2011. 薏仁麩皮乙醇萃取物之活性篩選及其乙酸乙酯區分層之化學組成研究. 國立臺灣大學食品科技研究所博士論文. 台北. 丁依俤. 2006. 薏苡的生物学特性及栽培技术. 特种经济动植物8:26-27. 毛久庚、唐懋华、李英、赵俊杰. 2010. 不同类型基质对芽苗菜品质及产量的影响. 上海蔬菜1:50. 王飞儿. 2011. 薏苡仁辅助治疗多囊性卵巢綜合症. 中医杂志52:251. 王德槟、张德纯. 1998. 芽苗蔬菜生产技术图册. 中国农业出版社. 北京. 王莉、史玲玲、张艳霞、刘玉军. 2007. 植物次生代谢物途径及其研究进展. 武汉 植物学研究25(5):500-508. 付佳、王洋、阎秀峰. 2003. 萜类化合物的生理生态功能及经济价值. 东北林业大学学报31(6):59-62. 李德全、赵会杰、高輝遠. 1999. 植物生理学. 中国农业科技出版社. 北京. 李韶山、潘瑞炽. 1993. 植物的蓝光效应. 植物生理学通讯29(4):248-252. 呂峰. 2008. 我国薏苡仁资源主要品质及薏苡仁活性多糖的研究. 福建农林大学博士論文. 福建. 肖崇厚. 1991. 中药化学. 上海科学技术出版社. 上海. 杜建芳、廖祥儒、叶步青、李萌. 2002. 光质对油菜幼苗生长及抗氧化酶活性的影响. 植物学通报 19(6):743-745. 邢泽南、张丹、李薇、张欢、章丽丽、崔瑾. 2012. 光质对油葵芽苗菜生长和品质的影响. 南京农业大学学报35(3):47-51. 周宏伟. 2006. 水稻籽粒在萌发过程中胚乳消耗和淀粉体形态的变化. 扬州大学硕士論文. 江蘇. 胡陽、江莎、李洁、高靜、高玉葆、古松. 2009. 光强和光质对植物生长发育的影响. 内蒙古农业大学学报 30(4):297-303. 胡军、金国梁. 2007. 薏苡仁的营养与药用价值. 中国食物与营养6:57-58 马超、张欢、郭银生、谷艾素、崔瑾. 2010. LED在芽苗菜生产中的应用及前景. 中国蔬菜1(20):9-13. 袁秋华. 2005. 小麦籽粒在萌发过程中胚乳消耗和淀粉体形态的变化. 扬州大学硕士論文. 江蘇. 高洪波、陈贵林、章铁军、吕桂云. 2006. 施铁对萝卜芽生长、产量及品质的影响. 园艺学报33 (5) :1096-1098. 夏石头、彭克勤、萧浪涛、刘志敏. 2003. 施碘对萝卜芽生长及其营养品质的影响. 园艺学报30(2):218-220. 倪文. 1983. 光对稻苗根系生长及其生理活性的影响. 作物学报3:199-204. 张淑珍、靳立梅、徐鹏飞、陈维元、吴俊江、李文滨、邱丽娟、常汝镇. 2009. 野生大豆接种大豆疫霉根腐病后苯丙氨酸解氨酶(PAL)活性的变化. 大豆科学 28(6):1044-1048. 张德纯、王得槟. 2001. 芽苗菜发展前景及展望. 中国食物与营养1:25-26. 陈晓亚、刘培. 1996. 植物次生代谢的分子生物学及基因工程. 生命科学 8(2):8-9. 黄德明. 1981. 小麦胚乳物质的消耗及转化. 南京农业大学学报 3 :22-27. 彭世勇、王兴东. 2008. 不同基质栽培对萝卜芽苗菜生长与产量的影响. 科技资讯 20:137. 傅维康. 2005. 马援『薏苡之谤』和薏苡仁. 医古文知识 1:28-29. 刘志东、郭本恒、王荫榆. 2008. 抗氧化活性检测方法的研究进展. 天然产物研究与开发20:563-567. 赵玉军、叶和春、李国风、陈大华、刘彦. 2003. 优系青蒿法呢基焦磷酸合酶基因的克隆和酶学分析. 科学通报162-166. 鲁燕舞、张晓燕、耿殿祥、崔瑾. 2014. 光质对萝卜芽苗菜总酚类物质含量及抗氧化能力的影响. 园艺学报41(3):545-552. 薛应龙、欧阳光察、澳绍根. 1983. 水稻幼苗中PAL活性的动态变化. 植物生理学报 9(3):301-306. 蒲高斌、刘世琦、刘磊、任丽华. 2005. 不同光质对番茄幼苗生长和生理特性的影响. 园艺学报32(3):420-425. 魏胜林、王家保、李春保. 1998. 蓝光和红光对菊花生长和开花的影响. 园艺学报25(2):203-204. Aboobaker, V.S., A.D. Balgi and R.K. Bhattacharya. 1994. In vivo effect of dietary factor on the molecular action of aflatoxin B1 : role of non-nutrient phenolic compounds on the catalytic activity of liver fractions. In Vivo. 8:1095-1098. Aruoma, O.I. 1999. Antioxidant actions of plants foods : use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radical Res. 30:419-427. Ashton, F.M. 1976. Mobilization of storage proteins of seeds. Ann. Rev. Plant Physiol. 27: 95-117. Aymard, D. and H. Colson-Guastalla. 1975. The inhibition of the peroxydatic activity of human ferricyanohemoglobin (guaiaacol-H2O2 system) by syringic acid. Comptes Rendus Hebdomadaires des Seances de 1 Academie des Sciences- D : Sciences Naturelles. 281:1897-1900. Bongue-Bartelsman, M. and D.A. Philips. 1995. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol Biochem. 33:539-546. Bryant, J.P., F.S. Chapin, and D.R. Ⅲ,Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 40:357-368. Cacciuttolo, M.A., L. Trinh, J.A. Lumpkin, and G. Rao. 1993. Hyperoxia induces DNA damage in mammalian cell. Free Radical Biol. Med. 14:267-276. Chao, P.C., C.C. Rao, and M.C. Yin. 2009. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutrition & Metabolism . 6:33. Chen, J.H. and C.T. Ho. 1997. Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds. J. Agric. Food Chem. 45: 2374−2378. Chen, H.J., B.S. Inbaraj, and B.H. Chen. 2012. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by Liquid Chromatography-Tandem Mass Spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci. 13:260-285. Chiang, W., C. Cheng, M. Chiang, and K.T. Chung. 2000. Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. J. Agric. Food Chem. 48:829-832. Chowdhury, M,. S.N. Kabir, A.K. Pal, and A. Pakrashi. 1983. Modulation of luteinizing hormone receptors : effects of an inhibitor of prolactin secretion, p-coumaric acid. J. Endocrinol. 98:307-311. Dizdaroglu, M., P. Jaruga, M. Biricioglu, and H. Rodriguez. 2002. Free radical-induces damage to DNA : mechanism and measurement. Free Radical Biol. Med. 11:1102-1115. Esterbauer, H., J. Gebicki, H. Puhl, and G. Jurgens. 1992. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biol .Med. 13:341-390. Facchim, P.J. 2001. Alkaloid biosynthesis in plants:biochemistry, cell biology, molecular regulation and metabolic engineering applications. Anrm.Rev. Plant Physiol Plant Mol. Biol. 52:29-66. Fahey, J.W., X. Haristoy, P.M. Dolan, T.W. Kensler, I. Scholtus, K.K. Stephenson, P. Talalay, and A. Lozniewski. 2002. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene induced stomach tumors. Proc Natl Acad Sci USA. 99(11):7610-7615. Fernandez, M.A., M.T. Saenz, and M.D. Garcia. 1998. Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J. Pharmacy & Pharmacology. 50:1183-1186. Fincher, G.B. 1989. Molecular and cellular biology associated with endosperm mobilization in germination cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Bioi. 40:305-46 Folta, K.M., L.L. Koss, R. McMorrow, H.H. Kim, J.D. Kenitz, R. Wheeler, and J.C. Sager, 2005. Design and fabrication of adjustable red-green-blue LED light arrays for plant research. BMC Plant Biol. 5:1-11. Frias, J., M. L. Miranda, R. Doblado, and C. Vidal-Valverde. 2005. Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chemistry. 2:211–220. Fu, J., K. Cheng, Z.M. Zhang, R.Q. Fang, and H.L. Zhu. 2010. Synthesis, structure and structure–activity relationship analysis of caffeic acid amides as potential antimicrobials. European Journal of Medicinal Chemistry. 45(6):2638-2643. Garcia, M.D., M.C. Ahumada, and M.T. Saenz. 1998. Cytostatic activity of some phenolic acids of Scrophularia frutescens L. var. frutescens. Zeitschrift fur Naturforschung C-A J. Biosciences. 53:1093-1095. Gershenzon, J. 1994. Metabolic costs of terpenoid aecumlation in higher plant. J Chem Eco. 20:1281-1328. Ghasemzadeh, A., H.Z. Jaafar, A. Rahmat, P.E. Wahab, and M.R. Halim. 2010. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int. J. Mol. Sci. 11:3885-3897 Giugliano, D., A. Ceriello, and G. Paolisso. 1995. Diabetes mellitus, hypertension, and cardiovascular disease : which role for oxidative stress . Metab. Clin. Exp. 44:363-368. Gustafson, D.L., H.R. Franz, A.M. Ueno, C.J. Smith, D.J. Doollittle, and C.A. Waldren. 2000. Vanillin (3-methoxy-4-hydroxybenzaldehyde) inhibits mutation induced by hydrogen peroxide, N-methyl-N-nitrosoguanidine and mitomycin C but not (137) Cs gamma-radation at the CD59 locus in human-hamster hydrid A(L) cells. Mutagenesis. 15:207-213. Gutteridge, J.M.. 1993. Free radicals in disease process : A complication of cause and consequence. Free Radical Res. Comm. 19:141-158. Ha, D.T., T.N. Trung, N.B. Thu, T.V. On, N.H. Nam, C.V. Men, T.T. Phuong, and K.H. Bae. 2010. Adlay seed extract (Coix lachrymal-jobi L.) decreased adipocyte differentiation and increased glucose uptake in 3T3-L1 cells. J. Med. Food. 13:1331-1339. Halliwell, B. and J.M. Gutteridge. 1991. Free Radicals in Biology and Medicine. Second Edition. Clarendon Press. Oxford. Heiss, E., C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser . 2001. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem. 276(34):32008-32015 Hemming, S. 2009. Use of natural and artificial light in horticulture – interaction of plant and technology. Acta Hort. 907:25-35. Higdon, J. W., O. R. P. Bininda-Emonds, R. M. D. Beck, and S. H. Ferguson. 2007. Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a mutigene dataset. BMC Evolutionary Biology 7:216. Hirabayashi, T., H. Ochiai, S. Sakai, K. Nalajima, and K. Terasawa. 1995. Inhibitory effect of ferulic acid and isoferulic acid on murine interleukin-8 production in response to influenza virus infections in vitro and in vivo. Planta Medica. 61:221-226. Hogg, N. 1998. Free radical in disease. Seminar in Reproductive Endocrinology. 16:241-248. Holland, J.A., R.W. O’Donnell, M.M. Chang, D.K. Johnson, and L.M. Ziegler. 2000. Endothelial cell oxidant production : effect of NADPH oxidase inhibitors. Endothelium. 7:109-119. Hong, J. and C.T. Ho. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45:2374-2378. Hong, Y.F., T.H. Ho, C.F. Wu, S.L. Ho, R.H. Yeh, C.A. Lu, P.W. Chen, L.C. Yu, A. Chao, and S.M. Yu. 2012. Convergent starvation signal and hormone crosstalk in regulation nutrient mobilization upon germination in cereals. The Plant Cell. 24:2857-2873. Hsia, S.M., Y.W. Kuo, W. Chiang, and P.S. Wan. 2008. Effects of adlay hull extracts on uterine contraction and Ca2+ mobilization in the rat. Am. J. Physiol. Endocrinol. Metab. 295:719-726. Hu, H.J. and B.Q. Hang. 1991. Effect of ferulic acid on allergic reaction. Acta Pharmacologica Sinica. 12:426-430. Huang, M.T., R.C. Smart, C.Q. Wong, and A.H. Conney. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 48:5941. Hwang, S.J., Y.W. Kim, Y. Park, H.J. Lee, and K.W. Kim. 2014. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res. 63(1):81-90. Jacob, R.A. 1994. Nutrition, health and antioxidants. INFORM. 5:1271-1275. Jangaard, N.O. 1974. The characterization of phenylalanine ammonia-lyase from several plant species. Phytochemistry. 13:1765-1768. Jansen, M.A., V. Gaba, and B.M. Greenberg. 1998. Higher plants and UV-B radiation : balancing damage, repair and acclimation, Trend in Plant Science. 3(4):131-135. Jialal, I. and S. Devaraj. 1996. Low-density lipoprotein oxidation, antioxidants, and atherosclerosis : a clinical biochemistry persperctive. Clin. Chem. 42:498-506. Jin, L., M. Qi, D. Z. Chen, A. Anderson, G. Y. Yang, I. M. Arbeit, and K. I. Auborn. 1999. Indole-3-carbinol prevents cervical cancer in human papilloma virus type 16 (HPV16) transgenic mice. Cancer Res. 59:3991-3997. Kazzaz, J.A., J. Xu, T.A. Palaia, L. Mantell, A.M. Fein, and S. Horowitz. 1996. Cellular oxygen toxicity. J. Biol. Chem. 271:15782-15786. Kehrer, J.P. 1993. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 23:21-48. Kim, E.J., I.L. Kyeoung, and Y.P. Kun. 2002a. Effects of germination treatment during cultivaiotn of soybean sprouts. Journal of the Korean Society of Food Science and Nutrition. 31(4):615-620. Kim, E.J., I.L. Kyeoung, and Y.P. Kun. 2002b. Quatity analysis of nutrients in soybean sprouts cultured with germination. Journal of the Korean Society of Food Science and Nutrition. 31(6):1150-1154. Kim, S.J., I.S. Zaidul, T. Maeda, T. Suzuki, N. Hashimoto, S. Takigawa, T. Noda, C. CMatsuura-Endo, and H. Yamauchi. 2007. A time-course study of flavonoids in the sprouts of tartary (Fagopyrum tataricum Gaertn.) buckwheats. Scientia Horticulturae. 115:13–18 Klaus, M.H. 1999. The shikimate pathway. Ann. Rev. Plant Mol. Bio. 50:473-503. Kowallik, W. 1982. Blue light effects on respiration. Annual Review of Plant Physiogy. 33:51-72. Kulkarni, S.D., J.C. Tilak, R. Acharya, N.S. Rajurkar, T.P. Devasagayam, and A.V. Reddy. 2006. Evaluation of the antioxidant activity of wheatgrass (Triticum aestivum L.) as a function of growth under different conditions. Phytother Res . 20: 218-227. Lee, N.Y., M. Lee, Y.K. Kim, J.C.Park, H.K. Park, J.S. Choi, J.N. Hyun, K.J.Kim, K.H. Park, J.K. Ko, and J.G. Kim 2010. Effect of light emitting diode radiation on antioxidant activity of barley leaf . J. Korean Soc Appl Biol Chem. 53(6):685-690. Leite, A., F. A. de Freitas, J. A. Yunes, and P. Arruda. 1991. Nucleotide sequence of a cDNA clone encoding γ-coixin from Coix lacryma-jobi seeds. Plant Physiol. 97, 1604-1605. Lende, A.B., A.D. Kshirsagar, A.D. Deshpande, M.M. Muley, R.R. Patil, P.A. Bafna, and S.R. Naik. 2011. Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice. Inflammopharmacology. 9(5):255-263. Li, H., J. Li, J.K. Prasain, Y. Tezuka, T. Namba, T. Miyahara, S. Tonami, H. Seto, T. Tada, and S. Kadota. 1998. Antiosteoporotic activity of the stems of Sambucus sieboldiana. Biological & Pharmaceutical Bulletin. 21:594-598. Li, X., X.Z. Wang, D.F. Chen, and S.Z. Chen. 2011. Antioxidant activity and mechanism of protocatechuic acid in vitro (research). Functional Foods in Health and Disease. 7:232-244. Lin, W.Y., C.M. Teng, I.L Tsai, and I.S. Chen. 2000. Anti-platelet aggregation constituents from Gynura elliptica. Phytochemistry. 53:833-836. Lorenz K. 1980. Cereal sprouts : composition, nutritive value, food applications. Crit. Rev. in Food Science and Nutrition 13. 4:353-385. Lou, Z., H. Wang, S. Zhu, C. Ma, and Z. Wang. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci. 76(6):398-403. Macheix, J.J., A. Fleuriet, and J. Billot. 1990. Fruit phenolics. CRC Press: Boca Raton, FL. Maksimovic, Z., D. Malencic, and N. Kovacevic. 2005. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresource Technology. 96:873-877. Marklund, S.L. 1984. Extracellular xuperoxide dismutase and other superoxide dismutase isoenzymes in tissue from nine mammalian species. Biochem. J. 23:21-48. McCue, P. and K. Shetty. 2004. Health benefits of soy isoflavonoids and strategies for enhancement: a review. Crit. Rev. in Food Science and Nutrition 44(5):361-367. Meyer, A.S., and A. Isaksen. 1995. Application of enzymes as food antioxidants. Trend. Food Sci. Technol. 6:300-304. Mori, H., K. Kawabata, N. Yoshimi, T. Murakami, T. Okada, and H. Murai. 1999. Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticacer Res. 19:3775-3778. Oh, M.M. and C.B. Rajashekar. 2009. Antioxidant content of edible sprouts: effects of environmental shocks. J. Sci. Food and Agri. 89(13):2221-2227. Okamoto, R., S. Sakamoto, and K. Noguchi. 1976. Effect of ferulic acid on FSH, LH and prolactin levels in serum and pituitary tissue of male rats. Nippon Naibunpi Gakkai Zasshi-Folia Endocrinologica Japonica. 52:953-958. Pannala, A., R. Razaq, B. Halliwell, S. Singh, and C.A. Rice-Evans. 1998. Inhibition of peroxynitrite dependent tyrosine nitration by hydroxycinnamates : nitration or electron donation ? Free Radical Biol. Med. 24:594-606. Paolisso, G., A. Amore, C. Volpe, V. Balbi, and F. Saccomanno. 1994. Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (typeⅡ) diabetic patients. Metab. Clin. Exp. 43:1426-1429. Park, J.H., J.K. Lee, H.S. Kim, S.T. Chung, J.H. Eom, K.A. Kim, S.J. Chung, S.Y. Paik, and H.Y. Oh. 2004. Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. International Immunopharmacology. 4(3):429-436. Paweł, Pas’koa., Barton’. Henryk, Zagrodzki. Paweł, Gorinstein. Shela, Fołta. Maria, and Zachwieja. Zofia. 2009. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry. 115:994–998. Pellatia, F., G. Orlandinia, D. Pinettib, and S. Benvenutia. 2011. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. 55(5):934-948. Price, T.V. 1988. Seed sprouts production for human consumption- a review. Can. Inst. Food Sci. Technol. J. 21(1), 57– 65. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. Richard, A.D. and L.P. Nancy 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell. 7:1085-1097. Rosenfeld, M.E., T. Tsukuda, A.M. Grown, and R. Ross. 1987. Fatty streak initiation in Watanabe Heritable hyperlipermic and comparably hyper-cholesterlemic fat-fat rabbits. Atherosclerosis. 7:9-23. Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatany o birch plantlets in vitro. Plant Cell Tissue and Organ Culture. 41:177-185. Samuoliene, G., A. Urbonaviciute, A. Brazaityte, G. Sabajeviene, J. Sakalauskaite, and P. Duchovskis. 2011. The impact of LED illumination on antioxidant properties of sprouts seeds. Central European Journal of Biology. 6(1):68-74. Santos-Buelga, C., S. Gonzalez-Manzano, M. Duenas, and A.M. Gonzalez-Paramas. 2012. Extraction and isolation of phenolic compounds. Natural Products Isolation. 864, 427-464. Sauer, D.B. and R. Burroughs. 1986. Disinfection of seed surface with sodium hypochlorite. Phytopathology. 76:745-749. Sharma, R.D. 1980. Effect of hydroxyl acids on hypercholesterolaemia in rats. Atherosclerosis. 37:463-438. Shi, Y.C., and T.M. Pan. 2010. Anti-diabetic effects of Monascus purpureus NTU 568 fermented products on streptozotocin-induced diabetic rats. J. Agric Food Chem. 58:7634-7640. Shimada, K., K. Fujikawa, K. Yahara, and T. Nakamura. 1992. Antioxidative properties of xanthan on the antoxidantion of soybean oil in cyclofextrin emusion. J. Agric. Food Chem. 40:945-948. Sies, H. 1993. Strategies of antioxidant defense. Eur. J. Biochem. 215:213-219. Simic, M.G. 1988. Mechanisms of inhibition of free-radical process in mutagenesis and carcinogenesis. Mutat. Res. 2:377-386. Singleton, V.L., J.A. Rossi Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144-158. Spector, A., G.M. Wang, R.R. Wang, W.C. Li, and N.J. Kleiman. 1995a. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract.Ⅱ. Mechanism of action. Exp. Eye Res. 60:483-492. Spector, A., G.M. Wang, R.R. Wang, W.C. Li, and N.J. Kleiman. 1995b. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract.Ⅰ. Transparency and epithelial cell layer. Exp. Eye Res. 60:472-481. Steinberg, D., S. Parthasarathy, T.E. Carew, J.C. Khoo, and J.L. Witztum. 1989. Beyond cholesterol : Modifications of low-density lipoprotein that increases its atherogenicity. New Engl. J. Med. 320:915-919. Stich, H.F., M.P. Rosin, C.H. Wu, and W.D. Powrie. 1981. The action of transition metals on the genotoxicity of simple phenols, phenolic acids and cinnamic acids. Cancer Lett. 14:251-260. Stojković, D.S., J. Zivković, M. Soković, J. Glamočlija, I.C. Ferreira, T. Janković, and Z. Maksimović. 2013. Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food Chem Toxicol. 55:209-213. Swieca, M., U. Gawlik-Dziki, D. Kowalczyk, and U. Zlotek. 2012. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Scientia Horticulture. 140:87-95. Taiz, L. and E. Zeiger. 2006. Plant Physiology. 4th ed. Sunderland, Massachusetts : Sinauer Associates Inc. Tseng, S. H. and W. C. Chiang. 2003. Effects and cultivated areas and varieties on the nutrient compositions of dehulled kernel of Adlay (Coix lacryma-jobi). Taichung DARES 81. 31-41. Wang, H., L. Guo, and W.L. Xie. 2006. Methods for determining antioxitive activity of antioxidants (Ⅱ). Food Ferment Indus. 4:98-102. Wang, M.Y. and J.G. Liehr. 1995. Lipid hydroperoxide-induced endogenous DNA adducts in hamster : possible mechanism of lipid hydroperoxide-mediated carcinogensos. Arch. Biochem. Biophys. 316:38-46. Wang, C.Y., H.T. Lin, and S.C. Wu. 2011. Influence of dietary supplementation with Bacillus-fermented adlay on lipid metabolism, antioxidant status and intestinal microflora in hamsters. J. Sci. Food Agric. 91(12):2271-2276. Wang, G.F., L.P. Shi, Y.D. Ren, Q.F. Liu, H.F. Liu, R.J. Zhang, Z. Li, F.H. Zhu, P.L. He, W. Tang, P.Z. Tao, C. Li, W.M. Zhao, and J.P. Zuo. 2009. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 83(2):186-190. White, P. J., and Y. Xing. 1997. Antioxidants from cereals and legumes. Natural Antioxidants: Chemistry, Health Effects, and Applications. 25-63 Willcox, J.K., S.L. Ash, and G.L. Catignani. 2004. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 4:275-295. Wu, M.C., C.Y. Hou, C.M. Jiang, Y.T. Wang, C.Y. Wang, H.H. Chen, and H.M. Chang. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry. 101: 1753–1758. Xiang, Z. and Z.X. Ning. 2008. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. Food Science and Technology. 41(7):1189-1203. Xu, M.J., J.F. Dong, and M.U. Zhu. 2005. Effects of germination conditions on ascorbic acid level and yield of soybean sprouts. J. Sci Food Agric . 85:943–947. Yamada, J. and Y. Tomita. 1996. Antimutagenic activity of caffeic acid and related compounds. Biosci. Biotech. Biochem. 60:328-329. Yanagi, T., K. Okamoto, and S. Takita. 1996. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. Acta Hort. 440:117-122. Yang, F., T.K. Basu, and B. Ooraikul. 2001. Studies on germination conditions and antioxidant contents of wheat grain. International J. of Food Sci. and Nutr. 52:319-330. Yao, H.T., J.H. Lin, M.T. Chiang, W. Chiang, M.N. Luo, and C.K. Lin. 2011. Suppressive effect of ethanolic extract of adlay bran on P-450 enzymes in rat liver and lungs. J. Sci. Food Agric. 59:4306-4314. Younis, M.E., M.N. Hasaneen, and H.M. Abdel-Aziz. 2010. An enhacing effect of visible light and UV radiation on the phenolic compounds and various antioxidants in broad bean seedlings. Plant Signaling & Behavior. 5(10):1197-1230. Yousefzadi, M., M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon. 2012. The effect of light on gene expression and podophyllotoixn biosynthesis in Linum album cell culture. 56:41-46. Zang, L., G. Cosma, H. Gardner, X. Shi, V. Casteranova, and V. Vallyathan. 2000. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physio. Cell Physio. 279:954-960. Zhang, L.P., and H.R. Tong. 2004. Advanced studies on the methods for antioxidants screening. China Food Additives. 3:108-118. Zhao, Y.Y., J.K. Wang, O. Ballevre, H.L. Luo, and W.G. Zhang. 2012. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertension Research 35. 370-374. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56049 | - |
| dc.description.abstract | 芽菜,無汙染且高營養價值是目前受青睞的綠色食品,無論是豆類、穀類或蔬菜類等,皆可以芽菜栽培模式進行生產。本研究將探討光質對水耕栽培薏苡芽菜之抗氧化活性影響,糙薏仁先經消毒、浸種及催芽步驟後,移植至不同光線和水耕液的生長條件下進行發芽,並於栽培過程中以總酚含量、清除DPPH自由基能力及總抗氧化能力 (Trolox equivalent antioxidant capacity) 指標,來評估薏苡芽菜機能性功效。
結果顯示,光線和水耕液會產生交互作用。在去離子水栽培條件下藍光和紅光會抑制芽菜莖的伸長,而養液栽培則反之。經由光線的照射可提高芽菜總多酚含量,在栽培第三天時,白光組、藍光組及紅光組其總多酚含量皆較黑暗組高,分別為提高了41%、68%及18%;在栽培第七天,僅有藍光組總酚類含量較黑暗組高出40%;而養液栽培其總多酚含量低於去離子水栽培。皮爾遜相關性分析可知總酚類含量與清除DPPH自由基能力及總抗氧化能力之間的相關係數為0.70、0.69,而清除DPPH自由基能力和總抗氧化能力的相關係為為0.58。表示總多酚含量與抗氧化活性有密切的相關。 薏苡種子透過發芽可增加本身的營養價值,亦能以芽菜進行生產,薏苡芽菜富含豐富的酚類化合物,賦有抗氧化機能性,極具保健素材之潛力。 | zh_TW |
| dc.description.abstract | Sprouts are currently favored in the world, either beans, grains or vegetables can used to be sprout. This study established adlay sprout cultivation model.
Adlay seed via disinfection, soaking and priming ,then transfered to germination under different lighting sources and hydroponic solutions . Using the phenolic contents (TPC), scavenging DPPH radicals ability (DPPH) and Trolox equivalent antioxidant capacity (TEAC) to assess the functional of adlay sprout. The results show that interaction between lights and hydroponic solutions. Blue and red light are slightly inhibit the growth of sprout with water hydroponic solution. On the contrary, blue and red light promote the growth of sprout with nutrient solution. But light illumination can enhance the total polyphenol content of adlay sprout. On 3 days after sowing, the total polyphenol content of the white, blue and red groups with water hydroponic solution were higher than the darkness control by 41%, 68 % and 18% respectively. On 7 DAS, only the blue group was 40% higher than the darkness control in the total phenol content. Using the Pearson correlation analysis the coefficient among these antioxidant capacities. The coefficient between TPC and DPPH is 0.69. TPC and TEAC is 0.69. DPPH and TEAC is 0.58. Data shows the total polyphenol content and antioxidant capacities are closely related. Adlay seed increase the nutritional value by germination, and it can be used to produce sprouts. Adlay sprouts are rich in phenolic compounds and excellent antioxidant capacity. It has the potential in the nutraceutical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:13:59Z (GMT). No. of bitstreams: 1 ntu-103-R99628213-1.pdf: 2632235 bytes, checksum: 3473252619a0de8adc223b742717d748 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………………….Ⅰ
Abstract…………………………………………………………………………………Ⅱ 目錄…………………………………………………………………………………….Ⅲ 圖目錄………………………………………………………………………………….Ⅵ 表目錄………………………………………………………………………………….Ⅶ 縮寫對照表…………………………………………………………………………….Ⅷ 壹、緒論…………………………………………………………………………….... 1 貳、文獻回顧…………………………………………………………………………2 一、薏苡………………………………………………………………………………2 (一) 簡介……………………………………………………………………….. 2 (二) 一般組成…………………………………………………………………...2 (三) 薏苡之機能性……………………………………………………………...3 二、自由基……………………………………………………………………………5 (一) 自由基之特性……………………………………………………………...5 (二) 生物系統中自由基之種類……………………………………………….6 (三) 氧化壓力…………………………………………………………………….6 (四) 生物體中抗氧化防禦系統……………………………………………....8 (五) 食品中抗氧化物質……………………………………………………….9 三、植物二級代謝物……………………………………………………………….11 (一) 萜類化合物………………………………………………………………11 (二) 生物鹼類化合物………………………………………………………….12 (三) 苯丙烷類化合物……………………………………………………….....12 四、芽菜……………………………………………………………………………..14 (一) 簡介…………………………………………………………………….....14 (二) 種類與用途……………………………………………………………….14 (三) 營養價值與機能性………………………………………………………….14 (四) 栽培模式…………………………………………………………………15 (五) 栽培條件…………………………………………………………………15 (六) 應用人工光源於芽菜之生產…………………………………………….16 参、研究目的與架構…………………………………………………………………18 一、研究目的……………………………………………………………………..18 二、試驗架構……………………………………………………………………..19 肆、材料與方法………………………………………………………………………..20 一、實驗材料………………………………………………………………………...20 (一) 糙薏仁………………………………………………………………….20 (二) 試驗藥品……………………………………………………………….20 (三) 儀器設備………………………………………………………….……21 二、實驗方法……………………………………………………………………..21 (一) 種子預措處理………………………………………………………….21 (二) 抗氧化物質含量測定………………………………………………….22 (三) 抗氧化能力測定……………………………………………………….23 (四) 抗氧化成分定性……………………………………………………….24 三、統計分析…………………………………………………………………..25 伍、結果……………………………………………………………………………..26 一、栽培條件對薏苡芽菜生長表現之影……………………………….26 (一) 光質與水耕液對薏苡芽菜長度之影響............................................ 26 (二) 光質與水耕液對薏苡芽菜鮮重之影響…………………………… 26 (三) 光質與水耕液對薏苡芽菜乾重之影響…………………………….26 (四) 光質與水耕液對薏苡芽菜水分含量之影響……………………….27 (五) 光質與水耕液對薏苡芽菜之甲醇萃取率影響…………………….27 (六) 光質與水耕液對薏苡芽菜絕對生長速率之影響………………….27 (七) 光質與水耕液對薏苡芽菜胚乳消耗率之影響………………………27 二、栽培條件對薏苡芽菜機能性之影響…………………………………….36 (一) 光質與水耕液對薏苡芽菜甲醇萃取物總多酚含量之影響……36 (二) 光質與水耕液對薏苡芽菜甲醇萃取物清除DPPH自由基能力之影響………………………………………………………………...36 (三) 光質與水耕液對薏苡芽菜甲醇萃取物總抗氧化能力之影響36 (四) 抗氧化指標相關性分析………………………………………….43 三、栽培條件對薏苡芽菜總酚含量之影響,以HPLC分析…………….44 (一) 標準品之滯留時間與線性迴歸方程式………………………….44 陸、討論……………………………………………………………………………. 52 一、栽培條件對薏苡芽菜生長表現之影響…………………………………..52 二、栽培條件對薏苡芽菜總酚含量之影響…………………………………..53 三、栽培條件對薏苡芽菜機能性之影響……………………………………..53 四、以HPLC分析薏苡芽菜酚類化合物含量……………………………….54 柒、結論……………………………………………………………………………. 55 捌、參考文獻………………………………………………………………………. 56 玖、附錄……………………………………………………………………………..69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 薏苡 | zh_TW |
| dc.subject | 芽菜 | zh_TW |
| dc.subject | 清除DPPH自由基 | zh_TW |
| dc.subject | 皮爾遜相關分析 | zh_TW |
| dc.subject | germination | en |
| dc.subject | DPPH | en |
| dc.subject | Pearson coefficient | en |
| dc.subject | nutraceutical applications | en |
| dc.title | 光質對水耕栽培薏苡芽菜抗氧化活性之影響 | zh_TW |
| dc.title | Effect of light quality on the antioxidant capacity of adlay sprouts by hydroponic culture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 江文章(Wen chang Chiang) | |
| dc.contributor.oralexamcommittee | 陳開憲(Kai-Hsien Chen) | |
| dc.subject.keyword | 薏苡,芽菜,清除DPPH自由基,皮爾遜相關分析, | zh_TW |
| dc.subject.keyword | germination,DPPH,Pearson coefficient,nutraceutical applications, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
