請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56045完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宏昀(Hung-Yun Hsieh) | |
| dc.contributor.author | Chin-Wei Hsu | en |
| dc.contributor.author | 許晉瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:13:52Z | - |
| dc.date.available | 2016-08-21 | |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | [1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update 2011-2016.” Online Available at: http://www.cisco.com/c/en/us/ solutions/service-provider/visual-networking-index-vni/index.html [2] Qualcomm, “1000x: More Small Cells.” Online Available at: http: //www.qualcomm.com/media/documents/files/1000x-more-small-cells-.pdf [3] ——, “Neighborhood Small Cell Deployment Model.” Online Available at: http://www.qualcomm.com/media/documents/files/ neighborhood-small-cell-deployment-model.pdf [4] M. A. Ergin, K. Ramachandran, and M. Gruteser, “Understanding the Effect of Access Point Density on Wireless LAN Performance,” in International Conference on Mobile Computing and Networking (MobiCom), ACM, 2007, pp. 350–353. [5] C. Mobile, “C-ran: The Road Towards Green Ran,” White Paper, Oct. 2011. [6] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G.-K. Chang, “The Case for Re-configurable Backhaul in Cloud-RAN Based Small Cell Networks,” in International Conference on Computer Communications (INFOCOM), IEEE, April 2013, pp. 1124–1132. [7] C. Liu, L. Zhang, M. Zhu, J. Wang, L. Cheng, and G.-K. Chang, “A Novel Multi-Service Small-Cell Cloud Radio Access Network for Mobile Backhaul and Computing Based on Radio-over-fiber Technologies,” Journal of Lightwave Technology, IEEE, vol. 31, no. 17, pp. 2869–2875, Sept. 2013. [8] “G.992.5 : Asymmetric Digital Subscriber Line 2+ (ADSL2+) Transceivers,” ITU-T, Tech. Rep., Jan. 2009. [9] “G.993.2 : Very High Speed Digital Subscriber Line Transceivers 2 (VDSL2),” ITU, Tech. Rep., Jun. 2012. [10] “G.652 : Characteristics of a Single-mode Optical Fibre and Cable,” ITU, Tech. Rep., May 2010. [11] D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, and A. Oehler, “26 Tbit s-1 Line-Rate Super-Channel Transmission Utilizing AllOptical Fast Fourier Transform Processing,” Nat Photon, Nature Publishing Group, vol. 5, pp. 364–371, Jun. 2011. [12] Google, “Google Fiber.” Online Available at: https://fiber.google.com/ about2/ [13] David Nield, “Google Keen to Add Wi-Fi to its Super-Fast Fiber Network.” Online Available at: http://www.digitaltrends.com/web/ google-keen-add-wi-fi-super-fast-fiber-network/#!bkkhYa [14] Todd R. Weiss, “Google Fiber Begins Free Public WiFi Tests in Kansas City.” Online Available at: http://www.eweek.com/networking/ google-fiber-begins-free-public-wifi-tests-in-kansas-city.html [15] J. Monks, V. Bharghavan, and W.-M. Hwu, “A Power Controlled Multiple Access Protocol for Wireless Packet Networks,” in International Conference on Computer Communications (INFOCOM), IEEE, vol. 1, 2001, pp. 219–228. [16] A. Muqattash and M. Krunz, “Power Controlled Dual Channel (PCDC) Medium Access Protocol for Wireless Ad Hoc Networks,” in International Conference on Computer Communications (INFOCOM), IEEE, vol. 1, March 2003, pp. 470–480. [17] H.-C. Luo, E.-K. Wu, and G.-H. Chen, “A Transmission Power/Rate Control Scheme in CSMA/CA-Based Wireless Ad Hoc Networks,” in Transactions on Vehicular Technology, IEEE, vol. 62, no. 1, Jan 2013, pp. 427–431. [18] Y. Wu, Y. Sun, Y. Ji, J. Mao, and Y. Liu, “A Joint Channel Allocation and Power Control Scheme for Interference Mitigation in High-Density WLANs,” in International Conference on Communication Technology (ICCT), IEEE, Nov 2013, pp. 98–103. [19] “IEEE Standard of 802.11,” IEEE Standards Association, Tech. Rep., 2012. [20] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” Journal on Selected Areas in Communications, IEEE, vol. 18, no. 3, pp. 535–547, March 2000. [21] M. A. Ergin, K. Ramachandran, and M. Gruteser, “An Experimental Study of Inter-cell Interference Effects on System Performance in Unplanned Wireless LAN Deployments,” Computer Networks, Elsevier, vol. 52, no. 14, pp. 2728 – 2744, 2008. [22] A. Moriuchi, T. Murase, M. Oguchi, A. Baid, S. Sagari, I. Seskar, and D. Raychaudhuri, “Measurement Study of Adjacent Channel Interference in Mobile WLANs,” in International Conference on Communications Workshops (ICC), IEEE, June 2013, pp. 566–570. [23] T. Nagai and H. Shigeno, “A Framework of AP Aggregation Using Virtualization for High Density WLANs,” in International Conference on Intelligent Networking and Collaborative Systems (INCoS), IEEE, Nov 2011, pp. 350– 355. [24] T. Hamaguchi, T. Komata, T. Nagai, and H. Shigeno, “A Framework of Better Deployment for WLAN Access Point Using Virtualization Technique,” in International Conference on Advanced Information Networking and Applications Workshops (WAINA), IEEE, April 2010, pp. 968–973. [25] G.-K. Chang, C. Liu, and L. Zhang, “Architecture and Applications of a Versatile Small-Cell, Multi-Service Cloud Radio Access Network using Radioover-Fiber Technologies,” in Communications Workshops (ICC), 2013 IEEE International Conference on, June 2013, pp. 879–883. [26] J. Riihijarvi, M. Petrova, and P. Mahonen, “Frequency Allocation for WLANs Using Graph Colouring Techniques,” in Second Annual Conference on Wireless On-demand Network Systems and Services, IEEE, Jan 2005, pp. 216–222. [27] A. Mishra, S. Banerjee, and W. Arbaugh, “Weighted Coloring Based Channel Assignment for WLANs,” in SIGMOBILE Mobile Computing and Communications Review, IEEE, 2005, pp. 19 – 31. [28] K. Zhou, X. Jia, L. Xie, Y. Chang, and X. Tang, “Channel Assignment for WLAN by Considering Overlapping Channels in SINR Interference Model,” in International Conference on Computing, Networking and Communications (ICNC), IEEE, Jan 2012, pp. 1005–1009. [29] M. Kamenetsky and M. Unbehaun, “Coverage Planning for Outdoor Wireless LAN Systems,” in International Zurich Seminar on Broadband Communications, Access, Transmission, Networking, IEEE, 2002, pp. 49–1–49–6. [30] A. Eisenblatter, H.-F. Geerdes, and I. Siomina, “Integrated Access Point Placement and Channel Assignment for Wireless LANs in an Indoor Office Environment,” in International Symposium on a World of Wireless, Mobile and Multimedia Networks, IEEE, June 2007, pp. 1–10. [31] R. Giuliano, F. Mazzenga, M. Petracca, and R. Pomposini, “Performance Evaluation of an Opportunistic Distributed Power Control Procedure for Wireless Multiple Access,” in International Symposium on Communications Control and Signal Processing (ISCCSP), IEEE, May 2012, pp. 1–4. [32] W. Li, Y. Cui, X. Cheng, M. Al-Rodhaan, and A. Al-Dhelaan, “Achieving Proportional Fairness via AP Power Control in Multi-Rate WLANs,” vol. 10, no. 11, November 2011, pp. 3784–3792. [33] E. Gurses and R. Boutaba, “Capacity of Wireless Multi-hop Networks Using Physical Carrier Sense and Transmit Power Control,” in Global Telecommunications Conference (GLOBECOM), IEEE, Nov 2009, pp. 1–6. [34] Y. Yang, J. Hou, and L.-C. Kung, “Modeling the Effect of Transmit Power and Physical Carrier Sense in Multi-Hop Wireless Networks,” in International Conference on Computer Communications (INFOCOM), IEEE, May 2007, pp. 2331–2335. [35] J. W. Chinneck, “Practical Optimization: A Gentle Introduction.” Online Available at: http://www.sce.carleton.ca/faculty/chinneck/po.html [36] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans, “Constraint-based Optimization and Utility Elicitation Using the Minimax Decision Criterion,” Artificial Intelligence, Elsevier, vol. 170, no. 89, pp. 686 – 713, 2006. [37] D. Alevras and M. Padberg, Linear Optimization and Extensions: Problems and Solutions. Springer, 2001. [38] Bonmin project, “Basic Open-source Nonlinear Mixed INteger Programming (Bonmin).” Online Available at: https://projects.coin-or.org/Bonmin [39] G. Foschini and Z. Miljanic, “A Simple Distributed Autonomous Power Control Algorithm and its Convergence,” Transactions on Vehicular Technology, IEEE, vol. 42, no. 4, pp. 641–646, Nov 1993. [40] S.-E. Wei, H.-Y. Hsieh, and H.-J. Su, “Joint Optimization of Cluster Formation and Power Control for Interference-Limited Machine-to-Machine Communications,” in Global Communications Conference (GLOBECOM), IEEE, Dec 2012, pp. 5512–5518. [41] NS-3 Org. Online Available at: https://www.nsnam.org/ [42] 3GPP, “3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access(E-UTRA); Further advancements for E-UTRA physical layer aspects(Release 12),” TR 36.872, Tech. Rep., Aug. 2013. [43] R. Jain, D.-M. Chiu, and W. R. Hawe., A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System. MA: Eastern Research Laboratory, Digital Equipment Corporation, 1984. [44] Y. Liaw, A. Dadej, and A. Jayasuriya, “Performance Analysis of IEEE 802.11 DCF under Limited Load,” in Asia-Pacific Conference on Communications, IEEE, Oct 2005, pp. 759–763. [45] P. Kumar and A. Krishnan, “Throughput Analysis of the IEEE 802.11 Distributed Coordination Function Considering Capture Effects,” in International Conference on Emerging Trends in Engineering and Technology (ICETET), IEEE, Nov 2010, pp. 836–841. [46] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic Media Access for Multirate Ad Hoc Networks,” in International Conference on Mobile Computing and Networking (MobiCom), ACM, 2002, pp. 24–35. [47] C.-W. Hsu and H.-Y. Hsieh, “Design and Analysis for Effective Proximal Discovery in Machine-to-Machine Wireless Networks,” in International Conference on Communications Workshops (ICC), IEEE, 2014. [48] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklos, and Z. Turanyi, “Design Aspects of Network Assisted Device-to-Device Communications,” IEEE Communications Magazine, vol. 50, no. 3, pp. 170–177, 2012. [49] P. Dutta and D. Culler, “Practical Asynchronous Neighbor Discovery and Rendezvous for Mobile Sensing Applications,” in Proceedings of the 6th ACM conference on Embedded network sensor systems, 2008, pp. 71–84. [50] M. Corson, R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirtsis, “Toward Proximity-Aware Internetworking,” IEEE Wireless Communications, vol. 17, no. 6, pp. 26–33, 2010. [51] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovicic, “FlashLinQ: a Synchronous Distributed Scheduler for Peer-to-Peer Ad Hoc Networks,” in Allerton Conference on Communication, Control, and Computing, IEEE, 2010, pp. 514–521. [52] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavildar, and X. Wu, “On the Design of Device-to-Device Autonomous Discovery,” in International Conference on Communication Systems and Networks, IEEE, 2012, pp. 1–9. [53] Z.-J. Yang, J.-C. Huang, C.-T. Chou, H.-Y. Hsieh, C.-W. Hsu, P.-C. Yeh, and C.-C. A. Hsu, “Peer Discovery for Device-to-Device (D2D) Communication in LTE-A Networks,” in Proceedings of IEEE Globecom, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56045 | - |
| dc.description.abstract | 基於IEEE 802.11的Wi-Fi無線通訊技術發展迅速,目前幾乎每一個家庭都裝有一個以上的Wi-Fi基地台。 隨處可見的Wi-Fi基地台雖然提供相當高的覆蓋率,但因IEEE 802.11分散式協同功能(DCF)屬競爭式演算法,在高密度佈建下,將會面對來自鄰近基地台信號干擾、隱藏節點等問題。 為了解決這些問題,Wi-Fi基地台之間的協同式合作將是提高無線網路效率的重要方法,而功率控制更是其中解決信號干擾等問題的關鍵技術。 雖然相關文獻上已有許多探討功率控制的模
型,但他們並未準確地考慮到分散式協同功能。 在本論文中,我們首先分析與建構DCF成功傳輸模型,包含成功通道競爭、資料傳收與ACK傳收等三個步驟。 透過定義並建構不同的集合,我們可以準確地描述Wi-Fi基地台在傳收過程中對彼此的影響。 基於本論文所建構出的DCF成功傳輸模型,我們進一步提出功率控制最佳化設計,包含其最佳化模型與演算法,以提高一個Wi-Fi網路下最差使用者的成功傳輸機率。 模擬結果顯示,相較於傳統的功率控制模型,本論文提出之模型有更高的成功傳輸機率以及更佳的網路公平性。 從微觀的模擬結果我們亦可發現干擾、隱藏節點等問題嚴重影響了傳統功率控制模型的網路品質,而我們的模型能精確地分析與考慮分散式協調功能的特性,可以有效地解決Wi-Fi高密度佈建下的問題。 | zh_TW |
| dc.description.abstract | Due to the rapid development of Wi-Fi networks based on the IEEE 802.11 standards, almost every household has installed at least one Wi-Fi access point(AP). Although dense deployment of APs provides high coverage of wireless networks, high power level of signal from neighbor APs causes many problems including interference and hidden terminals resulted from the contention-based distributed coordinated function (DCF) used by 802.11. Therefore, the collaborative mechanisms between APs will be one of important methods to improve the performance of wireless network and power control will especially be key technique to solve these problems. Although there are many researches discussing about power control model, they do not consider the behavior of DCF. In this thesis, we first analyze the characteristics of DCF and model successful transmission for DCF including three steps: accessing channel, data reception, and ACK reception. We define different sets which can accurately represent the interaction and influence between APs for three steps during transmission. Based on the model of successful transmission for DCF, we find that power setting indeed influences the performance of 802.11 network and we propose power control design. The simulation results show that proposed power control design outperform other models for not only probability of successful transmission but also fairness of network. From microscopic view of simulation results, we find that traditional models suffer from problems of hidden terminal and high interference. For our proposed design, these problems can be solved effectively because we consider and analyze the characteristics of DCF precisely. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:13:52Z (GMT). No. of bitstreams: 1 ntu-103-R01942030-1.pdf: 1080070 bytes, checksum: 7780131146e5d2f643129db922df8772 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 4 2.1 802.11 Distributed Coordination Function . . . . . . . . . . . . . . 4 2.2 Analysis of DCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Cooperated System of Wi-Fi APs . . . . . . . . . . . . . . . . . . 11 2.4 Power Control and Interference Management . . . . . . . . . . . . 13 CHAPTER 3 PROPOSED MODEL FOR CHARACTERISTICS OF DISTRIBUTED COORDINATED FUNCTION . . . . . . . 16 3.1 Definition of Different Sets . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Carrier Sense Set and Silence Set . . . . . . . . . . . . . . . 17 3.1.2 Interference Set . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Three Essential Steps for Successful Transmission . . . . . . . . . 21 3.2.1 Step 1: Successful Accessing Channel . . . . . . . . . . . . 22 3.2.2 Step 2: Successful Data Reception . . . . . . . . . . . . . . 23 3.2.3 Step 3: Successful ACK Reception . . . . . . . . . . . . . . 26 3.3 Validation of Three Essential Steps for Successful Transmission . . 28 3.3.1 Validation of Successful Access Channel . . . . . . . . . . . 28 3.3.2 Validation of Data Reception . . . . . . . . . . . . . . . . . 31 3.3.3 Validation of ACK reception . . . . . . . . . . . . . . . . . 32 CHAPTER 4 NETWORK SCENARIO AND FORMULATION OF POWER CONTROL MODEL . . . . . . . . . . . . . . . . . . 34 4.1 Network Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 Formulation of Constraints . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Formulation of Objective Function . . . . . . . . . . . . . . . . . . 37 4.3.1 Original Objective Function . . . . . . . . . . . . . . . . . 37 4.3.2 Approximation of Objective Function . . . . . . . . . . . . 39 4.3.3 Formulation of Power Control Problem . . . . . . . . . . . 40 4.4 Relaxation of Original Optimization Problem . . . . . . . . . . . . 42 4.4.1 Relaxing the Zero-One Function . . . . . . . . . . . . . . . 42 4.4.2 Relaxing Minimization of the Maximum Value . . . . . . . 43 CHAPTER 5 PROPOSED ALGORITHM AND EVALUATION 46 5.1 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . 46 5.1.1 Proposed BB Algorithm . . . . . . . . . . . . . . . . . . . . 48 5.1.2 Complexity Discussion . . . . . . . . . . . . . . . . . . . . 50 5.2 Different Power Models . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.1 Traditional Exact Power Model . . . . . . . . . . . . . . . . 54 5.2.2 Iterative Power Update Model . . . . . . . . . . . . . . . . 55 5.3 Performance of the Proposed Model . . . . . . . . . . . . . . . . . 56 5.3.1 Simulation Results of Psuc, VCS . . . . . . . . . . . . . . . . 57 5.3.2 Microscopic View of Simulation Results . . . . . . . . . . . 61 5.3.3 Fairness Discussion of Simulation Results . . . . . . . . . . 63 CHAPTER 6 INSIGHTS FROM SIMULATION RESULTS . . . 68 6.1 Intelligent Power Control Design . . . . . . . . . . . . . . . . . . . 68 6.1.1 Wi-Fi IPU Model . . . . . . . . . . . . . . . . . . . . . . . 68 6.1.2 Simulation Results of Wi-Fi IPU Model . . . . . . . . . . . 70 6.2 Adaption to Network Change . . . . . . . . . . . . . . . . . . . . . 72 6.2.1 Power Update Algorithm Adapting to Network Change . . 73 6.2.2 Simulation Results of Network Change . . . . . . . . . . . 74 CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 78 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.2 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 78 APPENDIX A — MODELING DCF FOR DIFFERENT SCENARIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 APPENDIX B — PROXIMAL INFORMATION EXCHANGE . 83 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 | |
| dc.language.iso | en | |
| dc.subject | 功率控制最佳化設計 | zh_TW |
| dc.subject | 高密度佈建 | zh_TW |
| dc.subject | 802.11基地台 | zh_TW |
| dc.subject | 802.11 APs | en |
| dc.subject | dense deployment | en |
| dc.subject | power control model | en |
| dc.title | 802.11 高密度網路之功率控制模型與最佳化研究 | zh_TW |
| dc.title | A Study on Power Control for DCF Basic Access in Dense
Small Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周俊廷(Chun-Ting Chou),魏宏宇(Hung-Yu Wei) | |
| dc.subject.keyword | 802.11基地台,高密度佈建,功率控制最佳化設計, | zh_TW |
| dc.subject.keyword | 802.11 APs,dense deployment,power control model, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
