Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56045
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀(Hung-Yun Hsieh)
dc.contributor.authorChin-Wei Hsuen
dc.contributor.author許晉瑋zh_TW
dc.date.accessioned2021-06-16T05:13:52Z-
dc.date.available2016-08-21
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update 2011-2016.” Online Available at: http://www.cisco.com/c/en/us/
solutions/service-provider/visual-networking-index-vni/index.html
[2] Qualcomm, “1000x: More Small Cells.” Online Available at: http:
//www.qualcomm.com/media/documents/files/1000x-more-small-cells-.pdf
[3] ——, “Neighborhood Small Cell Deployment Model.” Online Available at: http://www.qualcomm.com/media/documents/files/
neighborhood-small-cell-deployment-model.pdf
[4] M. A. Ergin, K. Ramachandran, and M. Gruteser, “Understanding the Effect
of Access Point Density on Wireless LAN Performance,” in International
Conference on Mobile Computing and Networking (MobiCom), ACM, 2007,
pp. 350–353.
[5] C. Mobile, “C-ran: The Road Towards Green Ran,” White Paper, Oct. 2011.
[6] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G.-K. Chang, “The
Case for Re-configurable Backhaul in Cloud-RAN Based Small Cell Networks,” in International Conference on Computer Communications (INFOCOM), IEEE, April 2013, pp. 1124–1132.
[7] C. Liu, L. Zhang, M. Zhu, J. Wang, L. Cheng, and G.-K. Chang, “A Novel
Multi-Service Small-Cell Cloud Radio Access Network for Mobile Backhaul
and Computing Based on Radio-over-fiber Technologies,” Journal of Lightwave Technology, IEEE, vol. 31, no. 17, pp. 2869–2875, Sept. 2013.
[8] “G.992.5 : Asymmetric Digital Subscriber Line 2+ (ADSL2+) Transceivers,”
ITU-T, Tech. Rep., Jan. 2009.
[9] “G.993.2 : Very High Speed Digital Subscriber Line Transceivers 2 (VDSL2),”
ITU, Tech. Rep., Jun. 2012.
[10] “G.652 : Characteristics of a Single-mode Optical Fibre and Cable,” ITU,
Tech. Rep., May 2010.
[11] D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra,
N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, and
A. Oehler, “26 Tbit s-1 Line-Rate Super-Channel Transmission Utilizing AllOptical Fast Fourier Transform Processing,” Nat Photon, Nature Publishing
Group, vol. 5, pp. 364–371, Jun. 2011.
[12] Google, “Google Fiber.” Online Available at: https://fiber.google.com/
about2/
[13] David Nield, “Google Keen to Add Wi-Fi to its Super-Fast Fiber
Network.” Online Available at: http://www.digitaltrends.com/web/
google-keen-add-wi-fi-super-fast-fiber-network/#!bkkhYa
[14] Todd R. Weiss, “Google Fiber Begins Free Public WiFi Tests in
Kansas City.” Online Available at: http://www.eweek.com/networking/
google-fiber-begins-free-public-wifi-tests-in-kansas-city.html
[15] J. Monks, V. Bharghavan, and W.-M. Hwu, “A Power Controlled Multiple
Access Protocol for Wireless Packet Networks,” in International Conference
on Computer Communications (INFOCOM), IEEE, vol. 1, 2001, pp. 219–228.
[16] A. Muqattash and M. Krunz, “Power Controlled Dual Channel (PCDC)
Medium Access Protocol for Wireless Ad Hoc Networks,” in International
Conference on Computer Communications (INFOCOM), IEEE, vol. 1, March
2003, pp. 470–480.
[17] H.-C. Luo, E.-K. Wu, and G.-H. Chen, “A Transmission Power/Rate Control
Scheme in CSMA/CA-Based Wireless Ad Hoc Networks,” in Transactions on
Vehicular Technology, IEEE, vol. 62, no. 1, Jan 2013, pp. 427–431.
[18] Y. Wu, Y. Sun, Y. Ji, J. Mao, and Y. Liu, “A Joint Channel Allocation and
Power Control Scheme for Interference Mitigation in High-Density WLANs,”
in International Conference on Communication Technology (ICCT), IEEE,
Nov 2013, pp. 98–103.
[19] “IEEE Standard of 802.11,” IEEE Standards Association, Tech. Rep., 2012.
[20] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” Journal on Selected Areas in Communications, IEEE, vol. 18,
no. 3, pp. 535–547, March 2000.
[21] M. A. Ergin, K. Ramachandran, and M. Gruteser, “An Experimental Study of
Inter-cell Interference Effects on System Performance in Unplanned Wireless
LAN Deployments,” Computer Networks, Elsevier, vol. 52, no. 14, pp. 2728
– 2744, 2008.
[22] A. Moriuchi, T. Murase, M. Oguchi, A. Baid, S. Sagari, I. Seskar, and D. Raychaudhuri, “Measurement Study of Adjacent Channel Interference in Mobile WLANs,” in International Conference on Communications Workshops
(ICC), IEEE, June 2013, pp. 566–570.
[23] T. Nagai and H. Shigeno, “A Framework of AP Aggregation Using Virtualization for High Density WLANs,” in International Conference on Intelligent
Networking and Collaborative Systems (INCoS), IEEE, Nov 2011, pp. 350–
355.
[24] T. Hamaguchi, T. Komata, T. Nagai, and H. Shigeno, “A Framework of Better Deployment for WLAN Access Point Using Virtualization Technique,” in
International Conference on Advanced Information Networking and Applications Workshops (WAINA), IEEE, April 2010, pp. 968–973.
[25] G.-K. Chang, C. Liu, and L. Zhang, “Architecture and Applications of a
Versatile Small-Cell, Multi-Service Cloud Radio Access Network using Radioover-Fiber Technologies,” in Communications Workshops (ICC), 2013 IEEE
International Conference on, June 2013, pp. 879–883.
[26] J. Riihijarvi, M. Petrova, and P. Mahonen, “Frequency Allocation for WLANs
Using Graph Colouring Techniques,” in Second Annual Conference on Wireless On-demand Network Systems and Services, IEEE, Jan 2005, pp. 216–222.
[27] A. Mishra, S. Banerjee, and W. Arbaugh, “Weighted Coloring Based Channel
Assignment for WLANs,” in SIGMOBILE Mobile Computing and Communications Review, IEEE, 2005, pp. 19 – 31.
[28] K. Zhou, X. Jia, L. Xie, Y. Chang, and X. Tang, “Channel Assignment for
WLAN by Considering Overlapping Channels in SINR Interference Model,”
in International Conference on Computing, Networking and Communications
(ICNC), IEEE, Jan 2012, pp. 1005–1009.
[29] M. Kamenetsky and M. Unbehaun, “Coverage Planning for Outdoor Wireless
LAN Systems,” in International Zurich Seminar on Broadband Communications, Access, Transmission, Networking, IEEE, 2002, pp. 49–1–49–6.
[30] A. Eisenblatter, H.-F. Geerdes, and I. Siomina, “Integrated Access Point
Placement and Channel Assignment for Wireless LANs in an Indoor Office
Environment,” in International Symposium on a World of Wireless, Mobile
and Multimedia Networks, IEEE, June 2007, pp. 1–10.
[31] R. Giuliano, F. Mazzenga, M. Petracca, and R. Pomposini, “Performance
Evaluation of an Opportunistic Distributed Power Control Procedure for
Wireless Multiple Access,” in International Symposium on Communications
Control and Signal Processing (ISCCSP), IEEE, May 2012, pp. 1–4.
[32] W. Li, Y. Cui, X. Cheng, M. Al-Rodhaan, and A. Al-Dhelaan, “Achieving
Proportional Fairness via AP Power Control in Multi-Rate WLANs,” vol. 10,
no. 11, November 2011, pp. 3784–3792.
[33] E. Gurses and R. Boutaba, “Capacity of Wireless Multi-hop Networks Using
Physical Carrier Sense and Transmit Power Control,” in Global Telecommunications Conference (GLOBECOM), IEEE, Nov 2009, pp. 1–6.
[34] Y. Yang, J. Hou, and L.-C. Kung, “Modeling the Effect of Transmit Power
and Physical Carrier Sense in Multi-Hop Wireless Networks,” in International
Conference on Computer Communications (INFOCOM), IEEE, May 2007,
pp. 2331–2335.
[35] J. W. Chinneck, “Practical Optimization: A Gentle Introduction.” Online
Available at: http://www.sce.carleton.ca/faculty/chinneck/po.html
[36] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans, “Constraint-based
Optimization and Utility Elicitation Using the Minimax Decision Criterion,”
Artificial Intelligence, Elsevier, vol. 170, no. 89, pp. 686 – 713, 2006.
[37] D. Alevras and M. Padberg, Linear Optimization and Extensions: Problems
and Solutions. Springer, 2001.
[38] Bonmin project, “Basic Open-source Nonlinear Mixed INteger Programming
(Bonmin).” Online Available at: https://projects.coin-or.org/Bonmin
[39] G. Foschini and Z. Miljanic, “A Simple Distributed Autonomous Power Control Algorithm and its Convergence,” Transactions on Vehicular Technology,
IEEE, vol. 42, no. 4, pp. 641–646, Nov 1993.
[40] S.-E. Wei, H.-Y. Hsieh, and H.-J. Su, “Joint Optimization of Cluster Formation and Power Control for Interference-Limited Machine-to-Machine Communications,” in Global Communications Conference (GLOBECOM), IEEE,
Dec 2012, pp. 5512–5518.
[41] NS-3 Org. Online Available at: https://www.nsnam.org/
[42] 3GPP, “3rd Generation Partnership Project;Technical Specification Group
Radio Access Network;Evolved Universal Terrestrial Radio Access(E-UTRA);
Further advancements for E-UTRA physical layer aspects(Release 12),” TR
36.872, Tech. Rep., Aug. 2013.
[43] R. Jain, D.-M. Chiu, and W. R. Hawe., A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer System.
MA: Eastern Research Laboratory, Digital Equipment Corporation, 1984.
[44] Y. Liaw, A. Dadej, and A. Jayasuriya, “Performance Analysis of IEEE 802.11
DCF under Limited Load,” in Asia-Pacific Conference on Communications,
IEEE, Oct 2005, pp. 759–763.
[45] P. Kumar and A. Krishnan, “Throughput Analysis of the IEEE 802.11
Distributed Coordination Function Considering Capture Effects,” in International Conference on Emerging Trends in Engineering and Technology
(ICETET), IEEE, Nov 2010, pp. 836–841.
[46] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly, “Opportunistic Media Access for Multirate Ad Hoc Networks,” in International Conference on
Mobile Computing and Networking (MobiCom), ACM, 2002, pp. 24–35.
[47] C.-W. Hsu and H.-Y. Hsieh, “Design and Analysis for Effective Proximal
Discovery in Machine-to-Machine Wireless Networks,” in International Conference on Communications Workshops (ICC), IEEE, 2014.
[48] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklos, and
Z. Turanyi, “Design Aspects of Network Assisted Device-to-Device Communications,” IEEE Communications Magazine, vol. 50, no. 3, pp. 170–177,
2012.
[49] P. Dutta and D. Culler, “Practical Asynchronous Neighbor Discovery and
Rendezvous for Mobile Sensing Applications,” in Proceedings of the 6th ACM
conference on Embedded network sensor systems, 2008, pp. 71–84.
[50] M. Corson, R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirtsis, “Toward
Proximity-Aware Internetworking,” IEEE Wireless Communications, vol. 17,
no. 6, pp. 26–33, 2010.
[51] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and
A. Jovicic, “FlashLinQ: a Synchronous Distributed Scheduler for Peer-to-Peer
Ad Hoc Networks,” in Allerton Conference on Communication, Control, and
Computing, IEEE, 2010, pp. 514–521.
[52] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavildar, and X. Wu, “On the Design of Device-to-Device Autonomous Discovery,” in International Conference on Communication Systems and Networks,
IEEE, 2012, pp. 1–9.
[53] Z.-J. Yang, J.-C. Huang, C.-T. Chou, H.-Y. Hsieh, C.-W. Hsu, P.-C. Yeh, and
C.-C. A. Hsu, “Peer Discovery for Device-to-Device (D2D) Communication
in LTE-A Networks,” in Proceedings of IEEE Globecom, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56045-
dc.description.abstract基於IEEE 802.11的Wi-Fi無線通訊技術發展迅速,目前幾乎每一個家庭都裝有一個以上的Wi-Fi基地台。 隨處可見的Wi-Fi基地台雖然提供相當高的覆蓋率,但因IEEE 802.11分散式協同功能(DCF)屬競爭式演算法,在高密度佈建下,將會面對來自鄰近基地台信號干擾、隱藏節點等問題。 為了解決這些問題,Wi-Fi基地台之間的協同式合作將是提高無線網路效率的重要方法,而功率控制更是其中解決信號干擾等問題的關鍵技術。 雖然相關文獻上已有許多探討功率控制的模
型,但他們並未準確地考慮到分散式協同功能。 在本論文中,我們首先分析與建構DCF成功傳輸模型,包含成功通道競爭、資料傳收與ACK傳收等三個步驟。 透過定義並建構不同的集合,我們可以準確地描述Wi-Fi基地台在傳收過程中對彼此的影響。 基於本論文所建構出的DCF成功傳輸模型,我們進一步提出功率控制最佳化設計,包含其最佳化模型與演算法,以提高一個Wi-Fi網路下最差使用者的成功傳輸機率。 模擬結果顯示,相較於傳統的功率控制模型,本論文提出之模型有更高的成功傳輸機率以及更佳的網路公平性。 從微觀的模擬結果我們亦可發現干擾、隱藏節點等問題嚴重影響了傳統功率控制模型的網路品質,而我們的模型能精確地分析與考慮分散式協調功能的特性,可以有效地解決Wi-Fi高密度佈建下的問題。
zh_TW
dc.description.abstractDue to the rapid development of Wi-Fi networks based on the IEEE 802.11 standards, almost every household has installed at least one Wi-Fi access point(AP). Although dense deployment of APs provides high coverage of wireless networks, high power level of signal from neighbor APs causes many problems including interference and hidden terminals resulted from the contention-based distributed coordinated function (DCF) used by 802.11. Therefore, the collaborative mechanisms between APs will be one of important methods to improve the performance of wireless network and power control will especially be key technique to solve these problems. Although there are many researches discussing about power control model, they do not consider the behavior of DCF. In this thesis, we first analyze the characteristics of DCF and model successful transmission for DCF including three steps: accessing channel, data reception, and ACK reception. We define different sets which can accurately represent the interaction and influence between APs for three steps during transmission. Based on the model of successful transmission for DCF, we find that power setting indeed influences the performance of 802.11 network and we propose power control design. The simulation results show that proposed power control design outperform other models for not only probability of successful transmission but also fairness of network. From microscopic view of simulation results, we find that traditional models suffer from problems of hidden terminal and high interference. For our proposed design, these problems can be solved effectively because we consider and analyze the characteristics of DCF precisely.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:13:52Z (GMT). No. of bitstreams: 1
ntu-103-R01942030-1.pdf: 1080070 bytes, checksum: 7780131146e5d2f643129db922df8772 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 4
2.1 802.11 Distributed Coordination Function . . . . . . . . . . . . . . 4
2.2 Analysis of DCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Cooperated System of Wi-Fi APs . . . . . . . . . . . . . . . . . . 11
2.4 Power Control and Interference Management . . . . . . . . . . . . 13
CHAPTER 3 PROPOSED MODEL FOR CHARACTERISTICS
OF DISTRIBUTED COORDINATED FUNCTION . . . . . . . 16
3.1 Definition of Different Sets . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Carrier Sense Set and Silence Set . . . . . . . . . . . . . . . 17
3.1.2 Interference Set . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Three Essential Steps for Successful Transmission . . . . . . . . . 21
3.2.1 Step 1: Successful Accessing Channel . . . . . . . . . . . . 22
3.2.2 Step 2: Successful Data Reception . . . . . . . . . . . . . . 23
3.2.3 Step 3: Successful ACK Reception . . . . . . . . . . . . . . 26
3.3 Validation of Three Essential Steps for Successful Transmission . . 28
3.3.1 Validation of Successful Access Channel . . . . . . . . . . . 28
3.3.2 Validation of Data Reception . . . . . . . . . . . . . . . . . 31
3.3.3 Validation of ACK reception . . . . . . . . . . . . . . . . . 32
CHAPTER 4 NETWORK SCENARIO AND FORMULATION
OF POWER CONTROL MODEL . . . . . . . . . . . . . . . . . . 34
4.1 Network Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Formulation of Constraints . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Formulation of Objective Function . . . . . . . . . . . . . . . . . . 37
4.3.1 Original Objective Function . . . . . . . . . . . . . . . . . 37
4.3.2 Approximation of Objective Function . . . . . . . . . . . . 39
4.3.3 Formulation of Power Control Problem . . . . . . . . . . . 40
4.4 Relaxation of Original Optimization Problem . . . . . . . . . . . . 42
4.4.1 Relaxing the Zero-One Function . . . . . . . . . . . . . . . 42
4.4.2 Relaxing Minimization of the Maximum Value . . . . . . . 43
CHAPTER 5 PROPOSED ALGORITHM AND EVALUATION 46
5.1 Branch and Bound Algorithm . . . . . . . . . . . . . . . . . . . . 46
5.1.1 Proposed BB Algorithm . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Complexity Discussion . . . . . . . . . . . . . . . . . . . . 50
5.2 Different Power Models . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Traditional Exact Power Model . . . . . . . . . . . . . . . . 54
5.2.2 Iterative Power Update Model . . . . . . . . . . . . . . . . 55
5.3 Performance of the Proposed Model . . . . . . . . . . . . . . . . . 56
5.3.1 Simulation Results of Psuc, VCS
. . . . . . . . . . . . . . . . 57
5.3.2 Microscopic View of Simulation Results . . . . . . . . . . . 61
5.3.3 Fairness Discussion of Simulation Results . . . . . . . . . . 63
CHAPTER 6 INSIGHTS FROM SIMULATION RESULTS . . . 68
6.1 Intelligent Power Control Design . . . . . . . . . . . . . . . . . . . 68
6.1.1 Wi-Fi IPU Model . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Simulation Results of Wi-Fi IPU Model . . . . . . . . . . . 70
6.2 Adaption to Network Change . . . . . . . . . . . . . . . . . . . . . 72
6.2.1 Power Update Algorithm Adapting to Network Change . . 73
6.2.2 Simulation Results of Network Change . . . . . . . . . . . 74
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 78
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 78
APPENDIX A — MODELING DCF FOR DIFFERENT SCENARIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
APPENDIX B — PROXIMAL INFORMATION EXCHANGE . 83
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
dc.language.isoen
dc.subject功率控制最佳化設計zh_TW
dc.subject高密度佈建zh_TW
dc.subject802.11基地台zh_TW
dc.subject802.11 APsen
dc.subjectdense deploymenten
dc.subjectpower control modelen
dc.title802.11 高密度網路之功率控制模型與最佳化研究zh_TW
dc.titleA Study on Power Control for DCF Basic Access in Dense
Small Cells
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周俊廷(Chun-Ting Chou),魏宏宇(Hung-Yu Wei)
dc.subject.keyword802.11基地台,高密度佈建,功率控制最佳化設計,zh_TW
dc.subject.keyword802.11 APs,dense deployment,power control model,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2014-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved