請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56021完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王珮玲(Pei-Ling Wang) | |
| dc.contributor.author | Yi-Chun Sung | en |
| dc.contributor.author | 宋翊羣 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:13:13Z | - |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Kruger, M., 2006, Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania: Environmental Microbiology, v. 8, no. 4, p. 574-590.
Bahr, A., Pape, T., Abegg, F., Bohrmann, G., van Weering, T., and Ivanov, M. K., 2010, Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics - Results from the combination of CT imaging with mineralogical and stable isotope analyses: Marine and Petroleum Geology, v. 27, no. 9, p. 1819-1829. Bernard, B. B., Brooks, J. M., and Sackett, W. M., 1978, Light-Hydrocarbons in Recent Texas Continental-Shelf and Slope Sediments: Journal of Geophysical Research-Oceans and Atmospheres, v. 83, no. Nc8, p. 4053-4061.. Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B. B., Witte, U., and Pfannkuche, O., 2000, A marine microbial consortium apparently mediating anaerobic oxidation of methane: Nature, v. 407, no. 6804, p. 623-626. Borowski, W. S., Paull, C. K., and Ussler, W., 1999, Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates: Marine Geology, v. 159, no. 1-4, p. 131-154. Bowman, J., 2006, The Methanotrophs - The Families Methylococcaceae and Methylocystaceae. In The Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds): Springer New York, pp.266-289 Brooks, J. M., Kennicutt, M. C., Fay, R. R., Mcdonald, T. J., and Sassen, R., 1984, Thermogenic Gas Hydrates in the Gulf of Mexico: Science, v. 225, no. 4660, p. 409-411. Chao, H.-C., You, C.-F., and Sun, C.-H., 2010, Gases in Taiwan mud volcanoes: Chemical composition, methane carbon isotopes, and gas fluxes: Applied Geochemistry, v. 25, no. 3, p. 428-436. Chao, H.-C., You, C.-F., Wang, B.-S., Chung, C.-H., and Huang, K.-F., 2011, Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones: Earth and Planetary Science Letters, v. 305, no. 1-2, p. 32-44. Chang, C. P., Angelier, J., Huang, C. Y., and Liu, C. S., 2001, Structural evolution and significance of a melange in a collision belt: the Lichi Melange and the Taiwan arc-continent collision: Geological Magazine, v. 138, no. 6, p. 633-651. Chang, Y. H., Cheng, T. W., Lai, W. J., Tsai, W. Y., Sun, C. H., Lin, L. H., and Wang, P. L., 2012, Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan: Environmental Microbiology, v. 14, no. 4, p. 895-908. Chung, H. M., Gormly, J. R., and Squires, R. M., 1988, Origin of Gaseous Hydrocarbons in Subsurface Environments - Theoretical Considerations of Carbon Isotope Distribution: Chemical Geology, v. 71, no. 1-3, p. 97-103. Conrad, R., 1989, Control of Methane Production in Terrestrial Ecosystems: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, v. 47, p. 39-58. Conrad, R., 1989, Control of Methane Production in Terrestrial Ecosystems: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, v. 47, p. 39-58. Conrad, R., 2009, “The global methane cycle: recent advances in understanding the microbial processes involved” Environmental Microbiology Reports 1:285-292 Costello, A. M., Auman, A. J., Macalady, J. L., Scow, K. M., and Lidstrom, M. E., 2002, Estimation of methanotroph abundance in a freshwater lake sediment: Environmental Microbiology, v. 4, no. 8, p. 443-450. Dimitrov, L. I., 2002, Mud volcanoes - the most important pathway for degassing deeply buried sediments: Earth-Science Reviews, v. 59, no. 1-4, p. 49-76. Elvert, M., Boetius, A., Knittel, K., and Jorgensen, B. B., 2003, Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane: Geomicrobiology Journal, v. 20, no. 4, p. 403-419. Etiope, G., Baciu, C., Caracausi, A., Italiano, F., and Cosma, C., 2004, Gas flux to the atmosphere from mud volcanoes in eastern Romania: Terra Nova, v. 16, no. 4, p. 179-184. Etiope, G., Lassey, K. R., Klusman, R. W., and Boschi, E., 2008, Reappraisal of the fossil methane budget and related emission from geologic sources: Geophysical Research Letters, v. 35, no. 9. Etiope, G., Feyzullayev, A., Milkov, A. V., Waseda, A., Mizobe, K., and Sun, C. H., 2009, Evidence of subsurface anaerobic biodegradation of hydrocarbons and potential secondary methanogenesis in terrestrial mud volcanoes: Marine and Petroleum Geology, v. 26, no. 9, p. 1692-1703. Faber, E., and Stahl, W., 1984, Geochemical Surface Exploration for Hydrocarbons in North-Sea: Aapg Bulletin-American Association of Petroleum Geologists, v. 68, no. 3, p. 363-386. Hanson, R. S., and Hanson, T. E., 1996, Methanotrophic bacteria: Microbiological Reviews, v. 60, no. 2, p. 439-471. Knittel, K., Boetius, A., Lemke, A., Eilers, H., Lochte, K., Pfannkuche, O., Linke, P., and Amann, R., 2003, Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon): Geomicrobiology Journal, v. 20, no. 4, p. 269-294. Knittel, K., and Boetius, A., 2009, Anaerobic Oxidation of Methane: Progress with an Unknown Process: Annual Review of Microbiology, v. 63, p. 311-334. Kopf, A. J., 2002, Significance of mud volcanism: Reviews of Geophysics, v. 40, no. 2. Liu, C. S., Huang, I. L., and Teng, L. S., 1997, Structural features off southwestern Taiwan: Marine Geology, v. 137, no. 3-4, p. 305-319. Liu, Y. C., and Whitman, W. B., 2008, Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea: Incredible Anaerobes: From Physiology to Genomics to Fuels, v. 1125, p. 171-189. Lloyd, K. G., Lapham, L., and Teske, A., 2006, Anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments: Applied and Environmental Microbiology, v. 72, no. 11, p. 7218-7230. Madigan, M.T., Martinko, J.M., and Parker, J., 2003, Brock’s Biology of Microorganisms. 10th Ed. Prentice Hall, NJ. Milkov, A. V., 2000, Worldwide distribution of submarine mud volcanoes and associated gas hydrates: Marine Geology, v. 167, no. 1-2, p. 29-42. Milkov, A. V., and Sassen, R., 2003, Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope: Marine and Petroleum Geology, v. 20, no. 2, p. 111-128. Milkov, A. V., Claypool, G. E., Lee, Y. J., Xu, W. Y., Dickens, G. R., and Borowski, W. S., 2003, In situ methane concentrations, at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory from an active margin: Geology, v. 31, no. 10, p. 833-836. Niemann, H., and Elvert, M., 2008, Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate: Organic Geochemistry, v. 39, no. 12, p. 1668-1677. Niemann, H., Losekann, T., de Beer, D., Elvert, M., Nadalig, T., Knittel, K., Amann, R., Sauter, E. J., Schluter, M., Klages, M., Foucher, J. P., and Boetius, A., 2006, Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink: Nature, v. 443, no. 7113, p. 854-858. Pohlman, J. W., Bauer, J. E., Waite, W. F., Osburn, C. L., and Chapman, N. R., 2011, Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans: Nature Geoscience, v. 4, no. 1, p. 37-41. Pohlman, J. W., Canuel, E. A., Chapman, N. R., Spence, G. D., Whiticar, M. J., and Coffin, R. B., 2005, The origin of thermogenic gas hydrates on the northern Cascadia Margin as inferred from isotopic (C-13/C-12 and D/H) and molecular composition of hydrate and vent gas: Organic Geochemistry, v. 36, no. 5, p. 703-716. Reay, D., Smith, P., and Amstel, A.v., 2010, Methane and climate change. Washington, DC: Earthscan. Reeburgh, W. S., 1980, Anaerobic Methane Oxidation - Rate Depth Distributions in Skan Bay Sediments: Earth and Planetary Science Letters, v. 47, no. 3, p. 345-352. Reeburgh, W. S., 2007, Oceanic methane biogeochemistry: Chemical Reviews, v. 107, no. 2, p. 486-513. Shih, T.T., 1967, A survey of the active mud volcanoes in Taiwan and a study of theirtypes and the character of the mud. Petroleum Geology of Taiwan v. 5, p. 259–311. Sun, S.C., and Liu, C.S., 1993. Mud diapers and submarine channel deposits in offshore Kaohsiung–Hengchun, southwest Taiwan. Petroleum Geology of Taiwan v. 28,p. 1–14. Sun, C. H., Chang, S. C., Kuo, C. L., Wu, J. C., Shao, P. H., and Oung, J. N., 2010, Origins of Taiwan's mud volcanoes: Evidence from geochemistry: Journal of Asian Earth Sciences, v. 37, no. 2, p. 105-116. Treude, T., Boetius, A., Knittel, K., Wallmann, K., and Jorgensen, B. B., 2003, Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean: Marine Ecology Progress Series, v. 264, p. 1-14. Trotsenko, Y. A., and Murrell, J. C., 2008, Metabolic aspects of aerobic obligate methanotrophy: Advances in Applied Microbiology, Vol 63, v. 63, p. 183-229. Valentine, D. L., Kastner, M., Wardlaw, G. D., Wang, X. C., Purdy, A., and Bartlett, D. H., 2005, Biogeochemical investigations of marine methane seeps, Hydrate Ridge, Oregon: Journal of Geophysical Research-Biogeosciences, v. 110, no. G2. DOI:10.1029/2005JG000025 Waechter-Brulla, D., Dispirito, A. A., Chistoserdova, L. V., and Lidstrom, M. E., 1993, Methanol Oxidation Genes in the Marine Methanotroph Methylomonas Sp Strain-A4: Journal of Bacteriology, v. 175, no. 12, p. 3767-3775. Whiticar, M. J., 1999, Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane: Chemical Geology, v. 161, no. 1-3, p. 291-314. Yang, T.F., Yeh, G.-H., Fu, C.-C., Wang, C,-C., Lan, T.-F., Lee, H.F., Chen, C.H., Walia, V., and Sung, Q.C., 2004, Composition and exhalation flux of gases from mud volcanoes in Taiwan. Environmental Geology, v. 46, p. 1003-1011. You, C.F., Gieskes, J.M., Lee, T., Yui, T.F., and Chen, H.W., 2004. Geochemistry ofmud volcano fluids in the Taiwan accretionary prism. Applied Geochemistry, v. 19, p. 695–707. 張永欣 (2011) 台灣東部雷公火泥火山之微生物甲烷循環. 國立臺灣大學理學院地質科學系暨研究所碩士論文,共111頁。 許哲維 (2012) 臺灣東部雷公火泥火山中厭氧型甲烷氧化作用與含鐵礦物之關係,國立臺灣大學海洋研究所碩士論文,共75頁。 賴玟錦 (2013) 台灣東部雷公火泥火山沉積物岩芯之孔隙水地球化學特性及其微生物活動隱示,國立臺灣大學海洋研究所碩士論文,共80頁。 孫宛鈴 (2013) 台灣東部雷公火泥火山噴泥中微生物產甲烷作用與鹽度及溫度變化之關係,國立臺灣大學海洋研究所碩士論文,共78頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56021 | - |
| dc.description.abstract | 厭氧型甲烷氧化作用 (Anaerobic Oxidation of Methane, AOM) 在甲烷供應充足的厭氧環境中已被廣泛發現,其中海底泥火山和滲流系統的研究發現沈積層中總有機碳和溶解有機碳含量和穩定碳同位素組成在 AOM 作用深度範圍內有明顯變化,因此推論AOM 作用不僅消耗來自深處的甲烷並形成冷泉碳酸鹽的堆積,也製造有機碳進入孔隙水和沈積物中,形成特殊的碳循環路徑,將老碳轉換成其他生物可以使用的能源。
相較於海域泥火山和滲流系統,陸域泥火山的 AOM 作用研究十分缺乏,而以甲烷為主要成份的台灣東部雷公火泥火山,已經利用地球化學和分子生物分析,證實此處普遍存在與鐵還原合作的AOM作用進行,值得對於其碳循環的特徵進一步探討。因此,本研究分析雷公火泥火山的噴泥與周圍岩芯中溶解態有機碳、無機碳和固態無機碳、有機碳的含量與其穩定碳同位素組成,以期深入了解陸域泥火山中 AOM 和其他微生物在碳循環中扮演的角色。 分析結果顯示在雷公火泥火山的沉積物岩芯中微生物組成複雜且變動頻繁,隨著時間推移和空間變化彼此間差異極大,除了厭氧型甲烷氧化菌和產甲烷菌之外,還有光合作用菌和異營生物同時存在於此,且影響此地的有機碳和無機碳變動。根據岩芯中有機碳含量和其 d13C 值可將此地有機碳累積和消耗的特徵分成三種類型,在不同類型中各種生物的作用及其對於有機碳增減的貢獻程度不一。整體而言,岩芯中不同碳成分在其含量和穩定碳同位素組成受控於生物族群的明顯差異,變動複雜的微生物族群是影響雷公火泥火山中碳循環的關鍵,然而控制生物族群變動的環境因素與調控因子則仍待進一步釐清。 | zh_TW |
| dc.description.abstract | Anaerobic Oxidation of Methane (AOM) has been widely discovered in methane-rich environments. In marine mud volcanoes and cold seep environments, the AOM activity could enhance the quantity and change the isotopic composition of organic and inorganic carbon in pore water and sediments. Apparently, the AOM activity not only consume deep-sourced methane and produce authigenic carbonates, but also transform dead carbon to organic carbon which becomes a new energy sources for other microorganisms.
The AOM activity in terrestrial mud volcanoes has not been well studied. Previous geochemical and molecular studies have shown that an iron-coupled AOM occurred in core sediments of Lei-Gong-Huo mud volcano (LGHMV) in eastern Taiwan and furthermore investigation of its characteristics of carbon cycle is expected. In order to reveal the role of AOM and other microbial activities in carbon cycle, the abundance and d13C values of organic/inorganic carbon of bubbling fluid and core sediments were analyzed. The results indicate that the spatial and temporal variations of microbial communities and carbon dymanics are significant in core sediments. Although the AOM plays a critical role in all sampling sites near bubbling pools, other microorganisms, including heterotrophs, phototrophs and methanogens, are also important to overall carbon cycle. The distribution of organic carbon in core sediments can be divided into three types. Each type shows a distinguishable pattern and is contributed by different microbial processes. Overall, the differences in abundance and d13C values of different carbon compounds in core sediments result from the dynamic variation of complexly structured microbial communities. Further evaluation of environmental controls and regulations on microbial communities may provide a clue to deeply understand the carbon cycle in LGHMV. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:13:13Z (GMT). No. of bitstreams: 1 ntu-103-R01241310-1.pdf: 5969558 bytes, checksum: 582dac9e0b8d366dc0828d49cab9ca09 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 II
摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 甲烷在碳循環中的角色 1 1.1.1海底泥火山與滲流系統在碳循環中扮演的角色 2 1.2微生物對甲烷循環影響 3 1.2.1微生物產甲烷作用 3 1.2.2微生物甲烷氧化作用 5 1.3泥火山對甲烷循環的調控 6 1.3.1台灣泥火山的地化特徵 7 1.3.2 台灣泥火山的微生物甲烷循環研究 8 1.4研究動機與目的 10 第二章 研究材料與方法 12 2.1 採樣地點 12 2.2 採樣方法 12 2.3沉積物化學分析 18 2.3.1 總碳、有機碳和無機碳含量分析 18 2.3.2沉積物總有機碳之穩定碳同位素分析 19 2.3.3沉積物總無機碳之穩定碳同位素分析 20 2.3.4沉積物總有機碳、無機碳之14C分析 21 2.4沉積物孔隙水化學 22 第三章 分析結果 23 3.1 沉積物孔隙水 23 3.1.1 孔隙水中溶解甲烷 23 3.1.2 孔隙水中溶解無機碳 23 3.1.3 孔隙水中溶解有機碳 25 3.2 沉積物有機碳含量 26 3.3 沉積物無機碳含量 29 3.4 沉積物有機碳之穩定碳同位素分析 31 3.5 沉積物無機碳之穩定碳同位素分析 32 3.6 沉積物有機碳、無機碳之C-14定年 33 3.7噴泥樣品分析 38 3.7.1 噴泥有機碳含量與穩定碳同位素分析結果 38 3.7.2 噴泥無機碳含量與穩定碳同位素分析結果 38 3.8 利吉層樣品分析結果 39 第四章 討論 41 4.1 雷公火泥火山之甲烷消耗與產生機制 41 4.1.1 AOM 作用進行之證據 41 4.1.2 產甲烷作用進行之證據 42 4.2 泥火山中進行之其他生物作用 53 4.3 雷公火泥火山噴泥與利吉層之變化與比較 53 4.4 泥火山岩芯中有機碳和無機碳變動模式 57 4.4.1 第一型有機碳累積模式 58 4.4.2 第二型有機碳累積模式 59 4.4.3 第三型有機碳累積模式 60 4.5 泥火山岩芯中新增有機碳之來源 61 4.6 泥火山岩芯在空間時間上的變化 63 4.7雷公火泥火山之碳循環模型 64 第五章 結論 67 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 厭氧型甲烷氧化作用 | zh_TW |
| dc.subject | 泥火山 | zh_TW |
| dc.subject | 碳循環 | zh_TW |
| dc.subject | 雷公火 | zh_TW |
| dc.subject | 穩定同位素分析 | zh_TW |
| dc.subject | stable isotope analysis | en |
| dc.subject | Lei-Gong-Huo | en |
| dc.subject | Mud Volcano | en |
| dc.subject | Carbon Cycle | en |
| dc.subject | AOM | en |
| dc.title | 台灣東部雷公火泥火山之碳循環 | zh_TW |
| dc.title | Carbon Cycle in Lei-Gong-Huo Mud Volcano of Eastern Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立虹(Li-Hung Lin),林玉詩(Yu-Shih Lin),蘇志杰(Chih-Chieh Su) | |
| dc.subject.keyword | 雷公火,泥火山,碳循環,厭氧型甲烷氧化作用,穩定同位素分析, | zh_TW |
| dc.subject.keyword | Lei-Gong-Huo,Mud Volcano,Carbon Cycle,AOM,stable isotope analysis, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 5.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
