請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56013
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐百輝(Pai-Hui Hsu) | |
dc.contributor.author | Pei-Chi Huang | en |
dc.contributor.author | 黃姵綺 | zh_TW |
dc.date.accessioned | 2021-06-16T05:13:01Z | - |
dc.date.available | 2019-09-12 | |
dc.date.copyright | 2014-09-12 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | 徐百輝,2003。小波轉換應用於高光譜影像光譜特徵萃取之研究,博士論文,國立成功大學測量工程學系,台南,第116-137頁。
曾智敏,2005。航照像對共軛點匹配自動化研究,碩士論文, 逢甲大學土地管理學系,台中,第11-13頁。 蔡宗穎,2008。以小波為基礎之智慧型雜訊消除,碩士論文,國立東華大學電機工程學系,花蓮,第17-21頁。 Arneodo, A., N. Decoster, and S. G. Roux, 2000. A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces, The European Physical Journal B-Condensed Matter and Complex Systems, 15(3):567-600. Al-Halabi, Y. S., and H. J. Abd, 2011. New wavelet-based techniques for edge detection, Journal of Theoretical and Applied Information Technology, 23(1):31-38. Brown, M., and D. Lowe, 2002. Invariant features from interest point groups, British Machine Vision Conference, Cardiff, Wales, pp. 656-665. Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool, 2008. SURF: Speeded Up Robust Features, Computer vision and image understanding, 110(3):346-359. Bařina, D., 2010. Wavelet transform based feature detection, Proceedings of the 16th Conference STUDENT EEICT 2010, pp. 208-212. Donoho, D. L. and J. M. Johnstone, 1994. Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81(3):425-455. Damerval, C., and S. Meignen, 2007. Blob detection with wavelet maxima lines, IEEE Signal Processing Letters, 14(1):39-42. Damerval, C. and S. Meignen, 2007. Interest point detection with wavelet maxima lines, Technical Report, HAL Inria, no. 171678. Förstner, W., T. Dickscheid, and F. Schindler, 2009. Detecting interpretable and accurate scale-invariant keypoints, 2009 IEEE 12th International Conference on Computer Vision, pp. 2256-2263. Harris, C., and M. Stephens, 1988. A combined corner and edge detector, Fourth Alvey Vision Conference, Manchester, UK, pp. 147-151. Hua, J., and Q. Liao, 2000. Wavelet-based multiscale corner detection, Signal Processing Proceedings of WCCC-ICSP 2000, 5th International Conference on IEEE, Vol. 1, pp. 341-344. Jaffard, S., B. Lashermes, and P. Abry, 2007. Wavelet leaders in multifractal analysis, Wavelet Analysis and Applications, Birkhauser Verlag Basel, Switzerland, pp.201-246. Juan, L., and O. Gwun, 2009. A comparison of SIFT, PCA-SIFT and SURF, International Journal of Image Processing (IJIP), 3(4):143-152. Kaspers, A., 2011. Blob detection, Biomedical Image Sciences, Image Sciences Institute, University Medical Center Utrecht. Lindeberg, T., 1993. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention, International Journal of Computer Vision, 11(3): 283-318. Lindeberg, T., 1994. Scale-space theory: A basic tool for analysing structures at different scales, Journal of Applied Statistics, 21(2):224-270. Lee, J. S., Y. N. Sun, and C. H. Chen, 1995. Multiscale corner detection by using wavelet transform, IEEE Transactions on Image Processing, 4(1):100-104. Li, J., 2003. A wavelet approach to edge detection, Master dissertation, University of Sam Houston State, Huntsville, Texas. Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60(2):91-110. Lim, J., Y. Kim, and J. Paik, 2009. Comparative analysis of wavelet-based scale-invariant feature extraction using different wavelet bases, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(4): 29-38. Muzy, J. F., E. Bacry, and A. Arneodo, 1991. Wavelets and multifractal formalism for singular signals: application to turbulence data, Physical Review Letters, 67(25):3515-3518. Mallat, S., and S. Zhong, 1992. Characterization of signals from multiscale edges, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7): 710-732. Mallat, S., and W. L. Hwang, 1992. Singularity detection and processing with wavelets, IEEE Transactions on Information Theory, 38(2):617-643. Mallat, S., 2009. A wavelet tour of signal processing: the sparse way, Third Edition, Academic Press, Amsterdam, Boston: Elsevier, 102p & 205-259p & 328-336p. MathWorks, 2014. Matlab documentation center, URL: http://www.mathworks.com/help/wavelet/gs/continuous-wavelet-transform.html (last date accessed: 5 June 2014). OpenCV, 2014. OpenCV 3.0.0-dev documentation, Introduction to SURF (Speeded-Up Robust Features), URL: http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html (last date accessed: 21 June 2014). PyWavelets, 2014. Wavelet properties browser, URL: http://wavelets.pybytes.com/ (last date accessed: 3 July 2014). Quddus, A., and M. Gabbouj, 2002. Wavelet-based corner detection technique using optimal scale, Pattern Recognition Letters, 23(1):215-220. Szeliski, R., 2011. Computer vision: algorithms and applications, Springer London, 203 p. Witkin, A.P., 1983. Scale-space filtering, International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp. 1019-1022. Wolf, P. R., and B. A. Dewitt, 2004. Elements of Photogrammetry: with applications in GIS, Third Edition, McGraw-Hill, Singapore, pp. 339-341. Wikipedia, 2006. URL: http://en.wikipedia.org/wiki/File:Corner.png (last date accessed: 21 June 2014). Xia, J., J. L. Xiong, X. Xu, and H. Qin, 2010. A multiscale sub-pixel detector for corners in camera calibration targets, 2010 International Conference on Intelligent Computation Technology and Automation (ICICTA), Vol. 1, pp. 196-199. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56013 | - |
dc.description.abstract | 隨著電腦視覺及影像處理技術之發展,攝影測量共軛點的量測方式已由傳統的人工選點轉變為自動匹配,各種不同的影像匹配演算法也逐漸被提出。Lowe (2004)所提出的SIFT演算法與Bay et al. (2008)提出的SURF演算法即屬於特徵式匹配法,已被廣泛使用於電腦視覺及攝影測量領域中。由於SIFT與SURF在進行特徵點偵測時,皆必須進行大量的計算,並以經驗法則決定相關的門檻值,此外在特徵點偵測與描述元計算為兩個不同的計算步驟,因此運算效能上較為費時。小波轉換法是一種良好且具有完整數學理論的資料轉換方法,其所具有的多重解析度特性與SIFT找尋關鍵點所使用的高斯金字塔概念類似,但小波轉換具有較佳的極值點搜尋效能。過去研究中小波轉換大都用於影像中明顯的角點偵測或邊緣線偵測,本研究則希望建構一套以小波轉換為基礎之影像匹配法,希望能利用一次小波轉換後的數值完成影像匹配的步驟,發展出一套較有效率的方法。在本研究的實驗中分別以模擬影像以及實際影像進行測試與分析,於模擬影像中探討不同特徵點的特性,並於實際影像中檢驗研究流程中各步驟方法之適用性,並以最小二乘匹配法、相對方位解算成果以及核線幾何對應的方法進行成果評估,實驗成果顯示分別在四組影像相比下,除了LSM的評估成果本研究方法約為1個pixel上下而SIFT與SURF的精度小於1個pixel之外,在相對方位以及核線幾何的成果評估當中,本研究之匹配成果可優於SURF的方法,雖然無法優於SIFT的方法,但可達到與SIFT相近的精度。 | zh_TW |
dc.description.abstract | With the development of technology in both computer vision and image processing, a variety of image matching algorithms have been gradually proposed. The SIFT algorithm proposed by Lowe (2004) and the SURF algorithm proposed by Bay et al. (2008) belong to a kind of feature-based image matching and are widely used in both computer vision and photogrammetry field. In the stage of feature detection, no matter in SIFT or SURF, there is a great amount of calculation in finding extremes and the thresholds for keypoint localization are determined by experience. Besides, it is time-consuming when doing keypoint detection and producing keypoint descriptors in difference methods in both SIFT and SURF. Wavelet transform is one of the most popular analysis tools of the time-frequency transformation. The basic concept of wavelet multiresolution analysis is very similar to the Gaussian pyramid which is used in SIFT, but wavelet transform can detect the extreme points more accurately and has a better efficiency in searching extreme points. Generally, the wavelet transform is commonly used to detect the distinct features such as corners and edges. In this study, the wavelet transform is used to construct a feature-based image matching method for both detecting keypoints and calculating descriptors. In the experiment of this study, the proposed method is applied on both simulated images and a set of aerial images. The simulated image is used to investigate the characteristic of the keypoints in difference methods. And the aerial images are used to verify the performance of each step in the proposed method. The performance are illustrated comparing with the SIFT and SURF algorithm for least square matching (LSM), solving the relative orientation and epipolar geometry. The LSM results show that the error of conjugate point is about 1 pixel in our method and less then 1 pixel in both SIFT and SURF. But in the relative orientation and epipolar geometry result, our method performs better than SURF algorithm and is close to SIFT algorithm. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:13:01Z (GMT). No. of bitstreams: 1 ntu-103-R01521115-1.pdf: 8667130 bytes, checksum: 174bae1cf127de7f7b8eda1ba1bf7dbe (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章、 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究方法與流程 6 1.4 論文架構 7 第二章、 文獻回顧 8 2.1 特徵匹配演算法 8 2.2 小波轉換用於特徵偵測 16 2.3 小波轉換模數極大值 19 第三章、 研究方法 23 3.1 小波轉換 24 3.2 小波轉換之雜訊去除演算法 29 3.3 小波轉換模數極大值(WTMM) 31 3.4 特徵點的定位 36 3.5 特徵點內插至次像元 37 3.6 計算特徵點的主方向與描述元 40 3.6.1 主方向的建立 40 3.6.2 計算描述元 41 3.7 影像匹配與除錯 43 3.8 共軛點成果評估 44 3.8.1 最小二乘匹配法 44 3.8.1.1 方法介紹 44 3.8.1.2 本文的成果評估方式 46 3.8.2 相對方位解算模式 47 3.8.2.1 共面方程式 47 3.8.2.2 相對方位 49 3.8.3 核線幾何的驗證方式 51 第四章、 實驗及成果分析 53 4.1 實驗一:以模擬影像進行特徵點之比較 54 4.1.1 不同萃取方式之特徵點的特性與差異 54 4.1.2 不同特徵點偵測方式之奇異點偵測能力 58 4.2 實驗二:研究流程中各步驟的實驗 63 4.2.1 實驗影像介紹 63 4.2.2 不同小波基底函數之比較 64 4.2.3 雜訊去除方法之比較 67 4.2.3.1 實驗方法介紹 67 4.2.3.2 實驗成果 68 4.2.4 特徵點內插考量範圍之比較 72 4.2.5 與SIFT、SURF匹配成果比較 75 4.3 實驗三:其他航照影像測試 79 4.3.1 第一組UAS影像對測試 80 4.3.2 第二組UAS影像對測試 83 4.3.3 第三組UAS影像對測試 87 4.4 實驗四:特徵點內插的影響 91 第五章、 結論與建議 92 5.1 結論 92 5.2 未來工作 93 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | 以小波轉換為基礎之影像匹配法 | zh_TW |
dc.title | Wavelet-Based Image Matching Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱式鴻,王聖鐸 | |
dc.subject.keyword | 影像匹配,小波轉換,小波轉換係數極值曲線,點特徵偵測, | zh_TW |
dc.subject.keyword | Image Matching,Wavelet Transform,Maxima Line,Point Feature Detection, | en |
dc.relation.page | 98 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 8.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。