Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56002
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱元南(Yuan-Nan Chu)
dc.contributor.authorPin-Hsuan Hoen
dc.contributor.author何品萱zh_TW
dc.date.accessioned2021-06-16T05:12:43Z-
dc.date.available2016-09-01
dc.date.copyright2014-09-15
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citationCaldwell, G. E., L. Li, S. D. McCole and J. M. Hagberg. 1998. Pedal and crank kinetics in uphill cycling. J biomechanics. 14:245-259.
Candau, R. B., F. Grappe, M. Menard, B. Barbier, G. Y. Millet, M. D. Hoffman, A. R. Belli and J. D. Rouillon. 1999. Simplified deceleration method for assessment of resistive forces in cycling. Med. Sci. Sports Exerc. 31(10):1441-1447.
Ericson M. O., A. Bratt, R. Nisell, U. P. Arborelius and J. Ekholm. 1986. Power output
and work in different muscle groups during ergometer cycling. Eur J Appl Physiol 55:229-235.
Floyd, R. T. and C. W. Thompson. 1988. Manual of Structural Kinesiology. 13rd ed., Dubuque, IA :WCB/McGraw-Hill.
Freudenstein, F. 1989. Noncircular drive. U.S. Patent No. 4865577.
Freudenstein, F. and C. K. Chen. 1991. Variable-ratio chain drives with noncircular sprockets and minimun slack-theory and application. J. Mechanical Design. 113: 253-262.
Gill, H. S. and J. J. O’Connor. 1996. Biarticulating two-dimensional computer model of the human patellofemoral joint. Clin Biomech. 11(2):81-89.
Han, R. P. and K. L. Alexander. 1993. A optimum non-circular chainwheel design for a bicycle Drive System. J. Franklin Institute Pergamon Press Ltd. 330(6): 1195-1217.
Hasson, C. J., G. E. Caldwell and R. E. van Emmerik. 2008. Changes in muscle and joint coordination in learning to direct forces. Human Movement Science 27: 590–609.
Hue, O., K. Chamari, M. Damiani, S. Blonc. and C. Hertogh. 2007. The use of an eccentric chainring during an outdoor 1 km all-out cycling test. J. Science and Medicine in sport 10: 180-186.
Hue, O., S. Racinais, K. Chamari, M. Damiani, C. Hertogh and S. Blonc. 2008. Does an eccentric chainring improve conventional parameters of neuromuscular power. J. Science and Medicine in sport 11: 264-270.
Marc, M. 1980. Bicycle sprocket drive apparatus with elliptical pedal path. U.S. Patent No. 4193324.
Nisell, R. and J. Ekholm. 1985. Patellar forces during knee extension. Scand J. Rehabil Med. 17(2): 63-74.
Raymond, C. H., K. -F. Joseph and Y. F. Gabriel. 2005. Muscle recruitment pattern in cycling: a review. Physical Therapy in sport 6: 89-96.
Rankin, J. W. and R. R. Neptune. 2008. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J. Biomechanics 41: 1494-1502.
Richards, J. 2008. Biomechanics in clinic and research: an interactive teaching and learning course. ed. Edinburgh, New York: Elsevier/Butterworth Heinemann.
Ruby, P., M. L. Hull and D. Hawkins. 1992. Three-dimensional knee joint loading during seated cycling. J. Biomechanics 25(1):41-53.
Shan, G. 2008. Biomechanical evaluation of bike power saver. Applied Ergonomics 39: 37-45.
Smidt, G. L. 1973. Biomechanical analysis of knee flexion and extension. J. Biomechanics 6: 79-92.
Smith, W. T. 1897. Driving gear for velocipedes. U.S. Patent No. 596289.
Tozeren, A. 2000. Human body dynamics : classical mechanics and human movement. New York : Springer.
Wozniak Timmer, C. A., 1991. Cycling Biomechanics: A Literature Review. Jospt 14(3): 106-113.
Zamparo, P., A. Minetti and P. di Prampero. 2002. Mechanical efficiency of cycling with a new developed pedal-crank. J. Biomechanics 35: 1387-1398.
朱元南。2012。腳踏車驅動機構。中華民國新型專利第M431126號。
朱元南。2014。自行車驅動機構。中華民國新型專利第470057號。
朱元南。2014。一種符合人體工學之驅動裝置。中華民國新型專利第470058號。
周松緯。2010。室外自行車阻力與功率輸出及肌肉活動情形之相互關係。碩士論文。新竹:交通大學機械工程學系。
康有評、江吉昌、黃薪豪。2009。往復運動轉換成旋轉運動之高效率省力傳動結構。中華民國新型專利第362833號。
陳浚良、劉兆達。1997。被動反覆衝擊式肌力訓練對爆發力及腿力之效果。排球教練科學。9:63-71。
張柏苓、吳堉光、相子元。2012。不同阻力對自行車坐姿與站姿騎乘的影響。大專體育學刊 14(4):448-457。
藤井德明。2009。第一本自行車の科學解析。初版,48-56。新北:三悅。
鐘進燈、周崇頌、徐道昌。1994。正常人之膝伸肌與屈肌群之肌力研究。中華民國復健醫學會雜誌22(2): 1-5。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/56002-
dc.description.abstract自行車問世二百多年來,騎乘時上死點附近與下死點附近因力臂過小而難以施力的問題仍然存在。從生物力學的角度,於自行車騎乘時大小腿夾角大時踏力較大,夾角小時踏力較小,因此本研究設計一新式自行車儲能省力機構,在踏力大的行程中儲存能量,在踏力小的行程中釋放能量,以達到省力的效果。本機構以彈簧為儲能元件,有彈簧k值、彈簧預壓縮量及滾輪相位角等三項可調整參數。本研究以最大肌力上限值做為可施力範圍之指標,並以省力效果及可施力範圍為設計目標,分別找出平路騎乘及10度坡騎乘時的最佳化設計參數。分析結果顯示,彈簧k值及預壓縮調整可以增加省力效果,但使可施力範圍減少。將滾輪相位角提前,省力效果及可施力範圍同時增加。以騎乘時速為5 km/h做最佳化設計目標,平路騎乘時維持起始可施力範圍又不省力過度之情況,相位角提前10°、k值8 N/mm,可得到最理想的結果;坡度騎乘時,可將相位角提前10°,體能狀況差者可選擇較小 值為5 N/mm,體能狀況較佳者可以提高 值或增加彈簧預壓縮量來額外提升省力效果。依上述最佳化設計可得具體效果,體能狀況佳者,可施力範圍達76%至90%,省力效果為48%至63%、膝蓋減輕負荷5%至17%。體能狀況差者,雖然可施力範圍相對較小,但省力效果可達65%至66%,膝蓋減輕負荷43%至51%。zh_TW
dc.description.abstractAfter about two hundred years since the current form of bicycles was established, the problems of upper and lower dead zones of the crank driving stroke due to smaller force arms are yet to be solved. Biomechanics analyses have shown the force that can be asserted to the pedals decreases when the angle between the shank and the thigh decreases, as in the upper stroke, and the force increases when the angle between the shank and the thigh increases, as in the lower stroke. Therefore the purpose of this research was to design a novel bicycle driving mechanism that can store energy while in the lower stroke and release this energy while in the upper stroke, thereby achieving labor-saving effects. The bicycle driving mechanism uses a spring as the energy storage device. There are three parameters that can be adjusted for better overall performance: the spring constant, the spring pre-compression and the phase angle. Optimized parameter values are found for level and 10 degrees uphill cycling based on the labor-saving effect and the pedalable range, which is defined as the degree range of the stroke where cyclists can assert enough force on the pedals to overcome the resistance based on their maximum muscular strength. It is found that increasing either the spring constant or pre-compression can increase the labor saving effect. But doing so will also reduce the pedalable range. Advancing the phase angle would increase both the labor-saving effect and the pedalable range. At a speed of 5 km/h in level cycling, the best combination of design parameters would be a phase angle of 10° in advance and a spring constant of 8 N/mm. By increasing either the spring constant or pre-compression could increase the labor-saving effect in uphill cycling for people in better physical conditions. A spring constant of 5 N/mm is better suited for people in poorer physical conditions. For people in better physical conditions, the labor-saving effect is from 48% to 63% with a pedalable range of 76%-90%, while the load on the knees could be reduced by 5%-17%. For people in poor physical conditions, the labor-saving effect of up to 65%-66% and a reduction of knee loading of 43%-51% is achieved.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:12:43Z (GMT). No. of bitstreams: 1
ntu-103-R01631014-1.pdf: 2131501 bytes, checksum: 3e40cffdc684fa786569385d1b156d62 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝…………………………………………………………… i
中文摘要……………………………………………………… ii
英文摘要………………………………………………………iii
目錄…………………………………………………………… v
圖目錄………………………………………………………… vii
表目錄………………………………………………………… xi
符號說明……………………………………………………… xii
第一章 簡介………………………………………………… 1
第二章 文獻探討…………………………………………… 2
第三章 材料與方法………………………………………… 9
3.1 機構設計………………………………………………… 9
3.2 幾何計算分析…………………………………………… 13
3.2.1 角度定義……………………………………………… 13
3.2.2 機構力學計算………………………………………… 14
3.3 製造與組裝……………………………………………… 16
3.4 阻力分析………………………………………………… 21
3.4.1 滾動阻力與空氣阻力………………………………… 21
3.4.2 坡度阻力……………………………………………… 23
3.5 模型建立………………………………………………… 25
3.6 機構可調參數…………………………………………… 26
3.6.1 彈力常數調整………………………………………… 26
3.6.2 彈簧預壓縮調整……………………………………… 27
3.6.3 滾輪相位角調整……………………………………… 30
3.7 施力模式與人因工程…………………………………… 33
3.7.1 施力模式……………………………………………… 33
3.7.2 腿部施力上限定義…………………………………… 34
3.7.3 可施力範圍…………………………………………… 35
3.7.4 大小腿夾角與膝關節負擔…………………………… 38
第四章 結果與討論………………………………………… 41
4.1 最佳化設計條件與目標………………………………… 41
4.2 平路騎乘參數調整結果………………………………… 42
4.3 10度坡騎乘參數調整結果……………………………… 44
4.4 綜合討論………………………………………………… 46
第五章 結論………………………………………………… 49
參考文獻……………………………………………………… 50
dc.language.isozh-TW
dc.title自行車儲能省力機構的效能分析與最佳化設計參數的探討zh_TW
dc.titleEvaluation and Design Optimization of a Labor-saving Bicycle Driving Mechanism with Automatic Energy Storage and Releaseen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周瑞仁(Jui-Jen Chou),葉仲基(Chung-Kee Yeh)
dc.subject.keyword自行車,生物力學,可施力範圍,省力效果,儲能元件,zh_TW
dc.subject.keywordBicycle,Biomechanics,Pedalable range,Labor-saving effect,Energy storage device,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved