請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55998完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林榮耀(Jung-Yaw Lin) | |
| dc.contributor.author | BO-SHAU CHEN | en |
| dc.contributor.author | 陳柏劭 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:12:37Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | 1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M. J. (2008). Cancer Statistics, 2008. CA: A Cancer Journal for Clinicians 58, 71-96.
2. Ettinger, D. S., Akerley, W., Bepler, G., Blum, M. G., Chang, A., Cheney, R. T., Chirieac, L. R., D'Amico, T. A., Demmy, T. L., Ganti, A. K., et al. (2010). Non-small cell lung cancer. Journal of the National Comprehensive Cancer Network : JNCCN 8, 740-801. 3. Spira, A., and Ettinger, D. S. (2004). Multidisciplinary Management of Lung Cancer. New England Journal of Medicine 350, 379-392. 4. Albain, K. S., Swann, R. S., Rusch, V. W., Turrisi Iii, A. T., Shepherd, F. A., Smith, C., Chen, Y., Livingston, R. B., Feins, R. H., Gandara, D. R., et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. The Lancet 374, 379-386. 5. Rapp, E., Pater, J. L., Willan, A., Cormier, Y., Murray, N., Evans, W. K., Hodson, D. I., Clark, D. A., Feld, R., and Arnold, A. M. (1988). Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer--report of a Canadian multicenter randomized trial. Journal of Clinical Oncology 6, 633-641. 6. Breathnach, O. S., Freidlin, B., Conley, B., Green, M. R., Johnson, D. H., Gandara, D. R., O'Connell, M., Shepherd, F. A., and Johnson, B. E. (2001). Twenty-two years of phase III trials for patients with advanced non-small-cell lung cancer: sobering results. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 19, 1734-1742. 7. Comis, R. L. (2005). The Current Situation: Erlotinib (TarcevaR) and Gefitinib (IressaR) in Non-Small Cell Lung Cancer. The Oncologist 10, 467-470. 8. Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., Johnson, B. E., Eck, M. J., Tenen, D. G., and Halmos, B. (2005). EGFR Mutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine 352, 786-792. 9. Efferth, T., Li, P. C. H., Konkimalla, V. S. B., and Kaina, B. (2007). From traditional Chinese medicine to rational cancer therapy. Trends in Molecular Medicine 13, 353-361. 10. Kim, I., Umezawa, M., Kawahara, N., and Goda, Y. (2007). The constituents of the roots of NTU03. J Nat Med 61, 224-225. 11. Park, H., Shim, J. S., Kim, H. G., Lee, H., and Oh, M. S. (2013). Ampelopsis Radix Protects Dopaminergic Neurons against 1-Methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Toxicity in Parkinson’s Disease Models In Vitro and In Vivo. Evidence-Based Complementary and Alternative Medicine 2013, 9. 12. Herbst, R. S. (2004). Review of epidermal growth factor receptor biology. International Journal of Radiation Oncology*Biology*Physics 59, S21-S26. 13. Bethune, G., Bethune, D., Ridgway, N., and Xu, Z. (2011). Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. Journal of Thoracic Disease 2, 48-51. 14. Yarden, Y., and Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature reviews Molecular cell biology 2, 127-137. 15. Normanno, N., Bianco, C., De Luca, A., Maiello, M. R., and Salomon, D. S. (2003). Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocrine-related cancer 10, 1-21. 16. Yaffe, M. B. (2002). Phosphotyrosine-binding domains in signal transduction. Nature reviews Molecular cell biology 3, 177-186. 17. Jorissen, R. N., Walker, F., Pouliot, N., Garrett, T. P., Ward, C. W., and Burgess, A. W. (2003). Epidermal growth factor receptor: mechanisms of activation and signalling. Experimental cell research 284, 31-53. 18. Kallergi, G., Agelaki, S., Kalykaki, A., Stournaras, C., Mavroudis, D., and Georgoulias, V. (2008). Phosphorylated EGFR and PI3K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Research 10, R80. 19. Quesnelle, K. M., Boehm, A. L., and Grandis, J. R. (2007). STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry 102, 311-319. 20. Nicholson, R. I., Gee, J. M. W., and Harper, M. E. (2001). EGFR and cancer prognosis. European Journal of Cancer 37, Supplement 4, 9-15. 21. Rusch, V., Baselga, J., Cordon-Cardo, C., Orazem, J., Zaman, M., Hoda, S., McIntosh, J., Kurie, J., and Dmitrovsky, E. (1993). Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53, 2379-2385. 22. Cataldo, V. D., Gibbons, D. L., Perez-Soler, R., and Quintas-Cardama, A. (2011). Treatment of Non–Small-Cell Lung Cancer with Erlotinib or Gefitinib. New England Journal of Medicine 364, 947-955. 23. Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., Johnson, B. E., Eck, M. J., Tenen, D. G., and Halmos, B. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352, 786-792. 24. Otrock, Z. K., Mahfouz, R. A. R., Makarem, J. A., and Shamseddine, A. I. (2007). Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells, Molecules, and Diseases 39, 212-220. 25. Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in oncology 29, 15-18. 26. Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., and De Bruijn, E. A. (2004). Vascular endothelial growth factor and angiogenesis. Pharmacological reviews 56, 549-580. 27. Narasimhan, P., Liu, J., Song, Y. S., Massengale, J. L., and Chan, P. H. (2009). VEGF Stimulates the ERK 1/2 Signaling Pathway and Apoptosis in Cerebral Endothelial Cells After Ischemic Conditions. Stroke 40, 1467-1473. 28. Liang, Z., Brooks, J., Willard, M., Liang, K., Yoon, Y., Kang, S., and Shim, H. (2007). CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochemical and Biophysical Research Communications 359, 716-722. 29. Mitra, S. K., Mikolon, D., Molina, J. E., Hsia, D. A., Hanson, D. A., Chi, A., Lim, S. T., Bernard-Trifilo, J. A., Ilic, D., Stupack, D. G., et al. (2006). Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene 25, 5969-5984. 30. Eliceiri, B. P., Paul, R., Schwartzberg, P. L., Hood, J. D., Leng, J., and Cheresh, D. A. (1999). Selective Requirement for Src Kinases during VEGF-Induced Angiogenesis and Vascular Permeability. Molecular Cell 4, 915-924. 31. Jeltsch, M., Leppanen, V. M., Saharinen, P., and Alitalo, K. (2013). Receptor tyrosine kinase-mediated angiogenesis. Cold Spring Harbor perspectives in biology 5. 32. Pugh, C. W., and Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine 9, 677-684. 33. Niu, G., Wright, K. L., Huang, M., Song, L., Haura, E., Turkson, J., Zhang, S., Wang, T., Sinibaldi, D., Coppola, D., et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000-2008. 34. Chen, Z., and Han, Z. C. (2008). STAT3: a critical transcription activator in angiogenesis. Medicinal research reviews 28, 185-200. 35. Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., and Yu, H. (2008). Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. The Journal of Clinical Investigation 118, 3367-3377. 36. Zhao, M., Gao, F.-H., Wang, J.-Y., Liu, F., Yuan, H.-H., Zhang, W.-Y., and Jiang, B. (2011). JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer 73, 366-374. 37. Cascio, S., Ferla, R., D'Andrea, A., Gerbino, A., Bazan, V., Surmacz, E., and Russo, A. (2009). Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells. Journal of Cellular Physiology 221, 189-194. 38. Iwasaki, A., Kuwahara, M., Yoshinaga, Y., and Shirakusa, T. (2004). Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) levels, as prognostic indicators in NSCLC. European Journal of Cardio-Thoracic Surgery 25, 443-448. 39. Cabebe, E., and Wakelee, H. (2007). Role of Anti-angiogenesis Agents in Treating NSCLC: Focus on Bevacizumab and VEGFR Tyrosine Kinase Inhibitors. Curr Treat Options in Oncol 8, 15-27. 40. Das, M., and Wakelee, H. (2012). Targeting VEGF in lung cancer. Expert opinion on therapeutic targets 16, 395-406. 41. Crino, L., and Metro, G. (2014). Therapeutic options targeting angiogenesis in nonsmall cell lung cancer. European respiratory review : an official journal of the European Respiratory Society 23, 79-91. 42. Schmitz, A. A. P., Govek, E.-E., Bottner, B., and Van Aelst, L. (2000). Rho GTPases: Signaling, Migration, and Invasion. Experimental cell research 261, 1-12. 43. Sit, S. T., and Manser, E. (2011). Rho GTPases and their role in organizing the actin cytoskeleton. Journal of cell science 124, 679-683. 44. Moon, S. Y., and Zheng, Y. (2003). Rho GTPase-activating proteins in cell regulation. Trends in Cell Biology 13, 13-22. 45. Sahai, E., and Marshall, C. J. (2002). RHO-GTPases and cancer. Nature reviews Cancer 2, 133-142. 46. Alan, J. K., and Lundquist, E. A. (2013). Mutationally activated Rho GTPases in cancer. Small GTPases 4, 159-163. 47. Hauck, C. R., Hsia, D. A., and Schlaepfer, D. D. (2002). The Focal Adhesion Kinase--A Regulator of Cell Migration and Invasion. IUBMB Life 53, 115-119. 48. Schlaepfer, D. D., and Mitra, S. K. (2004). Multiple connections link FAK to cell motility and invasion. Current Opinion in Genetics & Development 14, 92-101. 49. Mitra, S. K., Hanson, D. A., and Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature reviews Molecular cell biology 6, 56-68. 50. Zhao, X., and Guan, J.-L. (2011). Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced Drug Delivery Reviews 63, 610-615. 51. Aranda, E., and Owen, G. I. (2009). A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biological research 42, 377-389. 52. Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70, 440-446. 53. Mitra, S. K., and Schlaepfer, D. D. (2006). Integrin-regulated FAK–Src signaling in normal and cancer cells. Current Opinion in Cell Biology 18, 516-523. 54. Evan, G. I., and Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342-348. 55. Chambard, J.-C., Lefloch, R., Pouyssegur, J., and Lenormand, P. (2007). ERK implication in cell cycle regulation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1773, 1299-1310. 56. Wright, J. H., Munar, E., Jameson, D. R., Andreassen, P. R., Margolis, R. L., Seger, R., and Krebs, E. G. (1999). Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts. Proceedings of the National Academy of Sciences 96, 11335-11340. 57. Dumesic, P. A., Scholl, F. A., Barragan, D. I., and Khavari, P. A. (2009). Erk1/2 MAP kinases are required for epidermal G2/M progression. The Journal of Cell Biology 185, 409-422. 58. Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A., and McCubrey, J. A. (2003). Involvement of PI3K//Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17, 590-603. 59. Scrima, M., De Marco, C., Fabiani, F., Franco, R., Pirozzi, G., Rocco, G., Ravo, M., Weisz, A., Zoppoli, P., Ceccarelli, M., et al. (2012). Signaling Networks Associated with AKT Activation in Non-Small Cell Lung Cancer (NSCLC): New Insights on the Role of Phosphatydil-Inositol-3 kinase. PLoS ONE 7, e30427. 60. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., et al. (2004). Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine 350, 2129-2139. 61. Chen, S., Flower, A., Ritchie, A., Liu, J., Molassiotis, A., Yu, H., and Lewith, G. (2010). Oral Chinese herbal medicine (CHM) as an adjuvant treatment during chemotherapy for non-small cell lung cancer: A systematic review. Lung Cancer 68, 137-145. 62. Yarden, Y. (2001). The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. European Journal of Cancer 37, Supplement 4, 3-8. 63. Ciardiello, F., Caputo, R., Bianco, R., Damiano, V., Fontanini, G., Cuccato, S., De Placido, S., Bianco, A. R., and Tortora, G. (2001). Inhibition of Growth Factor Production and Angiogenesis in Human Cancer Cells by ZD1839 (Iressa), a Selective Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Clinical Cancer Research 7, 1459-1465. 64. Herbst, R. S., Heymach, J. V., and Lippman, S. M. (2008). Lung Cancer. New England Journal of Medicine 359, 1367-1380. 65. D'Arcangelo, M., and Hirsch, F. R. (2014). Clinical and comparative utility of afatinib in non-small cell lung cancer. Biologics : targets & therapy 8, 183-192. 66. Xu, Z. H., Hang, J. B., Hu, J. A., and Gao, B. L. (2013). RAF1-MEK1-ERK/AKT axis may confer NSCLC cell lines resistance to erlotinib. International journal of clinical and experimental pathology 6, 1493-1504. 67. Brognard, J., Clark, A. S., Ni, Y., and Dennis, P. A. (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61, 3986-3997. 68. Rathinam, R., Berrier, A., and Alahari, S. K. (2011). Role of Rho GTPases and their regulators in cancer progression. Frontiers in bioscience (Landmark edition) 16, 2561-2571. 69. Tsai, Y.-M., Yang, C.-J., Hsu, Y.-L., Wu, L.-Y., Tsai, Y.-C., Hung, J.-Y., Lien, C.-T., Huang, M.-S., and Kuo, P.-L. (2010). Glabridin Inhibits Migration, Invasion, and Angiogenesis of Human Non–Small Cell Lung Cancer A549 Cells by Inhibiting the FAK/Rho Signaling Pathway. Integrative Cancer Therapies. 70. Park, J. H., Lee, S.-H., Keam, B., Kim, T. M., Kim, D.-W., Yang, S.-C., Kim, Y. W., and Heo, D. S. (2012). EGFR mutations as a predictive marker of cytotoxic chemotherapy. Lung Cancer 77, 433-437. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55998 | - |
| dc.description.abstract | Lung cancer is the leading cause of cancer deaths in Taiwan and worldwide, and the two major forms of lung cancer are non–small-cell lung cancer (NSCLC) (about 85% of all lung cancers) and small-cell lung cancer (about 15%). NSCLC is often diagnosed at an advanced stage and has a poor prognosis. It is frequently overexpressed and mutated (Ex: in-frame deletion △E746-A750 on exon 19, and L858R mutation on exon 20) in the Epidermal growth factor receptor (EGFR) during the development and progression of NSCLC. Recently, tyrosine kinase inhibitors (TKIs) have been used to treat selected NSCLC patients with EGFR mutations, but the long-term efficacy of such treatments is generally limited due to the development of resistance. Therefore, to develop novel therapeutic agents or strategies for the treatment of TKI-resistant tumors is urgently needed.
In this study, we set up a platform to screen extracts of CHMs on the inhibitory effects on the growth of H1975 cell line, which harbors EGFR T790M/L858R mutations and is resistant to TKIs, such as gefitinib. We found that the water extracts from NTU03 inhibited cell growth and proliferation of H1975 cells through Raf/Ras/Erk pathway. The extract also inhibited cell migration through FAK/Src signaling pathway and reduced RhoA activity, which led to inhibition of actin filament rearrangement and reduction of migration ability. In addition, extracts from NTU03 could attenuate Akt/Bcl2 signaling, promote Caspase-9/-3 and PARP cleavage, which then induced apoptosis. Besides, the level of VEGFA expression was reduced and the tube formation ability of human vascular endothelial cells was also suppressed. We further showed that NTU03 also had an inhibitory effect on tumor growth in vivo by a mouse xenograft model. By drug combination assay, we also found synergistic inhibitory effects of NTU03 combined with gefitinib on H1975 cell growth. Taken together, NTU03 may be a potential therapeutic agent for NSCLC treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:12:37Z (GMT). No. of bitstreams: 1 ntu-103-R01442018-1.pdf: 2283084 bytes, checksum: 4046c38d4e0a54a8596e6fcebb0398be (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Contents
摘要----------------------------------------------I Abstract---------------------------------------III Chapter 1. Introduction 2 1.Non-Small-Cell Lung Cancer (NSCLC)-------------3 2.NTU03------------------------------------------4 3.Epidermal growth factor receptor (EGFR)--------5 4.VEGF pathway-----------------------------------7 5.Rho-GTPase family------------------------------8 6.Research purpose of present investigation-----10 Chapter 2. Materials and Methods----------------11 1.Cell lines, Animals, and Reagents-------------12 2.Preparation of Chinese Herb Medicine (CHM)----13 3.Cell culture----------------------------------14 4.Cell viability assay--------------------------14 5.Cell migration/ invasion assay----------------15 6.Wound healing assay---------------------------15 7.Confocal microscopy---------------------------16 8.RNA extraction and reverse transcription------16 i. RNAs extraction------------------------------16 ii. Reverse transcription-----------------------17 9.Real time-quantitative PCR (Q-PCR)------------18 10.Western blot analysis------------------------19 i.Preparation of cell lysates:------------------19 ii.Quantification of protein concentration------19 iii.Preparation of sodium-dodecyl-sulfate-polyacrylamide gels (SDS-polyacrylamide gels)------------------20 iv.Protein sample preparation-------------------21 v.Electrophoresis-------------------------------22 vi.Wet and Semi-dry blotting--------------------22 vii.Immunoblotting------------------------------23 11.Nuclear and cytoplasmic fractionation--------24 12.GST-PBD/RBD pull down assay------------------25 i.Purification of GST-PBD (p21-binding domain, rac1 / cdc42 binding domain) and GST-RBD (Rho binding domain) from E.coli extracts----------------------------------------25 ii.Cdc42/Rac1 and RhoA activity assay-----------26 13.In vitro angiogenesis: endothelial cell tube formation Assay-------------------------------------------27 14.Measurement of F-Actin/G-Actin ratio---------27 15.Flow cytometry assay-------------------------28 16.Synergistic analysis of NTU03 with gefitinib-29 Chapter 3. Results------------------------------30 1.Cytotoxicity of NTU03 on three NSCLC cell lines (A549, H1975, and PC9)---------------------------------31 2.NTU03 showed inhibitory effects on migration/invasion of H1975 cells in a non-toxic manner---------------31 3.NTU03 disrupted the actin-filament rearrangement of H1975 cells by suppressing Rho-A activity via FAK/Src signaling. ------------------------------------------------32 4.NTU03 inhibited EGFR/Raf/ Erk signaling and induced G2/M arrest of H1975 cells.--------------------------33 5.NTU03 suppressed EGFR/ Akt signaling and induced apoptosis through Bcl2/Caspase-9,-3 pathways.-------------34 6.NTU03 suppressed STAT3/VEGFA signaling pathway.--35 7.NTU03 inhibited VEGF-induced migration and capillary structure formation of Human umbilical capillary endothelial cells (HUVECs)----------------------------------36 8.NTU03 decreased tumor growth in vivo.---------36 9.NTU03 had Synergistic effect with gefitinib on H1975 cells.------------------------------------------37 Chapter 4. Discussion---------------------------39 Chapter 5. Figures------------------------------45 Figure 1.Inhibitory effects of NTU03 on A549, H1975, and PC9 cell viability----------------------------------46 Figure 2.Inhibitory effects of NTU03 on A549, H1975, and PC9 cells proliferation-----------------------------47 Figure 3.NTU03 inhibited migration and invasion activity of A549, H1975, and PC9 cells.---------------------51 Figure 4.NTU03 disrupted the F-actin rearrangement via FAK/Src/RhoA signaling.-------------------------54 Figure 5.NTU03 inhibited EGFR/Raf/ Erk signaling and induced G2/M arrest of H1975 cells.---------------------56 Figure 6.NTU03 suppressed EGFR/ Akt signaling and induced apoptosis through Bcl2/Caspase-9,-3 pathways of H1975 cells. ------------------------------------------------58 Figure 7.Down-regulation of p-STAT3 and VEGF-A expression by the treatment of NTU03.-------------------------60 Figure 8.The NTU03 conditioned-medium inhibited the tube formation of HUVECs.----------------------------62 Figure 9.NTU03 inhibited tumor growth examined by mouse xenograft tumor models and IVIS image system.---64 Figure 10.NTU03 had Synergistic inhibitory effects with gefitinib on H1975 cells.-----------------------66 Figure 11.Mechanism of NTU03 inhibited H1975 cell migration, invasion, and angiogenesis.---------------------67 Chapter 6.Table---------------------------------68 Chapter 7.References----------------------------70 | |
| dc.language.iso | en | |
| dc.subject | 血管內皮生長因子-A | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 細胞爬行 | zh_TW |
| dc.subject | 中草藥 | zh_TW |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | Non-small-cell lung cancer (NSCLC) | en |
| dc.subject | Chinese Herbal Medicine (CHM) | en |
| dc.subject | Migration | en |
| dc.subject | Angiogenesis | en |
| dc.subject | VEGFA | en |
| dc.title | 中草藥: NTU03抗非小細胞肺癌之研究 | zh_TW |
| dc.title | Mechanisms of anti-Non-Small Cell Lung Cancer of Chinese
Herbal Medicine: NTU03 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 顏伯勳(Bo-Shiun Yan) | |
| dc.contributor.oralexamcommittee | 李明學(Ming-Shyue Lee),李德章(Te-Chang Lee) | |
| dc.subject.keyword | 非小細胞肺癌,中草藥,細胞爬行,血管新生,血管內皮生長因子-A, | zh_TW |
| dc.subject.keyword | Non-small-cell lung cancer (NSCLC),Chinese Herbal Medicine (CHM),Migration,Angiogenesis,VEGFA, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
