請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55960完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚 | |
| dc.contributor.author | Nai-Yu Kuo | en |
| dc.contributor.author | 郭乃瑜 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:11:43Z | - |
| dc.date.available | 2016-10-20 | |
| dc.date.copyright | 2014-10-20 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | 1. Wittassek, M., Koch, H.M., Angerer, J., and Bruning, T., Assessing exposure to phthalates - the human biomonitoring approach. Mol Nutr Food Res, 2011. 55(1): p. 7-31.
2. Kavlock, R., Barr, D., Boekelheide, K., Breslin, W. et al., NTP-CERHR Expert Panel Update on the Reproductive and Developmental Toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol, 2006. 22(3): p. 291-399. 3. Koo, H.J. and Lee, B.M., Toxicokinetic relationship between di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in rats. J Toxicol Environ Health A, 2007. 70(5): p. 383-7. 4. Bouma, K. and Schakel, D.J., Migration of phthalates from PVC toys into saliva simulant by dynamic extraction. Food Addit Contam, 2002. 19(6): p. 602-10. 5. Wittassek, M. and Angerer, J., Phthalates: metabolism and exposure. Int J Androl, 2008. 31(2): p. 131-8. 6. Koch, H.M., Bolt, H.M., and Angerer, J., Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Arch Toxicol, 2004. 78(3): p. 123-30. 7. Lyche, J.L., Chapter 48 - Phthalates, in Reproductive and Developmental Toxicology, C.G. Ramesh, Editor. 2011, Academic Press: San Diego. p. 637-655. 8. Lovekamp-Swan, T. and Davis, B.J., Mechanisms of Phthalate Ester Toxicity in the Female Reproductive System. Environ Health Perspect, 2003. 111(2): p. 139-145. 9. Mu, Y.M., Yanase, T., Nishi, Y., Takayanagi, R. et al., Combined treatment with specific ligands for PPARgamma:RXR nuclear receptor system markedly inhibits the expression of cytochrome P450arom in human granulosa cancer cells. Mol Cell Endocrinol, 2001. 181(1-2): p. 239-48. 10. Bornehag, C.G., Sundell, J., Weschler, C.J., Sigsgaard, T. et al., The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect, 2004. 112(14): p. 1393-7. 11. Petersen, S.V., Lyman, D.J., Roll, D.B., and Swinyard, E.A., Toxicology of Plastic Devices having Contact with Blood. 1975, NTIS Report (PB-250 102). 12. NTP (National Toxicology Program), Diethyl phthalate: reproduction and fertility assessment in CD-l mice when administered in the fee, Research Triangle Park, Editor 1984, NC: National Toxicology Program, U.S. Department of Health and Human Services, NTP84262. 13. Lamb, J.C.t., Chapin, R.E., Teague, J., Lawton, A.D. et al., Reproductive effects of four phthalic acid esters in the mouse. Toxicol Appl Pharmacol, 1987. 88(2): p. 255-69. 14. Wine, R.N., Li, L.H., Barnes, L.H., Gulati, D.K. et al., Reproductive toxicity of di-n-butylphthalate in a continuous breeding protocol in Sprague-Dawley rats. Environ Health Perspect, 1997. 105(1): p. 102–107. 15. Suzuki, Y., Niwa, M., Yoshinaga, J., Mizumoto, Y. et al., Prenatal exposure to phthalate esters and PAHs and birth outcomes. Environ Int, 2010. 36(7): p. 699-704. 16. Meeker, J.D., Hu, H., Cantonwine, D.E., Lamadrid-Figueroa, H. et al., Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect, 2009. 117(10): p. 1587-92. 17. Selgrade, M.K., Blain, R.B., Fedak, K.M., and Cawley, M.A., Potential risk of asthma associated with in utero exposure to xenobiotics. Birth Defects Res C Embryo Today, 2013. 99(1): p. 1-13. 18. Lin, S., Ku, H.Y., Su, P.H., Chen, J.W. et al., Phthalate exposure in pregnant women and their children in central Taiwan. Chemosphere, 2011. 82(7): p. 947-55. 19. Huang, Y.Q., Wong, C.K.C., Zheng, J.S., Bouwman, H. et al., Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environ Int, 2012. 42(0): p. 91-99. 20. Rochester, J.R., Bisphenol A and human health: A review of the literature. Reprod Toxicol, 2013. 42(0): p. 132-155. 21. Geens, T., Aerts, D., Berthot, C., Bourguignon, J.P. et al., A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol, 2012. 50(10): p. 3725-40. 22. Knez, J., Endocrine-disrupting chemicals and male reproductive health. Reprod BioMed Online, 2013. 26(5): p. 440-448. 23. EFSA (European Food Safety Authority), Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids andMaterials in Contactwith Food ona request fromthe Commissionrelatedto 2,2-bis (4-hydroxyphenyl)propane (bisphenol A). 2006. 428: p. 1-75. 24. Völkel, W., Colnot, T., Csanády, G.A., Filser, J.G. et al., Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chemi Res Toxicol, 2002. 15(10): p. 1281-1287. 25. Pottenger, L.H., Domoradzki, J.Y., Markham, D.A., Hansen, S.C. et al., The relative bioavailability and metabolism of bisphenol A in rats is dependent upon the route of administration. Toxicol Sci, 2000. 54(1): p. 3-18. 26. Arbuckle, T.E., Davis, K., Marro, L., Fisher, M. et al., Phthalate and bisphenol A exposure among pregnant women in Canada — Results from the MIREC study. Environ Int, 2014. 68(0): p. 55-65. 27. Koch, H.M., Kolossa-Gehring, M., Schroter-Kermani, C., Angerer, J. et al., Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: a retrospective exposure evaluation. J Expo Sci Environ Epidemiol, 2012. 22(6): p. 610-6. 28. Hanaoka, T., Kawamura, N., Hara, K., and Tsugane, S., Urinary bisphenol A and plasma hormone concentrations in male workers exposed to bisphenol A diglycidyl ether and mixed organic solvents. Occup Environ Med, 2002. 59(9): p. 625-8. 29. Philippat, C., Mortamais, M., Chevrier, C., Petit, C. et al., Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect, 2012. 120(3): p. 464-70. 30. Wolff, M.S., Engel, S.M., Berkowitz, G.S., Ye, X. et al., Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect, 2008. 116(8): p. 1092-7. 31. Valvi, D., Casas, M., Mendez, M.A., Ballesteros-Gomez, A. et al., Prenatal bisphenol a urine concentrations and early rapid growth and overweight risk in the offspring. Epidemiology, 2013. 24(6): p. 791-9. 32. Spanier, A.J., Kahn, R.S., Kunselman, A.R., Hornung, R. et al., Prenatal exposure to bisphenol A and child wheeze from birth to 3 years of age. Environ Health Perspect, 2012. 120(6): p. 916-20. 33. Donohue, K.M., Miller, R.L., Perzanowski, M.S., Just, A.C. et al., Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. J Allergy Clin Immunol, 2013. 131(3): p. 736-42. 34. 3M Company, Fluorochemical use, distribution, and release overview;, U.E.P. Docket, Editor 1999: St Paul, MN. 35. Key, B.D., Howell, R.D., and Criddle, C.S., Fluorinated Organics in the Biosphere. Environ Sci Technol, 1997. 31(9): p. 2445-2454. 36. Lau, C., Anitole, K., Hodes, C., Lai, D. et al., Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol Sci, 2007. 99(2): p. 366-394. 37. Stahl, T., Mattern, D., and Brunn, H., Toxicology of perfluorinated compounds. Env Sci Eur, 2011. 23(1): p. 1-52. 38. Ericson, I., Marti-Cid, R., Nadal, M., Van Bavel, B. et al., Human exposure to perfluorinated chemicals through the diet: Intake of perfluorinated compounds in foods from the Catalan (Spain) Market. J Agr Food Chem, 2008. 56(5): p. 1787-1794. 39. Fromme, H., Tittlemier, S.A., Völkel, W., Wilhelm, M. et al., Perfluorinated compounds - Exposure assessment for the general population in western countries. Int J Hyg Envir Heal, 2009. 212(3): p. 239-270. 40. Trudel, D., Horowitz, L., Wormuth, M., Scheringer, M. et al., Estimating consumer exposure to PFOS and PFOA. Risk Analysis, 2008. 28(2): p. 251-269. 41. Nishida, H., Matsumura, K., Kurokawa, H., Hoshino, A. et al., PFC emission-reduction strategy for the LCD industry. J Soc Inf Display, 2005. 13(10): p. 841-848. 42. Harada, K., Inoue, K., Morikawa, A., Yoshinaga, T. et al., Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion. Environ Res, 2005. 99(2): p. 253-61. 43. Harada, K.H., Hashida, S., Kaneko, T., Takenaka, K. et al., Biliary excretion and cerebrospinal fluid partition of perfluorooctanoate and perfluorooctane sulfonate in humans. Environ Toxicol Pharmacol, 2007. 24(2): p. 134-9. 44. Olsen, G.W., Burris, J.M., Ehresman, D.J., Froehlich, J.W. et al., Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect, 2007. 115(9): p. 1298-1305. 45. Chen, M.H., Ha, E.H., Wen, T.W., Su, Y.N. et al., Perfluorinated Compounds in Umbilical Cord Blood and Adverse Birth Outcomes. PLoS ONE, 2012. 7(8): p. e42474. 46. Kudo, N. and Kawashima, Y., Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci, 2003. 28(2): p. 49-57. 47. Vanden Heuvel, J.P., Thompson, J.T., Frame, S.R., and Gillies, P.J., Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci, 2006. 92(2): p. 476-89. 48. Takacs, M.L. and Abbott, B.D., Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci, 2007. 95(1): p. 108-17. 49. Li, A.C. and Glass, C.K., PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res, 2004. 45(12): p. 2161-73. 50. Fei, C.Y., McLaughlin, J.K., Lipworth, L., and Olsen, J., Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ Health Perspect, 2008. 116(10): p. 1391-1395. 51. Andersen, C.S., Fei, C., Gamborg, M., Nohr, E.A. et al., Prenatal Exposures to Perfluorinated Chemicals and Anthropometric Measures in Infancy. Am J Epidemiol, 2010. 172(11): p. 1230-1237. 52. Apelberg, B.J., Witter, F.R., Herbstman, J.B., Calafat, A.M. et al., Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect, 2007. 115(11): p. 1670-6. 53. Lee, Y.J., Kim, M.K., Bae, J., and Yang, J.H., Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in Korea. Chemosphere, 2012. 54. Fairley, K.J., Purdy, R., Kearns, S., Anderson, S.E. et al., Exposure to the immunosuppressant, perfluorooctanoic acid, enhances the murine IgE and airway hyperreactivity response to ovalbumin. Toxicol Sci, 2007. 97(2): p. 375-83. 55. Wang, I.J., Hsieh, W.S., Chen, C.Y., Fletcher, T. et al., The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res, 2011. 111(6): p. 785-91. 56. Fletcher T., S.K., Savitz D., Status Report: PFOA and immune biomarkers in adults exposed to PFOA in drinking water in the mid Ohio valley, 2009. 57. Grandjean, P., Andersen, E.W., Budtz-Jorgensen, E., Nielsen, F. et al., Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA, 2012. 307(4): p. 391-7. 58. Perez, F., Llorca, M., Farre, M., and Barcelo, D., Automated analysis of perfluorinated compounds in human hair and urine samples by turbulent flow chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem, 2012. 402(7): p. 2369-78. 59. Bao, J., Lee, Y.L., Chen, P.C., Jin, Y.H. et al., Perfluoroalkyl acids in blood serum samples from children in Taiwan. Environ Sci Pollut Res Int, 2014. 21(12): p. 7650-5. 60. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological profile for polycyclic aromatic hydrocarbons (PAHs) (update), US Department of Health and Human Services, Editor 2009, US Department of Health and Human Services: Atlanta, GA. 61. Ilnitsky, A.P., Mischenko, V.S., and Shabad, L.M., New data on volcanoes as natural sources of carcinogenic substances. Cancer Letters, 1977. 3(0): p. 227-230. 62. Lewis, R.G., Fortune, C.R., Willis, R.D., Camann, D.E. et al., Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size. Environ Health Perspect, 1999. 107(9): p. 721-726. 63. Jacob, J. and Seidel, A., Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 778(1-2): p. 31-47. 64. Jongeneelen, F.J., Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons; 1-hydroxypyrene in urine of people. Toxicol Lett, 1994. 72(1-3): p. 205-11. 65. Kakimoto, K., Toriba, A., Ohno, T., Ueno, M. et al., Direct measurement of the glucuronide conjugate of 1-hydroxypyrene in human urine by using liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2008. 867(2): p. 259-63. 66. IARC (International Agency of Research on Cancer), Some non-heterocyclic polycyclic aromatichydrocarbons and some related exposures. IARCmonographs on the evaluation of carcinogenic risks to humans. 2010. 92: p. 1-868. 67. Schober, W., Lubitz, S., Belloni, B., Gebauer, G. et al., Environmental polycyclic aromatic hydrocarbons (PAHs) enhance allergic inflammation by acting on human basophils. Inhal Toxicol, 2007. 19 Suppl 1: p. 151-6. 68. Perera, F.P., Rauh, V., Tsai, W.Y., Kinney, P. et al., Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect, 2003. 111(2): p. 201-205. 69. Jedrychowski, W., Perera, F.P., Tang, D., Stigter, L. et al., Impact of barbecued meat consumed in pregnancy on birth outcomes accounting for personal prenatal exposure to airborne polycyclic aromatic hydrocarbons: Birth cohort study in Poland. Nutrition, 2012. 28(4): p. 372-7. 70. Suzuki, T., Kanoh, T., Kanbayashi, M., Todome, Y. et al., The adjuvant activity of pyrene in diesel exhaust on IgE antibody production in mice. Arerugi, 1993. 42(8): p. 963-8. 71. Miller, R.L., Garfinkel, R., Lendor, C., Hoepner, L. et al., Polycyclic aromatic hydrocarbon metabolite levels and pediatric allergy and asthma in an inner-city cohort. Pediatr Allergy Immunol, 2010. 21(2 Pt 1): p. 260-7. 72. Lin, C.C., Huang, C.N., Hwang, Y.H., Wang, J.D. et al., Shortened menstrual cycles in LCD manufacturing workers. Occup Med (Lond), 2013. 63(1): p. 45-52. 73. Li, H., Chen, J., Overstreet, J.W., Nakajima, S.T. et al., Urinary follicle-stimulating hormone peak as a biomarker for estimating the day of ovulation. Fertil Steril, 2002. 77(5): p. 961-6. 74. Lin, C.C., Reproductive Health in High-tech Industrial Workers, in Institute of Occupational Medicine and Industrial Hygiene2008, National Taiwn University: Taipei. 75. Lin, C.C., Huang, C.N., Wang, J.D., Hwang, Y.H. et al., Exposure to Multiple Low-Level Chemicals in Relation to Reproductive Hormones in Premenopausal Women Involved in Liquid Crystal Display Manufacture. Int J Environ Res Public Health, 2013. 10(4): p. 1406-1417. 76. Liu, S.H., Determination of Phthalate Metabolites, Bisphenol A Glucuronide, 1-Hydroxypyrene Glucuronide, Perfluorinated Chemicals and Leukotriene E4 in Urine Using Ultra-High Performance Liquid Chromatography/Tandem Mass Spetrometry, in Institute of Environmental Health2013, National Taiwan University: Taipei. 77. Lin, L.C., Wang, S.L., Chang, Y.C., Huang, P.C. et al., Associations between maternal phthalate exposure and cord sex hormones in human infants. Chemosphere, 2011. 83(8): p. 1192-9. 78. Huang, P.C., Tsai, E.M., Li, W.F., Liao, P.C. et al., Association between phthalate exposure and glutathione S-transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis. Hum Reprod, 2010. 25(4): p. 986-94. 79. Silva, M.J., Barr, D.B., Reidy, J.A., Kato, K. et al., Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol, 2003. 77(10): p. 561-7. 80. Völkel, W., Kiranoglu, M., Schuster, R., and Fromme, H., Phthalate intake by infants calculated from biomonitoring data. Toxicol Lett, 2014. 225(2): p. 222-229. 81. CDC, Department of Health and Human Service, Fourth National Report on Human Exposure to Environmental Chemicals. 2009. 82. Davis, B.J., Maronpot, R.R., and Heindel, J.J., Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol, 1994. 128(2): p. 216-23. 83. Mylchreest, E., Cattley, R.C., and Foster, P.M., Male reproductive tract malformations in rats following gestational and lactational exposure to Di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol Sci, 1998. 43(1): p. 47-60. 84. Grande, S.W., Andrade, A.J., Talsness, C.E., Grote, K. et al., A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development. Toxicol Sci, 2006. 91(1): p. 247-54. 85. Colon, I., Caro, D., Bourdony, C.J., and Rosario, O., Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect, 2000. 108(9): p. 895-900. 86. Hatch, M.C., Figa-Talamanca, I., and Salerno, S., Work stress and menstrual patterns among American and Italian nurses. Scand J Work Environ Health, 1999. 25(2): p. 144-50. 87. Messing, K., Saurel-Cubizolles, M.J., Bourgine, M., and Kaminski, M., Menstrual-cycle characteristics and work conditions of workers in poultry slaughterhouses and canneries. Scand J Work Environ Health, 1992. 18(5): p. 302-9. 88. Huang, P.C., Kuo, P.L., Chou, Y.Y., Lin, S.J. et al., Association between prenatal exposure to phthalates and the health of newborns. Environ Int, 2009. 35(1): p. 14-20. 89. Kasper-Sonnenberg, M., Koch, H.M., Wittsiepe, J., and Wilhelm, M., Levels of phthalate metabolites in urine among mother–child-pairs – Results from the Duisburg birth cohort study, Germany. Int J Hyg Envir Heal, 2012. 215(3): p. 373-382. 90. Tyl, R.W., Price, C.J., Marr, M.C., and Kimmel, C.A., Developmental toxicity evaluation of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice. Fundam Appl Toxicol, 1988. 10(3): p. 395-412. 91. Latini, G., De Felice, C., Presta, G., Del Vecchio, A. et al., In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect, 2003. 111(14): p. 1783-5. 92. Zhang, Y., Lin, L., Cao, Y., Chen, B. et al., Phthalate Levels and Low Birth Weight: A Nested Case-Control Study of Chinese Newborns. J Pediatr, 2009. 155(4): p. 500-504. 93. Fein, G.G., Jacobson, J.L., Jacobson, S.W., Schwartz, P.M. et al., Prenatal exposure to polychlorinated biphenyls: Effects on birth size and gestational age. J Pediatr, 1984. 105(2): p. 315-320. 94. Lignell, S., Aune, M., Darnerud, P.O., Hanberg, A. et al., Prenatal exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may influence birth weight among infants in a Swedish cohort with background exposure: a cross-sectional study. Environ Health, 2013. 12: p. 44. 95. Dalgaard, M., Hass, U., Vinggaard, A.M., Jarfelt, K. et al., Di(2-ethylhexyl) adipate (DEHA) induced developmental toxicity but not antiandrogenic effects in pre- and postnatally exposed Wistar rats. Reprod Toxicol, 2003. 17(2): p. 163-70. 96. Marsman, D., NTP technical report on the toxicity studies of Dibutyl Phthalate (CAS No. 84-74-2) Administered in Feed to F344/N Rats and B6C3F1 Mice. Toxic Rep Ser, 1995. 30: p. 1-G5. 97. Kolarik, B., Naydenov, K., Larsson, M., Bornehag, C.G. et al., The association between phthalates in dust and allergic diseases among Bulgarian children. Environ Health Perspect, 2008. 116(1): p. 98-103. 98. Just, A.C., Whyatt, R.M., Perzanowski, M.S., Calafat, A.M. et al., Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort. Environ Health Perspect, 2012. 120(10): p. 1475-80. 99. Hoppin, J.A., Jaramillo, R., London, S.J., Bertelsen, R.J. et al., Phthalate exposure and allergy in the U.S. population: results from NHANES 2005-2006. Environ Health Perspect, 2013. 121(10): p. 1129-34. 100. Kimber, I. and Dearman, R.J., An assessment of the ability of phthalates to influence immune and allergic responses. Toxicology, 2010. 271(3): p. 73-82. 101. Kalliomäki, M., Salminen, S., Arvilommi, H., Kero, P. et al., Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. The Lancet, 2001. 357(9262): p. 1076-1079. 102. Tulve, N.S., Suggs, J.C., McCurdy, T., Cohen Hubal, E.A. et al., Frequency of mouthing behavior in young children. J Expo Anal Environ Epidemiol, 2002. 12(4): p. 259-64. 103. TFDA. 公布我國DEHP等5種鄰苯二甲酸酯類塑化劑之每日耐受量 (Tolerable Daily Intake, TDI) 參考值. 2011 [cited 2014 08/11]; Available from: http://www.fda.gov.tw:8080/news.aspx?newssn=7848&key_year=0&keyword=&classifysn=4&unitsn=1. 104. Teitelbaum, S.L., Britton, J.A., Calafat, A.M., Ye, X. et al., Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res, 2008. 106(2): p. 257-69. 105. Hoppin, J.A., Brock, J.W., Davis, B.J., and Baird, D.D., Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect, 2002. 110(5): p. 515-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55960 | - |
| dc.description.abstract | 鄰苯二甲酸酯 (phthalates)、雙酚A (bisphenol A)、全氟碳化合物(perfluoroalkyl chemicals, PFACs)以及多環芳香烴(polycyclic aromatic hydrocarbons, PAHs)為普遍存在於環境中之污染物;前三類為工業原料,常被應用於塑膠、食品包材、餐具及個人保健用品等,多環芳香烴則是經由不完全燃燒產生,交通排放為最主要的污染源。過往毒理學以及流行病學研究顯示,這些污染物皆具有生殖及發展毒性,有可能會影響女性荷爾蒙之分泌,也可能會對母體內之胎兒發育以及幼童健康造成不良影響。因此,本研究探討鄰苯二甲酸酯、雙酚A、全氟碳化合物以及多環芳香烴之暴露與女性荷爾蒙分泌之關聯、其產前暴露對嬰兒出生健康指標之影響、以及對孩童發生過敏之關聯。本研究對象分為兩部分,第一部分為60名液晶顯示幕工廠女工,第二部分則以Taiwan Birth Panel Study中138位產婦、196位兩歲兒童與74位五歲兒童為對象。所收集之尿液樣本以極致液相層析串聯式質譜儀分析16種待測物之濃度,包含4種鄰苯二甲酸酯代謝物 (monoethyl phthalate, MEP; mono-n-butyl phthalate MnBP; monobenzyl phthalate, MBzP, 和mono-(2-ethyl-hydroxyhexyl) phthalate, 5OH-MEHP)、雙酚A葡萄糖苷酸 (bisphenol A glucuronide, BPA-G)、1-羥基芘葡萄糖苷酸 (1-hydroxylpyrene glucuronide, 1-OHP-G)、9種全氟碳化合物 (perfluorobutanoic acid, perfluorohexanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, perfluorooctane sulfonate,和perfluorohexane sulfonate)與白三烯素E4 (leukotriene E4, LTE4)。嬰兒出生健康資料、產婦及兒童之飲食、居住環境、過敏診斷與個人資料等由問卷取得,並使用多變項線性迴歸分析與邏輯迴歸進行統計分析。
待測物中以鄰苯二甲酸酯代謝物的檢出率最高,為30-73%;其中又以MEP檢出較高濃度(幾何平均數 = 15.2-25.5 μg/g creatinine),MnBP居次(4.16-15.1 μg/g creatinine),5OH-MEHP (3.74-8.01 μg/g creatinine)和MBzP (0.38-0.64 μg/g creatinine)則較低。全氟碳化合物之檢出率最低,僅見於極少數樣本。MEP (濃度範圍< LOD-8,995 μg/g creatinine)、MnBP (< LOD-3,213 μg/g creatinine)、BPA-G (< LOD-24,416 μg/g creatinine)與1-OHP-G (< LOD-1,124 μg/g creatinine)濃度變動較大,有些研究對象具有極高暴露。液晶顯示器工廠女工之荷爾蒙研究顯示,MBzP與BPA-G在濾泡期、排卵期或黃體期皆對促濾泡刺激素(follicle-stimulating hormone, FSH)有負向相關,MEP與BPA-G則分別在各期對PdG (pregnanediol glucuronide,為尿液中黃體素代謝物)有正向或負向相關,BPA-G對各期E1C濃度亦有正向相關,但皆未達統計顯著,亦無劑量效應關係,故認為鄰苯二甲酸酯與雙酚A的暴露對女性荷爾蒙分泌並無顯著影響。尿液中待測物濃度和嬰兒出生健康指標如體重、身長、頭圍或妊娠年齡的關係則依待測物和健康指標之不同而有所差異。嬰兒出生體重和MnBP、1-OHP-G有負向相關,和5OH-MEHP則有正向關係; MEP和MBzP對出生身長有負相關,高暴露組的效應大於低暴露組,且MEP的極高暴露組(前百分之十)對極低暴露組(小於偵測極限)有顯著負相關,5OH-MEHP則有正相關但無劑量效應關係;苯二甲酸酯或雙酚A對頭圍與妊娠年齡的增減則無明確關係。過敏孩童與健康孩童尿液中待測物濃度差異絕大部分未達統計顯著,但發現MBzP暴露越高可能增加發生過敏的風險,此外,在五歲孩童中發現MnBP之極高暴露組(前百分之二十五)發生過敏之風險為極低暴露組(小於偵測極限)的六倍 (β = 1.84, OR = 6.29, p < 0.05)。其餘之鄰苯二甲酸酯、雙酚A或多環芳香烴則未發現與過敏情形有關。有無使用益生菌之兩歲孩童尿液中待測物差異未達統計顯著,但使用益生菌之孩童尿液中BPA-G較高,且有無使用益生菌的族群其極高暴露組(前百分之十)的尿中BPA-G濃度有顯著差異,推測使用益生菌可能會提高BPA攝取。 本研究中嬰兒出生健康指標之研究對象主要來自臺北市及其鄰近地區,足以代表本區域族群之鄰苯二甲酸酯、雙酚A或多環芳香烴的暴露情形。而先前相似之台灣研究,其族群則是以台灣南部為主,且DBP暴露較DEP暴露高,和本研究之觀察相反。 本研究發現尿液中MEP、MBzP與BPA-G濃度與女性荷爾蒙含量有所關聯,但影響並未達統計上之顯著;鄰苯二甲酸酯(DEP、DBP與BBzP)與多環芳香烴之產前暴露則對嬰兒出生體重或身長有負向影響;DBP與BBzP暴露為孩童發生過敏之可能風險因子。其餘尿液中待測物則和所關心之健康效應無明顯統計相關性。為達到更佳統計效力,建議未來研究尚需要納入其他未考慮之影響因子以及增加研究之個案數目。在女性荷爾蒙研究方面,須將其他可能影響荷爾蒙分泌之因素如壓力、工作輪班、其他化學物質暴露納入考量;嬰兒出生健康指標亦可能受其他化學物質影響。此外,增加樣本數及提升待測物檢出率來增加統計解釋力亦為改善之道;其他可能影響過敏發生之物質如塵蟎、花粉等也應該在探討孩童過敏時納入考慮。 本研究找出可能造成健康效應之危險因子並建議可改善之處,以供未來進行大型研究之參採。 | zh_TW |
| dc.description.abstract | Phthalate esters, bisphenol A, and perfluoroalkyl chemicals (PFACs) are emerging contaminants, and are often used in consumer materials such as plastics, food containers, and personal care products. Polycyclic aromatic hydrocarbons (PAHs) are pollutants generated from incomplete combustion. These contaminants possess developmental and reproductive toxicity, induce allergic symptoms and affect excretion of female hormones. Therefore, our study investigated the associations between the exposure to phthalate esters, bisphenol A, PFACs, and PAHs and on the indices of female hormones, birth outcomes, and allergy.
This study determined urinary concentrations of four phthalate metabolites (monoethyl phthalate, mono-n-butyl phthalate, monobenzyl phthalate, and mono-(2-ethyl-hydroxyhexyl) phthalate), bisphenol A glucuronide (BPA-G), nine perfluoroalkyl chemicals (perfluorobutanoic acid, perfluorohexanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, perfluorooctane sulfonate, and perfluorohexane sulfonate), leukotriene E4 (LTE4) and 1-hydroxypyrene glucuronide (1-OHP-G) with ultra-high performance liquid chromatography/tandem mass spectrometry, then associated the concentrations with the female hormones levels of female workers who were employed in a LCD factory. Birth outcomes of newborns and the incidence of allergy among children at age of 2 and 5 from the subjects of the Taiwan Birth Panel Study (TBPS) were also examined with the urinary concentrations of the above analytes in the subjects. There were 60 female worker samples, 138 maternal urine samples, 196 and 74 samples of 2 and 5 years old children, respectively, were included in our study. The data of birth outcomes, demography, diet and living surroundings, and allergy diagnoses were collected by a structured questionnaire. Multiple linear regression analysis was conducted between urinary analyte concentrations and female hormones (follicle-stimulating hormone, FSH; E1C, a metabolite of estradiol; and pregnanediol glucuronide, PdG) or birth outcomes (birth weight, birth length, head circumference, and gestational age). Logistic regression analysis was applied to evaluate the associations between urinary analyte concentrations and incidence of allergy. Phthalate metabolites have higher positive rates among the 16 analytes (approximately 30-73%); MEP (GM = 15.2-25.5 μg/g creatinine) had relatively higher levels among the four phthalate metabolites, followed by MnBP (4.16-15.1 μg/g creatinine), 5OH-MEHP (3.74-8.01 μg/g creatinine) and MBzP (0.38-0.64 μg/g creatinine). PFACs were not detected in most urine samples. The concentrations of MEP (range = < LOD-8,995 μg/g creatinine), MBP (< LOD-3,213 μg/g creatinine), BPA-G (< LOD-24,416 μg/g creatinine), and 1-OHP-G (< LOD-1,124 μg/g creatinine) varied larger than those of other analytes, and some subjects would have been exposed to higher amount of these chemicals. Regarding the effects on female hormones, urinary concentrations of MBzP and BPA-G showed inverse trends to levels of FSH, that of BPA-G showed positive trend to E1C, and those of MEP and BPA-G showed positive and negative trends to levels of PdG in follicular phase, ovulation phase and luteal phase, respectively; however, the above relationships did not reach statistical significance and were not dose-dependent. The associations between urinary analyte concentrations and birth outcomes varied among the analytes. MnBP and 1-OHP-G were negatively associated with birth weight but 5OH-MEHP were positively; MEP and MBzP showed negative and dose-dependent associations with birth length; compared to the subjects with urine levels below the LODs, the subjects at upper 10% of MEP levels showed significantly negative association with birth length; 5OH-MEHP had positive but not dose-dependent relationships to birth length. The existing data suggested that prenatal exposure to phthalate esters, BPA and pyrene does not affect head circumference and gestation age of newborns. No significant differences in urinary concentrations of most analytes between children with and without allergy; nevertheless, there was a trend on higher urinary levels of MBzP toward increased incidence of allergy and the 5-year-old subjects with upper 25% of MnBP levels showed significantly higher risk of allergy than those below the LOD (β= 1.84, OR = 6.29, p < 0.05); exposure to DEHP, DEP, BPA and pyrene were not associated with allergic symptoms. Urinary levels of phthalate metabolites showed no significant difference in consuming probiotics, but the levels of BPA-G were higher in the subjects consumed probiotics than those who never use them. The subjects from the TBPS were recruited from Taipei and adjacent areas; consequently, it is able to well illustrate the exposure to phthalate esters, BPA and PAHs in Northern Taiwan, while the subjects of previous similar studies were from Southern Taiwan. There were differences in the background levels and exposure profiles between the two different regions; exposure to DBP was higher than that to DEP in Southern Taiwan, but the profile was opposite in Northern Taiwan. The urinary concentrations of MEP, MBzP and BPA-G associated with female hormone levels, although not in statistical differences; prenatal exposure to DEP, DBP, BBzP and pyrene resulted in adverse effects on birth weight and birth length. Exposure to DBP and BBzP may be risk factors of allergy in children; the rest analytes did not show significant associations with adverse health outcomes that were concerned in this study. For further studies, more considerations on potential confounders and greater statistical power are desired to better evaluate the associations. In terms of the female hormone study, pressure, work shift and other chemical exposure (such as VOCs) may affect hormone levels. Previous studies showed that prenatal exposure to PCBs or PBDEs affects birth outcomes. Risk factors of allergy such as mite and pollen also need to be considered when investigating the associations between the analytes and the incidence of allergy. An additional strategy is to enhance statistical power by increasing sample sizes and increasing positive rates of analyte detection in samples. This study provided potential risk compounds to three categories of health outcomes and discussed crucial issues that could improve further studies in a large scale. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:11:43Z (GMT). No. of bitstreams: 1 ntu-103-R00844016-1.pdf: 1406959 bytes, checksum: 18f9cc4ac4ee89b91b44ce10b4aaab48 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract V 目錄 XI 圖目錄 XIII 表目錄 XV Chapter 1. Introduction 1 1.1 Phthalates 1 1.2 Bisphenol A 5 1.3 Perfluoroalkyl chemicals 1 1.4 Polycyclic aromatic hydrocarbons 3 1.5 Objectives 1 Chapter 2. Methods and Materials 3 2.1 Reagents and materials 3 2.2 Sample collection and sample analysis 5 2.2.1 Sample collection 5 2.2.2 Sample preparation 8 2.2.3 Instrumental analysis 9 2.3 Identification and quantification 10 2.4 Quality assurance and quality control 11 2.5 Statistical analysis 12 Chapter 3. Results and Discussions 15 3.1 Exposure of female workers in the LCD factory 15 3.2 Exposure of TBPS chlidren 21 3.2.1 Distribution of subjects and urinary concentrations of the analytes 21 3.2.2 Association between prenatal exposure to phthalates, BPA, PAHs and the health outcomes of newborns 25 3.2.3 Association between exposures to phthalates ester, BPA, and condition of allergy in 2 and 5 year-old children 30 3.2.4 Association between prenatal exposure to phthalates, BPA, PAHs and probiotics consumption in 2 year-old children 33 Chapter 4. Conclusions 39 Reference 43 | |
| dc.language.iso | en | |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | 鄰苯二甲酸酯 | zh_TW |
| dc.subject | 雙酚A | zh_TW |
| dc.subject | 全氟碳化合物 | zh_TW |
| dc.subject | 1-羥基芘 | zh_TW |
| dc.subject | 嬰兒出生健康指標 | zh_TW |
| dc.subject | 女性荷爾蒙 | zh_TW |
| dc.subject | 過敏 | zh_TW |
| dc.subject | 1-hydroxylpyrene | en |
| dc.subject | allergy | en |
| dc.subject | female hormone | en |
| dc.subject | birth outcome | en |
| dc.subject | phthalate esters | en |
| dc.subject | bisphenol A | en |
| dc.subject | perfluoroalkyl chemicals | en |
| dc.subject | probiotics | en |
| dc.title | 尿液中鄰苯二甲酸酯代謝物、雙酚A葡萄糖苷酸、1-羥基芘葡萄糖苷酸、全氟碳化合物與白三烯素E4含量,與女性荷爾蒙、嬰兒出生健康指標、過敏症狀之相關性 | zh_TW |
| dc.title | The Association of Urinary Concentrations of Phthalate Metabolites, Bisphenol A Glucuronide, Perfluoroalkyl Chemicals, 1-Hydroxypyrene Glucuronide and Leukotriene E4, with the Levels of Female Hormones, the Birth Outcomes, and the Allergic Symptoms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳保中,郭育良,郭錦樺 | |
| dc.subject.keyword | 鄰苯二甲酸酯,雙酚A,全氟碳化合物,1-羥基芘,嬰兒出生健康指標,女性荷爾蒙,過敏,益生菌, | zh_TW |
| dc.subject.keyword | phthalate esters,bisphenol A,perfluoroalkyl chemicals,1-hydroxylpyrene,birth outcome,female hormone,allergy,probiotics, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
