Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55953
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠(Ru-Jong Jeng)
dc.contributor.authorYu-Ching Chenen
dc.contributor.author陳昱清zh_TW
dc.date.accessioned2021-06-16T05:11:33Z-
dc.date.available2017-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation1. Buehler, W. J.; Gilfrich, J. V.; Wiley, R. C., Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics 1963, 34 (5), 1475-1477.
2. Wei, Z. G.; Sandstroröm, R.; Miyazaki, S., Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. Journal of Materials Science 1998, 33 (15), 3743-3762.
3. (a) Charlesby, A., Pergamon Press,Oxford, 1960, 198, Atomic Radiation and Polymers. Pergamon Press: 1960; p 556; (b) Ota, S., Current status of irradiated heat-shrinkable tubing in Japan. Radiation Physics and Chemistry (1977) 1981, 18 (1–2), 81-87; (c) Machi, S., New trends of radiation processing applications. Radiation Physics and Chemistry 1996, 47 (3), 333-336.
4. Skákalová, V.; Lukeš, V.; Breza, M., Shape memory effect of dehydrochlorinated crosslinked poly (vinyl chloride). Macromolecular Chemistry and Physics 1997, 198 (10), 3161-3172.
5. Sivakumar, C.; Sultan Nasar, A., Shape-memory polyurethanes minimally crosslinked with hydroxyl-terminated AB2-type hyperbranched polyurethanes. Journal of Applied Polymer Science 2011, 120 (2), 725-734.
6. Shirai, Y.; Hayashi, S., Mitsubishi Tech. Bull. 1988, 184, 213.
7. Bae, C. Y.; Park, J. H.; Kim, E. Y.; Kang, Y. S.; Kim, B. K., Organic-inorganic nanocomposite bilayers with triple shape memory effect. Journal of Materials Chemistry 2011, 21 (30), 11288-11295.
8. Li, F.; Zhang, X.; Hou, J.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K., Studies on thermally stimulated shape memory effect of segmented polyurethanes. Journal of Applied Polymer Science 1997, 64 (8), 1511-1516.
9. Wang, M.; Zhang, L., Recovery as a measure of oriented crystalline structure in poly (ether ester) s based on poly (ethylene oxide) and poly (ethylene terephthalate) used as shape memory polymers. Journal of Polymer Science Part B: Polymer Physics 1999, 37 (2), 101-112.
10. Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M. C.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19 (44), 8484-8494.
11. Ji, F. L.; Hu, J. L.; Li, T. C.; Wong, Y. W., Morphology and shape memory effect of segmented polyurethanes. Part І: With crystalline reversible phase. Polymer 2007, 48 (17), 5133-5145.
12. (a) Sakurai, K.; Kashiwagi, T.; Takahashi, T., Crystal structure of polynorbornene. Journal of applied polymer science 1993, 47 (5), 937-940; (b) Liu, C.; Qin, H.; Mather, P. T., Review of progress in shape-memory polymers. Journal of Materials Chemistry 2007, 17 (16), 1543-1558.
13. (a) Hirai, T.; Maruyama, H.; Suzuki, T.; Hayashi, S., Shape memorizing properties of a hydrogel of poly (vinyl alcohol). Journal of applied polymer science 1992, 45 (10), 1849-1855; (b) Osada, Y.; Gong, J.-P., Soft and Wet Materials: Polymer Gels. Advanced Materials 1998, 10 (11), 827-837; (c) Alvarez-Lorenzo, C.; Guney, O.; Oya, T.; Sakai, Y.; Kobayashi, M.; Enoki, T.; Takeoka, Y.; Ishibashi, T.; Kuroda, K.; Tanaka, K.; Wang, G.; Grosberg, A. Y.; Masamune, S.; Tanaka, T., Polymer Gels That Memorize Elements of Molecular Conformation. Macromolecules 2000, 33 (23), 8693-8697.
14. 姚康德; 成國祥, 智慧材料. 五南圖書出版股份有限公司: 2003.
15. (a) Ni, Q.-Q.; Zhang, C.-s.; Fu, Y.; Dai, G.; Kimura, T., Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Composite Structures 2007, 81 (2), 176-184; (b) Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A., Shape-Memory Polymer Networks from Oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate. Biomacromolecules 2007, 8 (3), 1018-1027.
16. Lendlein, A.; Kelch, S., Shape‐memory polymers. Angewandte Chemie International Edition 2002, 41 (12), 2034-2057.
17. Liu, C.; Qin, H.; Mather, P., Review of progress in shape-memory polymers. Journal of Materials Chemistry 2007, 17 (16), 1543-1558.
18. Kobayashi, K.; Shunichi, S. 1992.
19. Bayer, O.; Siefken, W.; Rinke, H.; Orthner, L.; Schild, H., German Patent 1937, 728, 981.
20. Munich, Polyurethane handbook. G. Oertel, Hanser: 1985; Vol. 18, p 629.
21. Szycher, M., Szycher's Handbook of Polyurethanes. CRC PressINC: 1999.
22. Lelah, M. D.; Cooper, S. L., Polyurethanes in medicine. CRC Press: 1986.
23. Mason, S. F., Chemical evolution: origin of the elements, molecules, and living systems. Clarendon Press: 1991.
24. Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; Hall Jr, H. K., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53 (45), 15495-15513.
25. Xia, F.; Jiang, L., Bio‐Inspired, Smart, Multiscale Interfacial Materials. Advanced materials 2008, 20 (15), 2842-2858.
26. Buhleier, E.; Wehner, W.; Vogtle, F., Synthesis 1978, 2, 155.
27. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 1985, 17 (1), 117.
28. Naylor, A. M.; Goddard, W. A.; Kiefer, G. E.; Tomalia, D. A., Starburst dendrimers. 5. Molecular shape control. Journal of the American Chemical Society 1989, 111 (6), 2339-2341.
29. Turro, N. J.; Barton, J. K.; Tomalia, D. A., Molecular recognition and chemistry in restricted reaction spaces. Photophysics and photoinduced electron transfer on the surfaces of micelles, dendrimers, and DNA. Accounts of Chemical Research 1991, 24 (11), 332-340.
30. Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J., Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society 1993, 115 (10), 4375-4376.
31. Grayson, S. M.; Fréchet, J. M. J., Convergent Dendrons and Dendrimers:  from Synthesis to Applications. Chemical Reviews 2001, 101 (12), 3819-3868.
32. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. The Journal of Organic Chemistry 1985, 50 (11), 2003-2004.
33. Xia, F.; Jiang, L., Bio-Inspired, Smart, Multiscale Interfacial Materials. Advanced Materials 2008, 20 (15), 2842-2858.
34. Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chemistry of Materials 1990, 2 (4), 346-349.
35. Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society 1990, 112 (21), 7638-7647.
36. Schlüter, A. D.; Rabe, J. P., Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angewandte Chemie International Edition 2000, 39 (5), 864-883.
37. Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules 2005, 38 (8), 3044-3047.
38. Roovers, J.; Comanita, B., Dendrimers and dendrimer-polymer hybrids. In Branched Polymers I, Springer: 1999; pp 179-228.
39. Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chemical Communications 2004, 0 (14), 1608-1609.
40. Darcos, V.; Duréault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical communications 2004, (18), 2110-2111.
41. Tomalia, D. A.; Kirchhoff, P. M., US Patent 1987, 4 (694), 064.
42. Frauenrath, H., Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Progress in Polymer Science 2005, 30 (3–4), 325-384.
43. Brunsveld, L.; Folmer, B.; Meijer, E.; Sijbesma, R., Supramolecular polymers. Chemical Reviews 2001, 101 (12), 4071-4098.
44. Lillya, C. P.; Baker, R. J.; Hutte, S.; Winter, H. H.; Lin, Y.; Shi, J.; Dickinson, L. C.; Chien, J. C., Linear chain extension through associative termini. Macromolecules 1992, 25 (8), 2076-2080.
45. De Lucca Freitas, L. L.; Stadler, R., Thermoplastic elastomers by hydrogen bonding. 3. Interrelations between molecular parameters and rheological properties. Macromolecules 1987, 20 (10), 2478-2485.
46. Kuo, M.-C.; Jeng, R.-J.; Su, W.-C.; Dai, S. A., Iterative synthesis of extenders of uniform chain lengths for making thermo-reversible polyurethane supramolecules. Macromolecules 2008, 41 (3), 682-690.
47. Jung, Y.; Cho, J., Application of shape memory polyurethane in orthodontic. Journal of Materials Science: Materials in Medicine 2010, 21 (10), 2881-2886.
48. Manzoor, A.; Jikui, L.; Mohsen, M., Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application. Science and Technology of Advanced Materials 2012, 13 (1), 015006.
49. Chen, C.-P.; Dai, S. A.; Chang, H.-L.; Su, W.-C.; Wu, T.-M.; Jeng, R.-J., Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005, 46 (25), 11849-11857.
50. Dai, S. A.; Chen, C. P.; Lin, C. C.; Chang, C. C.; Wu, T. M.; Su, W. C.; Chang, H. L.; Jeng, R. J., Novel Side‐Chain Dendritic Polyurethanes Based on Hydrogen Bonding Rich Polyurea/Malonamide Dendrons. Macromolecular Materials and Engineering 2006, 291 (4), 395-404.
51. Tsai, C.-C.; Chang, C.-C.; Yu, C.-S.; Dai, S. A.; Wu, T.-M.; Su, W.-C.; Chen, C.-N.; Chen, F. M.; Jeng, R.-J., Side chain dendritic polyurethanes with shape-memory effect. Journal of Materials Chemistry 2009, 19 (44), 8484-8494.
52. 劉信志, 國立中興大學化學工程學系 碩士論文, 2011
53. Schuh, C.; Schuh, K.; Lechmann, M. C.; Garnier, L.; Kraft, A., Shape-memory properties of segmented polymers containing aramid hard segments and polycaprolactone soft segments. Polymers 2010, 2 (2), 71-85.
54. Kim, B. K.; Lee, S. Y.; Xu, M., Polyurethanes having shape memory effects. Polymer 1996, 37 (26), 5781-5793.
55. Lee, B. S.; Chun, B. C.; Chung, Y.-C.; Sul, K. I.; Cho, J. W., Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 2001, 34 (18), 6431-6437.
56. Gu, S.; Jana, S., Effects of Polybenzoxazine on Shape Memory Properties of Polyurethanes with Amorphous and Crystalline Soft Segments. Polymers 2014, 6 (4), 1008-1025.
57. Saralegi, A.; Foster, E. J.; Weder, C.; Eceiza, A.; Corcuera, M. A., Thermoplastic shape-memory polyurethanes based on natural oils. Smart Materials and Structures 2014, 23 (2), 025033.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55953-
dc.description.abstract本論文使用精準控制的poly(urea/malonamide)側鏈,探討其應用在形狀記憶聚氨酯的效果。可精準控制分子量及鏈長的poly(urea/malonamide)樹枝狀(DG 系列)與直線型(LG 系列)氫鍵側鏈提供聚胺酯的物理交聯;聚氨酯主鏈SPU使用同一鍋以確保聚氨酯主鏈的分子量及其分佈相同。
聚胺酯利用MDI及CAPA®2303 (Mn=3000)為主體,導入反應性的小分子雙醇,製備具有可後修飾官能基azetidine-2,4-dione之聚胺酯Side-chain polyurethane (SPU)主鏈。反應性官能基azetidine-2,4-dione作為交聯點,使用不同側鏈接枝率導入精準合成的不同代數或鏈長之poly(urea/malonamide)側鏈及來調控聚氨酯的氫鍵物理交聯密度。製備出側鏈精準合成的氫鍵物理交聯聚氨酯系統,並比較樹枝狀和直線型側鏈對聚胺酯性質的影響。
由NMR、IR、EA、Mass及GPC分析,確認製備出精準控制分子量或鍊長的poly(urea/malonamide)聚合物,並由DSC分析的結果可知,樹枝狀及直線型poly(urea/malonamide)側鏈,隨著代數提升、氫鍵數量增加可觀察到玻璃轉移溫度的上升。
DMA觀察聚胺酯的機械性質及相轉移tanδ溫度,都因物理交聯密度的增加而提高。其中SPU-DG系列因樹枝狀側鏈本身氫鍵密度高,比直線型側鏈更有效提升了低溫的儲存模數;而SPU-LG系列的直線型側鏈在物理交聯補強聚胺酯機械性質的同時,還能保有明顯的相轉移峰。有別於SPU-DG系列,SPU-LG系列的儲存模數在相轉移區域之後有rubbery plateau region,提升了橡膠態的儲存模數。
利用Thermal mechanical test進行形狀記憶測試,發現SPU-DG系列聚氨酯具有良好的形狀固定率,但形狀回復效果普遍較差。而高代數側鏈的SPU-LG系列聚氨酯具備有良好的形狀固定率及形狀維持率。本研究的形狀記憶效果以S45-DG2.5-50、S45-DG2.5-25、S35-LG2.5-50、S45-LG2.5-50、S45-LG2.5-25和S45-LG3.5-50聚胺酯的效果最佳,形狀回復率和形狀固定率都維持在90%以上。
zh_TW
dc.description.abstractWith precise synthetic control of hydrogen bond-rich side chains, shape memory polyurethanes (PUs) were prepared. These PUs comprising dendritic (DG series) or linear (LG series) polyurea/malonamide hydrogen bond-rich side chains with uniform chain lengths, providing physical crosslinking interactions to PUs. With the reactive functional group, azetidine-2,4-dione as the side chain of SPU to be a crosslinking site, different grafting ratios with various chain lengths of poly(urea/malonamides) were incorporated onto SPU. Consequently the physical crosslinking density could be adjusted.
Via NMR, IR, EA, Mass and GPC analysis, we were able to confirm that the precise control of the poly (urea/malonamide) chain lengths were obtained. Differential scanning calorimeter (DSC) showed that, with the increasing chain length of the dendritic or linear poly (urea/malonamide), the glass transition temperature rose as a result of increasing hydrogen bonding interactions.
Cyclic thermal-mechanical tests were conducted for evaluating shape memory properties. A higher E'low value would make the movement of the polymer chains limited at low temperatures. Consequently the shape retention was enhanced. Moreover, a significant phase transition peak (tanδmax) and a broad rubbery plateau region would also help to improve shape recovery. Because of this, SPU-DG series exhibited excellent shape retention, but relatively poor shape recovery. On the other hand, the SPU-LG series with higher generation side chains exhibited excellent shape and shape retention. S45-DG2.5-50, S45-DG2.5-25, S35-LG2.5-50, S45-LG2.5-50, S45-LG2.5-25 and S45-LG3.5-50 exhibited excellent shape memory effect, with both shape recovery and shape retention higher than 90%. It is concluded that these well-defined PUs with excellent shape-memory effect have been successfully developed in this work.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:11:33Z (GMT). No. of bitstreams: 1
ntu-103-R01549016-1.pdf: 7809643 bytes, checksum: a3ce69b0b9234ebf811ca9ded7c98d65 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XI
壹、緒論 1
貳、文獻回顧 2
2.1形狀記憶材料之簡介 2
2.1.1形狀記憶材料的原理14 3
2.1.2 高分子形狀記憶之來源12b 3
2.1.3熱感應型(thermo-responsive)形狀記憶高分子 4
2.2聚氨酯樹脂之簡介 7
2.2.1聚胺酯之原料及特性21 8
2.3規則樹枝狀分子(dendrimer)簡介 11
2.3.1 Dendrimer合成路徑 13
2.3.2規則樹枝狀衍生物 15
2.4超分子聚合物43 16
2.4.1氫鍵作用力誘導相分離 16
2.4.2熱可逆聚氨酯超分子 17
2.5形狀記憶高分子之應用 18
2.6研究動機 20
参、實驗內容 23
3.1藥品及溶劑 23
3.2實驗儀器 26
3.3實驗流程圖 27
3.4合成步驟 29
3.4.1 IDD之製備 29
3.4.2 反應型單體之合成 30
3.4.3 規則樹枝狀poly(urea/malonamide)聚合物之合成 31
3.4.4 直線型poly(urea/malonamide)聚合物之合成 35
3.4.5 含脂肪族一級胺官能基側鏈之合成 37
3.4.6 含反應官能基之聚胺酯材料 (SPU)之製備 38
3.4.7 側鏈物理交聯之聚胺酯材料之製備 39
3.4.8 側鏈物理交聯聚胺酯材料之接枝率 40
肆、結果與討論 41
4.1合成具反應選擇性單體IDD 41
4.2 DEA-diol之合成與鑑定 44
4.3 樹枝狀poly(urea/malonamide)聚合物之合成 (DG 系列) 46
4.3.1 [DG-0.5]-C18之合成與結構鑑定 46
4.3.2 [DG1]-C18之合成與結構鑑定 48
4.3.3 [DG1.5]-C18之合成與結構鑑定 50
4.3.4 [DG2]-C18之合成與結構鑑定 52
4.3.5 [DG-2.5]-C18之合成與結構鑑定 55
4.4 直線型poly(urea/malonamide)聚合物之合成 (LG 系列) 58
4.4.1 [LG1]-C18之合成與結構鑑定 58
4.4.2 [LG1.5]-C18之合成與結構鑑定 60
4.4.3 [LG2]-C18之合成與結構鑑定 62
4.4.4 [LG2.5]-C18之合成與結構鑑定 64
4.4.5 [LG3]-C18之合成與結構鑑定 66
4.4.6 [LG3.5]-C18之合成與結構鑑定 68
4.5 含脂肪族一級胺官能基側鏈之合成 70
4.5.1 A-[DG-0.5]-C18之合成與結構鑑定 70
4.5.2 A-[DG-1.5]-C18之合成與結構鑑定 72
4.5.3 A-[DG-2.5]-C18之合成與結構鑑定 73
4.5.4 A-[LG-1.5]-C18之合成與結構鑑定 74
4.5.5 A-[LG-2.5]-C18之合成與結構鑑定 76
4.5.6 A-[LG-3.5]-C18之合成與結構鑑定 77
4.6 樹枝狀與直線型poly(urea/malonamide) 聚合物之熱性質分析 79
4.6.1 樹枝狀與直線型poly(urea/malonamide)聚合物之TGA熱重分析 79
4.6.2 樹枝狀與直線型poly(urea/malonamide)聚合物之DSC微差掃描熱分析 80
4.7 側鏈物理性交聯之形狀記憶聚胺酯材料之製備 81
4.7.1 具側鏈反應型官能基聚氨酯主鏈之合成 (SPU) 81
4.7.2 側鏈樹枝狀物理交聯之形狀記憶聚氨酯合成 (SPU-DG系列) 82
4.7.3 側鏈直線型物理交聯之形狀記憶聚氨酯合成 (SPU-LG系列) 82
4.8聚胺酯之側鏈接枝率與FT-IR光譜之比較 85
4.8.1 聚胺酯之側鏈接枝率 85
4.8.2 聚胺酯FT-IR光譜之比較 86
4.9 側鏈物理性交聯聚氨酯之熱性質分析 89
4.9.1 TGA熱重分析 89
4.9.2 DSC微差掃描熱分析 90
4.10 側鏈物理性交聯聚氨酯之機械性質分析 95
4.11 側鏈物理性交聯聚氨酯之動態機械性質分析 (DMA) 99
4.11.1樹枝狀氫鍵物理交聯側鏈SPU-DG系列聚氨酯之儲存模數(E’) 99
4.11.2直線型氫鍵物理交聯側鏈SPU-LG系列聚氨酯之儲存模數(E’) 101
4.11.3樹枝狀氫鍵物理交聯側鏈SPU-DG系列聚氨酯之tanδ 102
4.11.4直線型氫鍵物理交聯側鏈SPU-LG系列聚氨酯之tanδ 103
4.11.5氫鍵物理交聯側鏈聚氨酯SPU-DG與SPU-LG系列之DMA分析結果之比較 105
4.12 側鏈物理性交聯聚氨酯形狀記憶測試 107
4.12.1 SPU-DG系列聚氨酯之形狀記憶測試 108
4.12.2 SPU-LG系列聚氨酯之形狀記憶測試 110
伍、結論 112
陸、參考文獻 114
附錄………………………………………………………………………………….119
dc.language.isozh-TW
dc.title精準合成物理交聯型poly(urea/malonamide)側鏈之形狀記憶聚氨酯zh_TW
dc.titleSide-chain physically reinforced SMPUs via precise architectures control of poly(urea/malonamide)en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇文?,林慶炫,李榮和,劉英麟
dc.subject.keyword物理交聯,形狀記憶,聚胺酯,zh_TW
dc.subject.keywordPhysical crosslink,Shape memory,Polyurethane,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
7.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved