Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王自存(Tsu-Tsuen Wang)
dc.contributor.authorYu-Shan Ouen
dc.contributor.author歐羽珊zh_TW
dc.date.accessioned2021-06-16T05:11:30Z-
dc.date.available2018-01-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-18
dc.identifier.citation王自存. 1993. 葉菜類的採收後生理及處理. 蔬菜生產與發展研討會專刊:209-219.
王自存 . 2008. 園產品處理學與實習講義 . 國立台灣大學園藝系. 台北.
行政院農委會農產貿易統計查詢系統http://agrapp.coa.gov.tw/TS2/TS2Jsp/Index.jsp
何偉真. 2006. 臺灣冬季生產結球萵苣外銷之探討. 臺灣園藝 52:277-290.
吳佳真. 2004. 圓筒絲瓜結果特性及果肉褐化之品種差異. 臺灣大學園藝學研究所學位論文:1-92.
林毓雯、郭鴻裕、劉滄棽. 2010. (技術服務 81: 16-19) 外銷結球萵苣之合理化施肥. 技術服務, 81:16-19.
林煥章. 2009. 結球萵苣產銷概況與輔導措施執行情形. 農政與農情 204:51-54.
柯勇. 2002. 植物生理學. 藝軒.
許涵鈞、謝明憲、林棟樑、王三太. 2010. 耐熱結球萵苣引種觀察比較試驗. 臺南區農業改良場研究彙報:36-43.
郭長生. 2007. 台灣產莎草科植物光合作用型多樣性之研究.
蔡淑華. 1973. 植物解剖學. 國立編譯館.
普莉、索金鳳、薛勇彪. 2003. 植物表皮毛發育的分子遺傳控制. 遺傳學報 30:1078-1084.
歐陽依真. 2013. 綠竹筍採後一般包裝與氣變包裝過程中之組織硬化與相關解剖構造. 臺灣大學園藝學研究所學位論文.
Abeles, F.B. and C.L. Biles. 1991. Characterization of peroxidases in lignifying peach fruit endocarp. Plant physiology 95:269-273.
Adams, D. and S. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences 76:170-174.
Adedeji, O. and O. Jewoola. 2008. Importance of leaf epidermal characters in the Asteraceae family. Not. Bot. Hort. Agrobot. Cluj 36(2):7-16.
United States Department of Agriculture. 1975. United States Standards for Grades of Lettuce. Agricultural Marketing Service.
Bleecker, A.B., M.A. Estelle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086-1089.
Brecht, P., A. A. Kader, and L. L. Morris. 1973a. Influence of postharvest temperature on brown stain of lettuce. J. Amer. Soc. Hort. Sci. 98:399-402.
Brecht, P., L. L. Morris, C. Cheyney, and D. Janecke. 1973b. Brown stain susceptibility of selected lettuce cultivars under controlled atmospheres and temperatures. J. Amer. Soc. Hort. Sci. 98:261-263.
Brecht, P., A. A. Kader, and L. L. Morris. 1973c. The effect of composition of the atmosphere and duration of exposure on brown stain of lettuce. J. Amer. Soc. Hort. Sci.98:536-538.
Browning, B.L. 1967. Methods of wood chemistry. Volumes I & II.
Burg, S.P. and K.V. Thimann. 1959. The physiology of ethylene formation in apples. Proceedings of the National Academy of Sciences of the United States of America 45(3):335.
Cameron, A.C. and M.S. Reid. 2001. 1-MCP blocks ethylene-induced petal abscission of Pelargonium peltatum but the effect is transient. Postharvest Biology and Technology 22:169-177.
Campos‐Vargas, R. and Saltveit, M. E. 2002. Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiologia plantarum 114(1):73-84.
Clifford, M.N. 1974. Specificity of acidic phloroglucinol reagents. Journal of Chromatography A 94:321-324.
Cosgrove, D.J. 2005. Growth of the plant cell wall. Nature reviews molecular cell biology 6(11):850-861.
Couture, R., M. Cantwell, D. Ke, and M. E. Saltveit. 1993. Physiological attributes related to quality attributes and storage life of minimally processed lettuce. HortScience 28(7):723-725.
Dadswell, H. and D.J. Ellis. 1940. Contributions to the study of the cell wall. 2. An investigation of delignification using thin cross sections of various timbers. Journal of the Council for Scientific and Industrial Research, Australia 13:129-37.
Dangyand, K. and M. E. Saltveit. 1986. Effects of calcium and auxin on russet spotting and phenylalanine ammonialyase activity in Iceberg lettuce. HortScience 21(5):1169-1171.
Dashek, W.V. 1997. Methods in plant biochemistry and molecular biology. CRC Press.
Davis, R.M., K.V. Subbarao, R.N. Raid, and E.A. Kurtz. 1997. Compendium of lettuce diseases. MN,, USA:APS press.
Degl’Innocenti, E., A. Pardossi, F. Tognoni, and L. Guidi. 2007. Physiological basis of sensitivity to enzymatic browning in ‘lettuce’,‘escarole’ and ‘rocket salad’ when stored as fresh-cut products. Food Chemistry 104:209-215.
Dixon, R.A. and N.L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. The plant cell 7:1085.
Drew, M.C., C. J. He, and P. W. Morgan. 2000. Programmed cell death and aerenchyma formation in roots. Trends in plant science 5(3):123-127.
Ecker, J.R. and R.W. Davis. 1987. Plant defense genes are regulated by ethylene. Proceedings of the National Academy of Sciences 84(15):5202-5206.
Fan, X. and J. Mattheis. 2000. Reduction of ethylene-induced physiological disorders of carrots and iceberg lettuce by 1-methylcyclopropene. HortScience 35:1312-1314.
Friedman, B. 1954. Brown spot complex of head lettuce on eastern markets. Plant Disease Reptr. 38:847-851.
FAOSTAT-Agriculture, statistical database. http://faostat.fao.org/
Friedman, M. 1996. Food browning and its prevention: an overview. Journal of Agricultural and Food Chemistry 44:631-653.
Fujita, N., E. Tanaka, and M. Murata. 2006. Cinnamaldehyde inhibits phenylalanine ammonia-lyase and enzymatic browning of cut lettuce. Bioscience, biotechnology, and biochemistry 70:672-676.
Fujita, S., T. Tono, and H. Kawahara. 1991. Purification and properties of polyphenol oxidase in head lettuce (Lactuca sativa). Journal of the Science of Food and Agriculture 55:643-651.
Gane, R. 1934. Production of ethylene by some ripening fruits. Nature 134:1056-1058.
Grogan, R.G., W.C. Snyder, and R.E. Bardin. 1955. Diseases of lettuce. Division of Agricultural Sciences, University of California.
Guo, D., F. Chen, K. Inoue, J.W. Blount, and R.A. Dixon. 2001. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. The Plant Cell 13:73-88.
Hall, A.E., J.L. Findell, G.E. Schaller, E.C. Sisler, and A.B. Bleecker. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiology 123:1449-1458.
Hammerschmidt, R. and J. Kuć. 1982. Lignification as a mechanism for induced systemic resistance in cucumber. Physiological Plant Pathology 20:61-71.
Hisaminato, H., M. Murata, and S. Homma. 2001. Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Bioscience, biotechnology, and biochemistry 65(5):1016-1021.
Hua, J., C. Chang, Q. Sun, and E.M. Meyerowitz. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712-1714.
Hussen, S. 2014. Ethylene as a Postharvest “Evil” and its Remedies in some Horticultural Crops. Greener Journal of Plant Breeding and Crop Science 2:34-40.
Hyodo, H., H. Kuroda, and S.F. Yang. 1978. Induction of phenylalanine ammonia-lyase and increase in phenolics in lettuce leaves in relation to the development of russet spotting caused by ethylene. Plant Physiology 62:31-35.
Ilker, Y., A. A. Kader, R. Ilker, and L. L. Morris. 1977. Anatomy of lettuce tissue affected by three physiological disorders. J. Amer. Soc. Hort. Sci. 102(4):426-428.
Jenni, S. 2005. Rib discoloration: A physiological disorder induced by heat stress in crisphead lettuce. HortScience 40(7):2031-2035.
Jenni, S. and G. Bourgeois. 2008. Quantifying phenology and maturity in crisphead lettuce. HortTechnology 18(4):553-558.
Kader, A. A., and R. F. Kasmire. 1984. Effect of ethylene on commodities during postharvest handling. Produce marketing almanac supplement 5-7.
Kader, A. A., W. J. Lipton, and L. L. Morris. 1973. Systems for scoring quality of harvested lettuce. HortSciece 8(5): 408-409.
Kader, A.A. 1985. Ethylene-induced senescence and physiological disorders in harvested horticultural crops. HortScience 20(1):54-57.
Ke, D. and M. E. Saltveit. 1988. Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce. Plant physiology 88:1136-1140.
Ke, D. and M. E. Saltveit. 1989a. Wound‐induced ethylene production, phenolic metabolism and susceptibility to russet spotting in iceberg lettuce. Physiologia Plantarum 76:412-418.
Ke, D. and M. E. Saltveit. 1989b. Developmental control of russet spotting, phenolic enzymes, and IAA oxidase in cultivars of iceberg lettuce. J. Amer. Soc. Hort. Sci. 114(3):472-477.
Ke, D. and M. E. Saltveit. 1989c. Regulation of russet spotting, phenolic metabolism, and IAA oxidase by low oxygen in iceberg lettuce. J. Amer. Soc. Hort. Sci. 114(4):638-642.
Ke, D. and M. E. Saltveit. 1989d. Carbon dioxide-induced brown stain development as related to phenolic metabolism in iceberg lettuce. J. Amer. Soc. Hort. Sci. 114(5):789-794.
Kim, G. H. and R. B. Wills. 1995. Effect of ethylene on storage life of lettuce. Journal of the Science of Food and Agriculture 69:197-201.
Kutscha, N. and J. R. Gray. 1972. The Suitability of Certain Stains for Studying Lignification in Balsam Fir, Abies balsamea (L.) Mill. Life Sciences and Agriculture Experiment Station.
Lopez-Galvez, G., M. E. Saltveit, and M. Cantwell. 1996. Wound-induced phenylalanine ammonia lyase activity: factors affecting its induction and correlation with the quality of minimally processed lettuces. Postharvest Biology and Technology 9:223-233.
Link, G. and M.W. Gardner. 1919. Market pathology and market diseases of vegetables. Phytopathology 9:497-520.
Lipton, W. J. 1961. Anatomical observations on russet spotting and pink rib of lettuce. In Proc. Amer. Soc. Hort. Sci. 78:367-374.
Lipton, W. J. 1967. Market quality and rate of respiration of head lettuce held in low-oxygen atmospheres. USDA Marketing research report. 777, 9p.
Lipton, W.J., J. K. Stewart, and T. W. Whitaker. 1972. An illustrated guide to the identification of some market disorders of head lettuce. USDA Marketing research report. 950, 7p.
Lockshin, R. A. and J. Beaulaton. 1974. Programmed cell death. Life Sci. 15:1549-1565.
Lyshede, O. B. 2002. Comparative and functional leaf anatomy of selected Alstroemeriaceae of mainly Chilean origin. Botanical Journal of the Linnean Society 140:261-272.
Mechin, V., O. Argillier, F. Rocher, Y. Hebert, I. Mila, B. Pollet, Y. Barriere, and C. Lapierre. 2005. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. J. Agri. Food Chem. 53:5872-5881.
Martinez, M. and J.R. Whitaker. 1995. The biochemistry and control of enzymatic browning. Trends in Food Science and Technology 6:195-200.
Marlatt, R. B., and J. K. Stewart. 1956. Pink rib of head lettuce. Plant Dis. Reptr. 40:742-743.
Mateos, M., D. Ke, M. Cantwell, and A.A. Kader. 1993. Phenolic metabolism and ethanolic fermentation of intact and cut lettuce exposed to CO2-enriched atmospheres. Postharvest Biology and Technology 3:225-233.
Morris, L. L., A. A. Kader, J. A. Klaustermeyer, and C. Cheyney. 1978. Avoiding ethylene concentrations in harvested lettuce. California Agriculture 32:14-15.
Morris, L. L., J. A. Klaustermeyer, and A. A. Kader. 1974. Postharvest Requirements of Lettuce to Control Physiological Disorders. Proc. 26th International Conference on Handling Perishable Agricultural Commodities, Michigan State University, East Lansing. pp 22-29
Perez, J., J. Munoz-Dorado, T. de la Rubia, and J. Martinez. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. International Microbiology 5:53-63.
Payne, T., J. Clement, D. Arnold, and A. Lloyd. 1999. Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126(4):671-682.
Peiser, G., G. Lopez-Galvez, M. Cantwell, and M. E. Saltveit. 1998. Phenylalanine ammonia-lyase inhibitors do not prevent russet spotting lesion development in lettuce midribs. J. Amer. Soc. Hort. Sci. 123(4):687-691.
Pizzocaro, F., Torreggiani, D., and Gilardi, G. 1993. Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. Journal of Food Processing and Preservation 17:21-30.
Pomar, F., F. Merino, and A. R. Barcelo. 2002. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220:17-28.
Prohens, J. and F. Nuez. 2008. Vegetables. Springer.
Ramsey, G.B., B. ERIEDMAN, and M.A. Smith. 1959. Market diseases of Beets, Chicory, Endive, Escarole, Globe Artichokes, Lettuce, Rhubarb, Spinach, and Sweetpotatoes. USDA Marketing research report.155, 15p.
Reid, M. S. 1995. Ethylene in plant growth, development, and senescence. Biochemistry and Molecular Biology 2th. pp. 486-508.
Ritenour, M., M. Ahrens, and M. E. Saltveit. 1995. Effects of temperature on ethylene-induced phenylalanine ammonia lyase activity and russet spotting in harvested iceberg lettuce. J. Amer. Soc. Hort. Sci. 120(1):84-87.
Ritenour, M. A., E. G. Sutter, D. M. Williams, and M. E. Saltveit. 1996. Indole-3-acetic acid (IAA) content and axillary bud development in relation to russet spotting in harvested iceberg lettuce. J. Amer. Soc. Hort. Sci. 121(3):543-547.
Rodrıguez, F. I., J. J. Esch, A. E. Hall, B. M. Binder, G. E. Schaller, and A. B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996-998.
Rood, P. 1956. Relation of ethylene and postharvest temperature to brown spot of lettuce. Proc. Amer. Soc. Hort. Sci. 68:296-303.
Sakai, H., J. Hua, Q. G. Chen, C. Chang, L. J. Medrano, A. B. Bleecker, and E. M. Meyerowitz. 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proceedings of the National Academy of Sciences 95:5812-5817.
Saltveit, M. E. 1999. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest biology and technology 15:279-292.
Saltveit, M. E. 2004. Effect of 1-methylcyclopropene on phenylpropanoid metabolism, the accumulation of phenolic compounds, and browning of whole and fresh-cut ‘iceberg’lettuce. Postharvest biology and technology 34:75-80.
Singh, B., D. J. Wang, D. K. Salunkhe, and A. R. Rahman. 1972. Controlled atmosphere storage of lettuce. 2 effects on biochemical composition of the leaves. Journal of Food Science 37:52-55.
Siriphanich, J. and A. A. Kader. 1985a. Effects of CO2 on cinnamic acid 4-hydroxylase in relation to phenolic metabolism in lettuce tissue. J. Amer. Soc. Hort. Sci. 110(3):333-335.
Siriphanich, J. and A. A. Kader. 1985b. Effects of CO2 on total phenolics, phenylalanine ammonia lyase, and polyphenol oxidase in lettuce tissue. J. Amer. Soc. Hort. Sci 110(2):249-253.
Siriphanich, J. and A. A. Kader. 1986. Changes in cytoplasmic and vacuolar pH in harvested lettuce tissue as influenced by CO2. J. Amer. Soc. Hort. Sci. 111(1):73-77.
Sisler, E. C. and S. F. Yang. 1984. Ethylene, the gaseous plant hormone. BioScience 34:234-238.
Stewart, E. R. and H. T. Freebairn. 1969. Ethylene, seed germination, and epinasty. Plant physiology 44:955-958.
Stewart, J. K., J. M. Harvey, M. J. Ceponis, and W. R. Wright. 1972. Carbon dioxide levels in railcars and their effect on lettuce. USDA Marketing research report 937, 11p.
Stewart, J. K. and M. J. Ceponis. 1968. Effects of transit temperatures and modified atmospheres on market quality of lettuce shipped in nitrogen-refrigerated and mechanically refrigerated trailers. USDA Marketing research report 832, 9p.
Stewart, J. K., M. J. Ceponis, and L. Beraha. 1970. Modified-atmosphere effects on the market quality of lettuce shipped by rail. USDA Marketing research report 863, 9p.
Stewart, J. K. and M. Uota. 1971. Carbon dioxide injury and market quality of lettuce held in controlled atmospheres. J. Amer. Soc. Hort. Sci. 96(1):27-30.
Szymanski, D. B., A. M. Lloyd, and M. D. Marks. 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in plant science 5:214-219.
Taiz, L. and E. Zeiger. 2006. Plant physiology. 4th. Edition.
Thomas, R. L., J. J. Jen, and C. V. Morr. 1981. Changes in Soluble and Bound Peroxidase—IAA Oxidase During Tomato Fruit Development. Journal of Food Science 47:158-161.
Toivonen, P. and D. A. Brummell. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biology and Technology 48:1-14.
Tomas-Barberan, F. A., J. Loaiza-Velarde, A. Bonfanti, and M. E. Saltveit. 1997. Early wound-and ethylene-induced changes in phenylpropanoid metabolism in harvested lettuce. J. Amer. Soc. Hort. Sci. 122(3):399-404.
Vaughn, K. C. and Duke, S. O. 1984. Function of polyphenol oxidase in higher plants. Physiologia Plantarum 60:106-112.
Waldron, K. W., M. L. Parker, and A. C. Smith. 2003. Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety 2:128-146.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:155-189.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55951-
dc.description.abstract結球萵苣(Lactuca sativa L. var. capitata)為菊科萵苣屬萵苣類葉菜中最主要的種類,因為頗耐長途貯運,在全球新鮮農產品市場中佔重要地位。結球萵苣在貯藏及運輸過程中如接觸到乙烯會造成葉柄出現斑點病變,稱為鏽斑病 (Russet spotting),是結球萵苣採後之重要生理障礙。近十年來結球萵苣產業在台灣的發展迅速,已成為重要的外銷蔬菜作物。本試驗以國內生產之結球萵苣品種為材料,調查影響其鏽斑病發生之多種因子,並以切片染色技術,對鏽斑病發生過程進行解剖學研究。結果顯示,台灣生菜村所生產之‘6號’結球萵苣葉片中肋組織在5℃中,以0.1 μL•L-1乙烯連續處理4天後會出現初期鏽斑病徽狀,但發展緩慢。以1 μL•L-1乙烯處理3天後開始出現徵狀,之後快速發展,於第7天達嚴重程度。鏽斑病的發展在5 °C中最為嚴重,在0°C中發展緩慢,無法用肉眼看到;在10℃及15℃中,鏽斑病之發展比5℃輕微。中肋組織在5℃中以1 μL•L-1乙烯處理1或2天後移至空氣中並不會誘導鏽斑出現;需連續處理3天以上才能誘導鏽斑之生成,鏽斑徵狀出現後,即使移除乙烯,仍會繼續發展至最嚴重程度。個體重量在600 g 以上之結球萵苣,其中肋組織鏽斑病變之發展比發育成熟度者低者為快速。在整球萵苣中以心部葉片的發生最輕微,最外的包葉最嚴重,葉片對乙烯之敏感性由內向外漸增。乙烯處理會誘導中肋組織中苯丙氨酸氨基裂解酶(PAL)活性之增加,以1 μL•L-1乙烯處理8天,PAL活性增加2.67倍。鏽斑徵狀主要發生於組織表層,於肉眼尚無法觀察到的階段,表皮細胞之細胞壁內緣與細胞膜邊境已先開始褐化,並由細胞間絲擴散至鄰近之表皮細胞及葉肉細胞。鏽斑生成中期,表皮細胞出現失水膨壓下降之現象,到了後期,褐變之表皮細胞和近表層的數層葉肉細胞,自表皮細胞開始失水崩解,塌陷堆疊,鏽斑顏色加深,最後形成一顯見之凹陷斑點。另一種形態之鏽斑為內部組織褐變,發生在底層葉肉組織,通常在病變後期出現。結球萵苣之葉肉組織大部分由薄壁細胞組成且含大量水分,本試驗使用Wiesner reagent、Maule reation及Safranin-Aniline blue double stain等木質素染劑,檢視鏽斑病變細胞是否有木質化現象。結果顯示,三種染劑均可使結球萵苣中肋組織之木質部產生顏色變化,但是對鏽斑病變細胞之染色效果不明顯;因此,本試驗並未觀察到鏽斑病細胞有明顯細胞壁木質化之現象。zh_TW
dc.description.abstractIceberg lettuce (Lactuca sativa L. var. capitata) is the most cultivated type within all the vegetable lettuces. Due to its inherited nature for long distance shipment, it occupies a significant position in the world market of fresh produce. Exposed of iceberg lettuce to ethylene during shipping or cold storage will induce the physiological disorder russet spotting (RS). The production of iceberg lettuce in Taiwan expanded rapidly during the past 10 years, and has become an important crop for export market. The object of this research was to study the development of russet spotting in a domestic-grown iceberg lettuce cultivar ‘Number 6’. Tissue segments excised from lettuce midrib tissue were exposed to ethylene to induce russet spotting and the development of the disorder is studied by section staining technology. Exposing to 0.1 μL•L-1 ethylene for 4 days at 5°C will induce RS with slight lesion. Exposing to 1.0 μL•L-1 ethylene for 3 days at 5°C will induce RS, which developed rapidly and became severe on the 7th day. RS development was most severe at 5 ℃, un-noticeable at 0°C, and less severe at 10 and 15℃. At 5 ℃, treating mid-rib sections with 1 μL•L-1 ethylene for 1 or 2 days did not induce the development of russet spotting. It requires at least 3 days to induce the RS, and the symptom will continue to development even after the removal of ethylene. Lettuce heads weighing more than 600 g developed RS more rapidly and severely than less mature heads. Within a single head, the out wrapper leaves were more sensitivity to ethylene than the inner heart leaves. Ethylene induced a 2.67 fold increase in the phenylalanine ammonia lyase (PAL) activity in the mid-rib tissue. RS appeared mostly on the surface of tissue. In the early stages these are light yellow; later they become deep red-brown and the predominant color is russet. In advanced stages, the epidermis and mesophyll cells near the surface collapsed and pitting appeared. Most of the russet spots occurred as depression of surface cells, but some occurred below the surface. The latter appear diffuse and dark below the surface layers of normal white cells in the midribs. In order to verify whether cell wall lignifications took place in the disordered cell, the section of lettuce midribs were histologically stained with three lignin-specific stains: the Wiesner reagent test, the Maule reation test and the Safranin-Aniline blue double stain test. The results showed that the lignified xylem was stained by all three tests, but the color at the RS lesion did not change significantly. This result indicated that little or no lignifications in the RS affected cells.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:11:30Z (GMT). No. of bitstreams: 1
ntu-103-R01628210-1.pdf: 4063026 bytes, checksum: e506a4e883fbe5b084bb0ac659eeaf01 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要 ........................................................................................................................... i
Abstract .......................................................................................................................... iii
第一章 前言 ..................................................................................................................... 1
第二章 文獻回顧
一、結球萵苣簡介及產業概況 ........................................................................................... 3
二、結球萵苣之採後生理障礙 ........................................................................................... 5
三、乙烯之生理作用與生合成 ......................................................................................... 10
四、酵素型褐變 ................................................................................................................. 12
五、細胞壁之化學組成 ..................................................................................................... 15
第三章 結球萵苣鏽斑病之生成因子
一、前言 ............................................................................................................................. 19
二、材料方法 ..................................................................................................................... 22
三、結果 ............................................................................................................................. 27
四、討論 ............................................................................................................................. 30
第四章 結球萵苣鏽斑病生成過程之解剖觀察
一、前言 ............................................................................................................................. 50
二、材料方法 ..................................................................................................................... 52
三、組織切片染色原理 ..................................................................................................... 55
四、組織切片染色步驟與細節 ......................................................................................... 57
五、結果 ............................................................................................................................. 58
六、討論 ............................................................................................................................. 62
第五章 結論 ................................................................................................................... 88
參考文獻. ........................................................................................................................ 90
dc.language.isozh-TW
dc.subject結球萵苣zh_TW
dc.subject乙烯zh_TW
dc.subject褐變zh_TW
dc.subject木質化zh_TW
dc.subject鏽斑病zh_TW
dc.subjecticeberg lettuceen
dc.subjectrusset spottingen
dc.subjectethyleneen
dc.subjectlignificationen
dc.subjectbrowningen
dc.title影響結球萵苣鏽斑病生成之因子及鏽斑病發展過程之解剖觀察zh_TW
dc.titleFactors Affecting the Appearance of Russet Spotting in Iceberg Lettuce and Anatomical Study of its Developmenten
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃肇家(Chao-Chia Huang),林淑怡(Shu-I Lin)
dc.subject.keyword結球萵苣,鏽斑病,乙烯,木質化,褐變,zh_TW
dc.subject.keywordiceberg lettuce,russet spotting,ethylene,lignification,browning,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved