請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55949完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭柏齡(Po-Ling Kuo) | |
| dc.contributor.author | Chun-Ting Li | en |
| dc.contributor.author | 李峻霆 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:11:27Z | - |
| dc.date.available | 2016-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | [1] V. W. S. Wong, J. Vergniol, G. L. H. Wong, J. Foucher, H. L. Y. Chan, B. Le Bail, et al., 'Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease,' Hepatology, vol. 51, pp. 454-462, 2010.
[2] W.-C. Yeh, P.-C. Li, Y.-M. Jeng, H.-C. Hsu, P.-L. Kuo, M.-L. Li, et al., 'Elastic modulus measurements of human liver and correlation with pathology,' Ultrasound in Medicine & Biology, vol. 28, pp. 467-474, 2002. [3] H. Yu, J. K. Mouw, and V. M. Weaver, 'Forcing form and function: biomechanical regulation of tumor evolution,' Trends in Cell Biology, vol. 21, pp. 47-56, 2011. [4] J. Lee, M. J. Cuddihy, and N. A. Kotov, 'Three-dimensional cell culture matrices: state of the art,' Tissue Engineering Part B: Reviews, vol. 14, pp. 61-86, 2008. [5] D. Seliktar, R. A. Black, R. P. Vito, and R. M. Nerem, 'Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro,' Annals of Biomedical Engineering, vol. 28, pp. 351-362, 2000. [6] L. Krishnan, J. A. Weiss, M. D. Wessman, and J. B. Hoying, 'Design and application of a test system for viscoelastic characterization of collagen gels,' Tissue Engineering, vol. 10, pp. 241-252, 2004. [7] M. C. Evans and V. H. Barocas, 'The modulus of fibroblast-populated collagen gels is not determined by final collagen and cell concentration: experiments and an inclusion-based model,' Journal of Bbiomechanical engineering, vol. 131, P. 101014, 2009. [8] K. A. Jansen, R. G. Bacabac, I. K. Piechocka, and G. H. Koenderink, 'Cells actively stiffen fibrin networks by generating contractile stress,' Biophysical Journal, vol. 105, pp. 2240-2251, 2013. [9] K. Nightingale, S. McAleavey, and G. Trahey, 'Shear-wave generation using acoustic radiation force:< i> in vivo</i> and< i> ex vivo</i> results,' Ultrasound in Medicine & Biology, vol. 29, pp. 1715-1723, 2003. [10] W. A. Berg, D. O. Cosgrove, C. J. Dore, F. K. W. Schafer, W. E. Svensson, R. J. Hooley, et al., 'Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,' Radiology, vol. 262, pp. 435-449, 2012. [11] M. H. Kural and K. L. Billiar, 'Regulating tension in three-dimensional culture environments,' Experimental Cell Research, vol. 319, pp. 2447-2459, 2013. [12] L. Sandrin, M. Tanter, S. Catheline, and M. Fink, 'Shear modulus imaging with 2-D transient elastography,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 49, pp. 426-435, 2002. [13] L. Sandrin, M. Tanter, J. L. Gennisson, S. Catheline, and M. Fink, 'Shear elasticity probe for soft tissues with 1-D transient elastography,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 49, pp. 436-446, 2002. [14] M. L. Palmeri and K. R. Nightingale, 'Acoustic radiation force-based elasticity imaging methods,' Interface Focus, P. rsfs20110023, 2011. [15] J. Bercoff, M. Tanter, and M. Fink, 'Supersonic shear imaging: a new technique for soft tissue elasticity mapping,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 51, pp. 396-409, 2004. [16] Y. Zheng, S. Chen, W. Tan, R. Kinnick, and J. F. Greenleaf, 'Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54, pp. 290-300, 2007. [17] S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, et al., 'Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 56, pp. 55-62, 2009. [18] T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, 'Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity,' Medical Imaging, IEEE Transactions on, vol. 28, pp. 313-322, 2009. [19] C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, 'Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,' Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 1706-1714, 2011. [20] S. Chen, M. Fatemi, and J. F. Greenleaf, 'Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,' The Journal of the Acoustical Society of America, vol. 115, pp. 2781-2785, 2004. [21] M. Couade, M. Pernot, C. Prada, E. Messas, J. Emmerich, P. Bruneval, et al., 'Quantitative assessment of arterial wall biomechanical properties using shear wave imaging,' Ultrasound in Medicine & Biology, vol. 36, pp. 1662-1676, 2010. [22] M. Bernal, I. Nenadic, M. W. Urban, and J. F. Greenleaf, 'Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes,' The Journal of the Acoustical Society of America, vol. 129, pp. 1344-1354, 2011. [23] M. Bernal, J.L. Gennisson, P. Flaud, and M. Tanter, 'Correlation between classical rheometry and Supersonic Shear Wave Imaging in blood clots,' Ultrasound in Medicine & Biology, vol. 39, pp. 2123-2136, 2013. [24] K. Chen, A. Yao, E. E. Zheng, J. Lin, and Y. Zheng, 'Shear wave dispersion ultrasound vibrometry based on a different mechanical model for soft tissue characterization,' Journal of Ultrasound in Medicine, vol. 31, pp. 2001-2011, 2012. [25] C. Schmitt, A. Hadj Henni, and G. Cloutier, 'Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior,' Journal of Biomechanics, vol. 44, pp. 622-629, 2011. [26] M. Perepelyuk, M. Terajima, A. Y. Wang, P. C. Georges, P. A. Janmey, M. Yamauchi, et al., 'Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury,' American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 304, pp. G605-G614, 2013. [27] P. C. Georges, J.J. Hui, Z. Gombos, M. E. McCormick, A. Y. Wang, M. Uemura, et al., 'Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis,' American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 293, pp. G1147-G1154, 2007. [28] M. W. Urban, C. Pislaru, I. Z. Nenadic, R. R. Kinnick, and J. F. Greenleaf, 'Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV),' Medical Imaging, IEEE Transactions on, vol. 32, pp. 247-261, 2013. [29] T.M. Nguyen, M. Couade, J. Bercoff, and M. Tanter, 'Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 58, pp. 2305-2315, 2011. [30] T.-M. Nguyen, J.-F. Aubry, D. Touboul, M. Fink, J.L. Gennisson, J. Bercoff, et al., 'Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study,' Investigative Ophthalmology & Visual Science, vol. 53, pp. 5948-5954, 2012. [31] J. Brum, J. L. Gennisson, T.M. Nguyen, N. Benech, M. Fink, M. Tanter, et al., 'Application of 1-d transient elastography for the shear modulus assessment of thin-layered soft tissue: comparison with supersonic shear imaging technique,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 59, pp. 703-714, 2012. [32] T.M. Nguyen, J. L. Gennisson, M. Couade, D. Touboul, P. Humbert, J. Bercoff, et al., 'Shear wave propagation in complex sub wavelength tissue geometries: Theoretical and experimental implications in the framework of cornea and skin shear wave imaging,' in Ultrasonics Symposium (IUS), 2010 IEEE, pp. 1145-1148, 2010. [33] M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, 'High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,' Medical Imaging, IEEE Transactions on, vol. 28, pp. 1881-1893, 2009. [34] X. Zhang, B. Qiang, R. D. Hubmayr, M. W. Urban, R. Kinnick, and J. F. Greenleaf, 'Noninvasive ultrasound image guided surface wave method for measuring the wave speed and estimating the elasticity of lungs: A feasibility study,' Ultrasonics, vol. 51, pp. 289-295, 2011. [35] A. L. Olsen, S. A. Bloomer, E. P. Chan, M. D. A. Gaca, P. C. Georges, B. Sackey, et al., 'Hepatic stellate cells require a stiff environment for myofibroblastic differentiation,' American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 301, pp. G110-G118, 2011. [36] T. A. Wynn and T. R. Ramalingam, 'Mechanisms of fibrosis: therapeutic translation for fibrotic disease,' Nature Medicine, vol. 18, pp. 1028-1040, 2012. [37] D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, et al., 'Real-time single-cell response to stiffness,' Proceedings of the National Academy of Sciences, vol. 107, pp. 16518-16523, 2010. [38] A. Crow, K. D. Webster, E. Hohlfeld, W. P. Ng, P. Geissler, and D. A. Fletcher, 'Contractile equilibration of single cells to step changes in extracellular stiffness,' Biophysical Journal, vol. 102, pp. 443-451, 2012. [39] A. Zemel, R. De, and S. A. Safran, 'Mechanical consequences of cellular force generation,' Current Opinion in Solid State and Materials Science, vol. 15, pp. 169-176, 2011. [40] A. F. Straight, A. Cheung, J. Limouze, I. Chen, N. J. Westwood, J. R. Sellers, et al., 'Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor,' Science, vol. 299, pp. 1743-1747, 2003. [41] M. Kovacs, J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J. R. Sellers, 'Mechanism of blebbistatin inhibition of myosin II,' Journal of Biological Chemistry, vol. 279, pp. 35557-35563, 2004. [42] K. L. Billiar, 'The mechanical environment of cells in collagen gel models,' in Cellular and biomolecular mechanics and mechanobiology, ed: Springer, 2011, pp. 201-245. [43] T. Casey, J. Bond, S. Tighe, T. Hunter, L. Lintault, O. Patel, et al., 'Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer,' Breast Cancer Research and Treatment, vol. 114, pp. 47-62, 2009. [44] N. P. S. Crawford, R. C. Walker, L. Lukes, J. S. Officewala, R. W. Williams, and K. W. Hunter, 'The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival,' Clinical & Experimental Metastasis, vol. 25, pp. 357-369, 2008. [45] A. M. Baker, D. Bird, G. Lang, T. R. Cox, and J. T. Erler, 'Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK,' Oncogene, vol. 32, pp. 1863-1868, 2012. [46] C. Wiel, A. Augert, D. F. Vincent, D. Gitenay, D. Vindrieux, B. Le Calve, et al., 'Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis,' Cell Death & Disease, vol. 4, p. e855, 2013. [47] A. Bondareva, C. M. Downey, F. Ayres, W. Liu, S. K. Boyd, B. Hallgrimsson, et al., 'The lysyl oxidase inhibitor, β-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells,' PLoS One, vol. 4, p. e5620, 2009. [48] S.-S. Tang, P. C. Trackman, and H. M. Kagan, 'Reaction of aortic lysyl oxidase with beta-aminopropionitrile,' Journal of Biological Chemistry, vol. 258, pp. 4331-4338, 1983. [49] C. Machon, B. Le Calve, S. Coste, M. Riviere, L. Payen, D. Bernard, et al., 'Quantification of β‐aminopropionitrile, an inhibitor of lysyl oxidase activity, in plasma and tumor of mice by liquid chromatography tandem mass spectrometry,' Biomedical Chromatography, 2014. [50] A. M. Pizzo, K. Kokini, L. C. Vaughn, B. Z. Waisner, and S. L. Voytik-Harbin, 'Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective,' Journal of Applied Physiology, vol. 98, pp. 1909-1921, 2005. [51] P. Friedl and K. Wolf, 'Tumour-cell invasion and migration: diversity and escape mechanisms,' Nature Reviews Cancer, vol. 3, pp. 362-374, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55949 | - |
| dc.description.abstract | 細胞重塑造成胞外基質的彈性變化,在生理和病理過程中扮演著舉足輕重的角色。根據許多研究顯示,比起二維的培養環境,將細胞培養在三維環境中將更能貼近細胞在活體內的情況,然而,目前鮮有平台能夠量測細胞活動造成胞外基質硬度的動態改變。超音波式剪切波彈性影像本身有高輸出通量和非接觸式的優點,並且極具潛力能定量量測胞外基質彈性隨時間和空間的變化情形。此篇研究中,我們在三維細胞培養系統架構下,使用剪切波彈性影像定量胞外基質彈性的改變。三維細胞培養系統主要由厚度1-2mm的細胞培養性水膠組成,我們在水膠內混入生物相容性的散射質以提供超音波成像,並將水膠附著在吸收層上來避免邊界的反射。彈性影像的量測上,使用20MHz的超音波探頭聚焦在水膠內,產生聲場輻射力,剪切波的傳遞訊號則由40MHz的探頭接收。將此三維水膠模擬成伏伊特(Voigt) 材料,如此可由剪切波在不同頻率下的相位速度來決定剪切模數。運用此嶄新的量測平台,我們成功展示三維細胞培養系統培養不同種類的癌症細胞和正常細胞,其基質硬度和結構的改變。在三維系統下培養經過一週,癌症細胞 (如:人類肺腺癌細胞) 將基質彈性提升為原來的40-50倍。膠體的硬度和顯著的體積收縮有關,而這兩種參數間存在著冪次現象的關係。分別加入Blebbistatin和Beta-aminopropionitrile到培養系統,以抑制細胞收縮力和基質交聯的生成,結果顯示基質硬化主要來自於細胞的主動收縮。最後,我們的結果證明在三維模型下,使用剪切波彈性影像將有能力進行細胞和胞外基質間機械生物學的相關研究。 | zh_TW |
| dc.description.abstract | The stiffening of extracellular matrix (ECM) resulting from active cell remodeling plays a crucial role in many physiological and pathological processes. Culturing cells in 3D better recapitulates the in vivo conditions than in 2D models. However, there are few platforms allowing measurements of the dynamics of 3D ECM stiffness resulting from cell activities. Ultrasound shear wave elasticity imaging (SWEI) has high-throughput, non-contact nature and greater potential to evaluate the spatiotemporal dynamics of ECM stiffness. In the present work, we evaluate the feasibility of quantifying changes of ECM stiffness in a 3D cell culture system using SWEI. The 3D cell culture system was composed of a cell-culturing hydrogel about 1—2 mm in high. The gel was mixed with biocompatible scatterers to facilitate ultrasound imaging and attached to an absorption layer to avoid wave reflection at boundaries. A 20 MHz ultrasonic transducer was employed to generate radiation forces in the gels and a 40MHz transducer was used to scan the propagating shear waves. The 3D gels were modeled as Voigt materials and the shear moduli were determined from the phase velocities of the shear waves at various frequencies. Using the novel platform, we successfully demonstrated changes of matrix stiffness and structure when culturing different cancer and normal cell lines. After cultured in the system for 1 week, advanced cancer cells such human lung adenocarcinoma cells CL1-5 stiffened the matrix about 40—50 times than the acellular controls. Gels stiffening was always associated with marked volume contraction and there existed a power law between these two variables. After applying blebbsitatin and beta-aminopropionitrile respectively to the culture system to inhibit cell contraction and matrix cross-linking, we showed that the matrix stiffening mainly resulted from cell contraction. Our data support that SWEI is a promising tool to investigate the dynamics of cell-ECM mechanobiology in 3D models. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:11:27Z (GMT). No. of bitstreams: 1 ntu-103-R01945028-1.pdf: 2252147 bytes, checksum: 3a24a7c26fe94a25224ccf5acc4e40ef (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv Content vi List of Figures viii List of Tables x Chapter 1. Introduction 1 Chapter 2. Materials and Methods 5 2.1 Fabrication of 3D gel 5 2.2 Cell culture 6 2.3 Estimation of volume compaction ratio 7 2.4 Shear modulus Quantification 7 2.4.1 Acoustic Radiation Force 9 2.4.2 Experimental Apparatus of SWEI 9 2.4.3 Elasticity Modulus Quantification 13 Chapter 3. Results and Discussion 19 3.1 Example of 3D sample 19 3.2 Example of gel compaction 21 3.3 Analysis of wave types 24 3.3.1 Shear wave & Lamb wave 24 3.3.2 Boundary condition 29 3.4 Results of shear modulus vs. compaction ratio for various cell lines 31 3.5 Identifying the remodeling cause 35 3.5.1 Inhibiting cell contraction force using blebbistatin 37 3.5.2 Inhibiting collagen cross-linking using β-aminopropionitrile 40 Chapter 4. Conclusion and Future works 42 Reference 45 | |
| dc.language.iso | en | |
| dc.subject | 剪切波 | zh_TW |
| dc.subject | 三維細胞培養 | zh_TW |
| dc.subject | 彈性影像 | zh_TW |
| dc.subject | 機械生物學 | zh_TW |
| dc.subject | 基質重組 | zh_TW |
| dc.subject | 3D cell culture | en |
| dc.subject | mechanobiology | en |
| dc.subject | shear wave | en |
| dc.subject | elasticity imaging | en |
| dc.subject | ECM remodeling | en |
| dc.title | 定量量測細胞活動造成的彈性變化 | zh_TW |
| dc.title | Quantitative assessment of matrix elasticity change in a 3D cell culture system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李百祺(Pai-Chi Li) | |
| dc.contributor.oralexamcommittee | 黃豪銘(Haw-Ming Huang),王子威(Tz--Wei Wang),賴瑞陽(Jui-Yang Lai) | |
| dc.subject.keyword | 三維細胞培養,機械生物學,剪切波,彈性影像,基質重組, | zh_TW |
| dc.subject.keyword | 3D cell culture,mechanobiology,shear wave,elasticity imaging,ECM remodeling, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
