請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55903完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉(Ming-Jai Su) | |
| dc.contributor.author | Yi-Jin Ho | en |
| dc.contributor.author | 何宜錦 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:10:29Z | - |
| dc.date.available | 2019-10-15 | |
| dc.date.copyright | 2014-10-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | Aloysius UI, Achike FI, Mustafa MR (2012). Mechanisms underlining gender differences in Phenylephrine contraction of normoglycaemic and short-term Streptozotocin-induced diabetic WKY rat aorta. Vascular pharmacology 57(2-4): 81-90.
Alp NJ, Channon KM (2004). Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arteriosclerosis, thrombosis, and vascular biology 24(3): 413-420. American Diabetes Association (2012). Diagnosis and classification of diabetes mellitus. Diabetes care 35 Suppl 1: S64-71. Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, et al. (1991). Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. Journal of neuroscience research 29(3): 336-345. Bernier M, Curtis MJ, Hearse DJ (1989). Ischemia-induced and reperfusion-induced arrhythmias: importance of heart rate. Am J Physiol 256(1 Pt 2): H21-31. Boudina S, Abel ED (2007). Diabetic cardiomyopathy revisited. Circulation 115(25): 3213-3223. Boudreau LH, Maillet J, LeBlanc LM, Jean-Francois J, Touaibia M, Flamand N, et al. (2012). Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PloS one 7(2): e31833. Bourassa MG (1992). Silent myocardial ischemia after coronary angioplasty: distinguishing the shadow from the substance. Journal of the American College of Cardiology 19(7): 1410-1411. Calikoglu M, Tamer L, Sucu N, Coskun B, Ercan B, Gul A, et al. (2003). The effects of caffeic acid phenethyl ester on tissue damage in lung after hindlimb ischemia-reperfusion. Pharmacological research : the official journal of the Italian Pharmacological Society 48(4): 397-403. Cavallo-Perin P, Bruno A, Cassader M, Cesco L, Gruden G, Pagano G (1992). The glucoregulatory and antilipolytic actions of insulin in abdominal obesity with normal or impaired glucose tolerance: an in vivo and in vitro study. European journal of clinical investigation 22(11): 725-731. Celik O, Turkoz Y, Hascalik S, Hascalik M, Cigremis Y, Mizrak B, et al. (2004). The protective effect of caffeic acid phenethyl ester on ischemia-reperfusion injury in rat ovary. European journal of obstetrics, gynecology, and reproductive biology 117(2): 183-188. Celik S, Erdogan S (2008). Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats. Mol Cell Biochem 312(1-2): 39-46. Celik S, Erdogan S, Tuzcu M (2009). Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic rats. Pharmacological research : the official journal of the Italian Pharmacological Society 60(4): 270-276. Chang KS, Stevens WC (1992). Endothelium-dependent increase in vascular sensitivity to phenylephrine in long-term streptozotocin diabetic rat aorta. British journal of pharmacology 107(4): 983-990. Chang WL, Lee SS, Su MJ (2005). Attenuation of post-ischemia reperfusion injury by thaliporphine and morphine in rat hearts. Journal of biomedical science 12(4): 611-619. Chen WP, Tzeng HJ, Ku HC, Ho YJ, Lee SS, Su MJ (2010). Thaliporphine ameliorates cardiac depression in endotoxemic rats through attenuating TLR4 signaling in the downstream of TAK-1 phosphorylation and NF-kappaB signaling. Naunyn Schmiedebergs Arch Pharmacol 382(5-6): 441-453. Chi TC, Chen WP, Chi TL, Kuo TF, Lee SS, Cheng JT, et al. (2007a). Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats. Life Sci 80(18): 1713-1720. Chi TC, Ho YJ, Chen WP, Chi TL, Lee SS, Cheng JT, et al. (2007b). Serotonin enhances beta-endorphin secretion to lower plasma glucose in streptozotocin-induced diabetic rats. Life Sci 80(20): 1832-1838. Chi TC, Lee SS, Su MJ (2006). Antihyperglycemic effect of aporphines and their derivatives in normal and diabetic rats. Planta medica 72(13): 1175-1180. Chiao CW, da Silva-Santos JE, Giachini FR, Tostes RC, Su MJ, Webb RC (2013). P2X7 receptor activation contributes to an initial upstream mechanism of lipopolysaccharide-induced vascular dysfunction. Clin Sci (Lond) 125(3): 131-141. Chiao CW, Lee SS, Wu CC, Su MJ (2006). N-Allylsecoboldine as a novel agent prevents acute renal failure during endotoxemia. European journal of pharmacology 535(1-3): 291-300. Cicala C, Morello S, Iorio C, Capasso R, Borrelli F, Mascolo N (2003). Vascular effects of caffeic acid phenethyl ester (CAPE) on isolated rat thoracic aorta. Life Sci 73(1): 73-80. Di Filippo C, Marfella R, Cuzzocrea S, Piegari E, Petronella P, Giugliano D, et al. (2005). Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes 54(3): 803-810. Eckel RH, Kahn R, Robertson RM, Rizza RA (2006). Preventing cardiovascular disease and diabetes: a call to action from the American Diabetes Association and the American Heart Association. Circulation 113(25): 2943-2946. Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, et al. (2009). IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proceedings of the National Academy of Sciences of the United States of America 106(33): 13998-14003. Fang ZY, Prins JB, Marwick TH (2004). Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrine reviews 25(4): 543-567. Felaco M, Grilli A, De Lutiis MA, Patruno A, Libertini N, Taccardi AA, et al. (2001). Endothelial nitric oxide synthase (eNOS) expression and localization in healthy and diabetic rat hearts. Annals of clinical and laboratory science 31(2): 179-186. Ferlito S, Puleo F, Carra G, Damante G, Di Vincenzo S, Del Campo F (1983). Effect of alpha-1-blockade by prazosin on blood sugar, insulin and glucagon levels in normals and non-insulin dependent diabetics. Journal of endocrinological investigation 6(3): 199-202. Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J, Kohn KW (1994). Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol 48(3): 595-608. Forstermann U, Munzel T (2006). Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113(13): 1708-1714. Fowler MJ (2008). Microvascular and Macrovascular Complications of Diabetes. Clinical Diabetes 26(2): 5. Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE (2005). Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacological research : the official journal of the Italian Pharmacological Society 51(2): 147-152. Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, et al. (2001). Rho-kinase mediates angiotensin II-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension 38(1): 100-104. Galinanes M, Fowler AG (2004). Role of clinical pathologies in myocardial injury following ischaemia and reperfusion. Cardiovascular research 61(3): 512-521. Gibson CL, Srivastava K, Sprigg N, Bath PM, Bayraktutan U (2014). Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. Journal of neurochemistry 129(5): 11. Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F, Weiss JW, et al. (2012). Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 50(6): 1874-1882. Guo R, Liu BX, Zhou SP, Zhang BC, Xu YW (2013). The Protective Effect of Fasudil on the Structure and Function of Cardiac Mitochondria from Rats with Type 2 Diabetes Induced by Streptozotocin with a High-Fat Diet Is Mediated by the Attenuation of Oxidative Stress. Biomed Res Int 2013. Gurel A, Armutcu F, Sahin S, Sogut S, Ozyurt H, Gulec M, et al. (2004). Protective role of alpha-tocopherol and caffeic acid phenethyl ester on ischemia-reperfusion injury via nitric oxide and myeloperoxidase in rat kidneys. Clinica chimica acta; international journal of clinical chemistry 339(1-2): 33-41. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. The New England journal of medicine 339(4): 229-234. Hicks KK, Seifen E, Stimers JR, Kennedy RH (1998). Effects of streptozotocin-induced diabetes on heart rate, blood pressure and cardiac autonomic nervous control. Journal of the autonomic nervous system 69(1): 21-30. Hishikawa K, Nakaki T, Fujita T (2005). Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arteriosclerosis, thrombosis, and vascular biology 25(2): 442-446. Ho YJ, Chen WP, Chi TC, Chang Chien CC, Lee AS, Chiu HL, et al. (2013). Caffeic acid phenethyl amide improves glucose homeostasis and attenuates the progression of vascular dysfunction in Streptozotocin-induced diabetic rats. Cardiovascular diabetology 12(1): 99. Hsu FL, Chen YC, Cheng JT (2000). Caffeic Acid as Active Principle from the Fruit of Xanthiumstrumarium to Lower Plasma Glucose in Diabetic Rats. Planta medica 66(3): 228-230. Hsu LY, Lin CF, Hsu WC, Hsu WL, Chang TC (2005). Evaluation of polyphenolic acid esters as potential antioxidants. Biol Pharm Bull 28(7): 1211-1215. Huang JP, Huang SS, Deng JY, Chang CC, Day YJ, Hung LM (2010). Insulin and resveratrol act synergistically, preventing cardiac dysfunction in diabetes, but the advantage of resveratrol in diabetics with acute heart attack is antagonized by insulin. Free radical biology & medicine 49(11): 1710-1721. Huang SS, Liu SM, Lin SM, Liao PH, Lin RH, Chen YC, et al. (2005). Antiarrhythmic effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia/reperfusion injury in rats. Clinical biochemistry 38(10): 943-947. Ilhan A, Koltuksuz U, Ozen S, Uz E, Ciralik H, Akyol O (1999). The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery 16(4): 458-463. Janero DR (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free radical biology & medicine 9(6): 515-540. Johansen O, Vaaler S, Jorde R, Reikeras O (1994). Increased plasma glucose levels after Hypnorm anaesthesia, but not after pentobarbital anaesthesia in rats. Lab Anim 28(3): 244-248. John Yang SMK, Xinyu Wang, Salomon Stavchansky, James Bynum and Phillip Bowman (2009). Structure activity relationships of caffeic acid phenethyl ester (CAPE) and its amide derivative caffeic acid phenethyl amide (CAPA) against oxidant stress in human endothelial cells. FASEB J.23 (Meeting Abstract Supplement) (937.8). Jones SP, Girod WG, Palazzo AJ, Granger DN, Grisham MB, Jourd'Heuil D, et al. (1999). Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. Am J Physiol 276(5 Pt 2): H1567-1573. Katovich MJ, Meldrum MJ, Vasselli JR (1991). Beneficial effects of dietary acarbose in the streptozotocin-induced diabetic rat. Metabolism: clinical and experimental 40(12): 1275-1282. Kendall DM, Kim D, Maggs D (2006). Incretin mimetics and dipeptidyl peptidase-IV inhibitors: a review of emerging therapies for type 2 diabetes. Diabetes technology & therapeutics 8(3): 385-396. Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT (2011). Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovascular diabetology 10: 57. Kumar S, Singh R, Vasudeva N, Sharma S (2012). Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovascular diabetology 11: 9. Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, et al. (2003). Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia 46(6): 760-765. Lee AS, Chen WP, Su MJ (2008a). Comparison of the cardiac electrophysiological effects between doxazosin and bunazosin. Journal of biomedical science 15(4): 519-528. Lee KW, Kang NJ, Kim JH, Lee KM, Lee DE, Hur HJ, et al. (2008b). Caffeic acid phenethyl ester inhibits invasion and expression of matrix metalloproteinase in SK-Hep1 human hepatocellular carcinoma cells by targeting nuclear factor kappa B. Genes Nutr 2(4): 319-322. Lee Y, Shin DH, Kim JH, Hong S, Choi D, Kim YJ, et al. (2010). Caffeic acid phenethyl ester-mediated Nrf2 activation and I kappa B kinase inhibition are involved in NF kappa B inhibitory effect: Structural analysis for NF kappa B inhibition. European journal of pharmacology 643(1): 21-28. Levitsky S (2006). Protecting the myocardial cell during coronary revascularization. The William W. L. Glenn Lecture. Circulation 114(1 Suppl): I339-343. Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S (1990). Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. The Journal of clinical investigation 86(2): 481-488. Lu DY, Huang BR, Yeh WL, Lin HY, Huang SS, Liu YS, et al. (2013). Anti-neuroinflammatory effect of a novel caffeamide derivative, KS370G, in microglial cells. Molecular neurobiology 48(3): 863-874. Mahesh T, Sri Balasubashini MM, Menon VP (2004). Photo-irradiated curcumin supplementation in streptozotocin-induced diabetic rats: effect on lipid peroxidation. Therapie 59(6): 639-644. Mar GY KP, Chen LJ, Cheng KC, Li YX, Cheng JT. (2013). Increase in cardiac M2-muscarinic receptor expression is regulated by GATA binding protein 4 (GATA-4) in streptozotocin-induced diabetic rats. Int J Cardiol. 167, Issue 2, 31 July 2013, Pages 436–441(2): 6. Marfella R, D'Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, et al. (2002). Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia 45(8): 1172-1181. Maser RE, Lenhard MJ (2005). Cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. The Journal of clinical endocrinology and metabolism 90(10): 5896-5903. Matsui T, Ebuchi S, Fujise T, Abesundara KJ, Doi S, Yamada H, et al. (2004). Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid. Biol Pharm Bull 27(11): 1797-1803. McCord JM (1988). Free radicals and myocardial ischemia: overview and outlook. Free radical biology & medicine 4(1): 9-14. Miller MR, Megson IL (2007). Recent developments in nitric oxide donor drugs. British journal of pharmacology 151(3): 305-321. Nishioka TW, J. Kawabata, J. Niki, R. (1997). Isolation and activity of N-p-coumaroyltyramine, an α-glucosidase Inhibitor in Welsh onion (Allium fistulosum). Bioscience, Biotechnology, and Biochemistry 61(7): 4. Okutan H, Ozcelik N, Yilmaz HR, Uz E (2005). Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clinical biochemistry 38(2): 191-196. Ozer MK, Parlakpinar H, Acet A (2004). Reduction of ischemia--reperfusion induced myocardial infarct size in rats by caffeic acid phenethyl ester (CAPE). Clinical biochemistry 37(8): 702-705. Ozer MK, Parlakpinar H, Vardi N, Cigremis Y, Ucar M, Acet A (2005). Myocardial ischemia/reperfusion-induced oxidative renal damage in rats: protection by caffeic acid phenethyl ester (CAPE). Shock 24(1): 97-100. Parlakpinar H, Sahna E, Acet A, Mizrak B, Polat A (2005). Protective effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia-reperfusion-induced apoptotic cell death. Toxicology 209(1): 1-14. Paterson AD, Rutledge BN, Cleary PA, Lachin JM, Crow RS (2007). The effect of intensive diabetes treatment on resting heart rate in type 1 diabetes: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study. Diabetes care 30(8): 2107-2112. Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT, et al. (2013). Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovascular diabetology 12: 111. Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002). Sulfonylurea stimulation of insulin secretion. Diabetes 51 Suppl 3: S368-376. Randriamboavonjy V, Fleming I (2005). Endothelial nitric oxide synthase (eNOS) in platelets: how is it regulated and what is it doing there? Pharmacological reports : PR 57 Suppl: 59-65. Rydgren T, Vaarala O, Sandler S (2007). Simvastatin protects against multiple low-dose streptozotocin-induced type 1 diabetes in CD-1 mice and recurrence of disease in nonobese diabetic mice. The Journal of pharmacology and experimental therapeutics 323(1): 180-185. Schalkwijk CG, Stehouwer CD (2005). Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond) 109(2): 143-159. Serizawa K, Yogo K, Aizawa K, Tashiro Y, Ishizuka N (2011). Nicorandil prevents endothelial dysfunction due to antioxidative effects via normalisation of NADPH oxidase and nitric oxide synthase in streptozotocin diabetic rats. Cardiovascular diabetology 10: 105. Simpson PJ, Lucchesi BR (1987). Free radicals and myocardial ischemia and reperfusion injury. The Journal of laboratory and clinical medicine 110(1): 13-30. Soliman H, Craig GP, Nagareddy P, Yuen VG, Lin G, Kumar U, et al. (2008). Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats. Cardiovascular research 79(2): 322-330. Son S, Lewis BA (2002). Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem 50(3): 468-472. Suleiman MS, Zacharowski K, Angelini GD (2008). Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. British journal of pharmacology 153(1): 21-33. Sun H, Mohri M, Shimokawa H, Usui M, Urakami L, Takeshita A (2002). Coronary microvascular spasm causes myocardial ischemia in patients with vasospastic angina. Journal of the American College of Cardiology 39(5): 847-851. Surh YJ (2003). Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10): 768-780. Swinnen SG, Hoekstra JB, DeVries JH (2009). Insulin therapy for type 2 diabetes. Diabetes care 32 Suppl 2: S253-259. Tamer L, Sucu N, Ercan B, Unlu A, Calikoglu M, Bilgin R, et al. (2004). The effects of the caffeic acid phenethyl ester (CAPE) on erythrocyte membrane damage after hind limb ischaemia-reperfusion. Cell Biochem Funct 22(5): 287-290. Tan J, Ma Z, Han L, Du R, Zhao L, Wei X, et al. (2005). Caffeic acid phenethyl ester possesses potent cardioprotective effects in a rabbit model of acute myocardial ischemia-reperfusion injury. American journal of physiology. Heart and circulatory physiology 289(5): H2265-2271. Tolan I, Ragoobirsingh D, Morrison EY (2004). Isolation and purification of the hypoglycaemic principle present in Capsicum frutescens. Phytother Res 18(1): 95-96. Toyoda T, Tsukamoto T, Takasu S, Shi L, Hirano N, Ban H, et al. (2009). Anti-inflammatory effects of caffeic acid phenethyl ester (CAPE), a nuclear factor-kappaB inhibitor, on Helicobacter pylori-induced gastritis in Mongolian gerbils. Int J Cancer 125(8): 1786-1795. Tsai SK, Lin MJ, Liao PH, Yang CY, Lin SM, Liu SM, et al. (2006). Caffeic acid phenethyl ester ameliorates cerebral infarction in rats subjected to focal cerebral ischemia. Life Sci 78(23): 2758-2762. Ulker S, Cinar MG, Bayraktutan U, Evinc A (2001). Aprotinin impairs endothelium-dependent relaxation in rat aorta and inhibits nitric oxide release from rat coronary endothelial cells. Cardiovascular research 50(3): 589-596. van Dantzig JM, Delemarre BJ, Bot H, Visser CA (1996). Left ventricular thrombus in acute myocardial infarction. European heart journal 17(11): 1640-1645. Velazquez C, Navarro M, Acosta A, Angulo A, Dominguez Z, Robles R, et al. (2007). Antibacterial and free-radical scavenging activities of Sonoran propolis. J Appl Microbiol 103(5): 1747-1756. Verma S, Fedak PW, Weisel RD, Butany J, Rao V, Maitland A, et al. (2002). Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 105(20): 2332-2336. Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, et al. (2003). The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart, lung & circulation 12(1): 44-50. Weng YC, Chiu HL, Lin YC, Chi TC, Kuo YH, Su MJ (2010). Antihyperglycemic effect of a caffeamide derivative, KS370G, in normal and diabetic mice. J Agric Food Chem 58(18): 10033-10038. Weng YC, Chuang CF, Chuang ST, Chiu HL, Kuo YH, Su MJ (2012a). KS370G, a synthetic caffeamide derivative, improves left ventricular hypertrophy and function in pressure-overload mice heart. European journal of pharmacology 684(1-3): 108-115. Weng YC, Chuang ST, Lin YC, Chuang CF, Chi TC, Chiu HL, et al. (2012b). Caffeic Acid Phenylethyl Amide Protects against the Metabolic Consequences in Diabetes Mellitus Induced by Diet and Streptozocin. Evidence-based complementary and alternative medicine : eCAM 2012: 984780. Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, et al. (2007). Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56(3): 641-646. Wu RP, Hayashi T, Cottam HB, Jin G, Yao S, Wu CC, et al. (2010). Nrf2 responses and the therapeutic selectivity of electrophilic compounds in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 107(16): 7479-7484. Yamazaki Y, Kawano Y, Uebayasi M (2008). Induction of adiponectin by natural and synthetic phenolamides in mouse and human preadipocytes and its enhancement by docosahexaenoic acid. Life Sci 82(5-6): 290-300. Yang J, Bowman PD, Kerwin SM, Stavchansky S (2014). Development and validation of an LCMS method to determine the pharmacokinetic profiles of caffeic acid phenethyl amide and caffeic acid phenethyl ester in male Sprague-Dawley rats. Biomedical chromatography : BMC 28(2): 241-246. Yang J, Kerwin SM, Bowman PD, Stavchansky S (2012). Stability of caffeic acid phenethyl amide (CAPA) in rat plasma. Biomedical chromatography : BMC 26(5): 594-598. Yang J, Marriner GA, Wang X, Bowman PD, Kerwin SM, Stavchansky S (2010). Synthesis of a series of caffeic acid phenethyl amide (CAPA) fluorinated derivatives: comparison of cytoprotective effects to caffeic acid phenethyl ester (CAPE). Bioorganic & medicinal chemistry 18(14): 5032-5038. Yong QC, Thomas CM, Seqqat R, Chandel N, Baker KM, Kumar R (2013). Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors. Cardiovascular diabetology 12. Yu X, Tesiram YA, Towner RA, Abbott A, Patterson E, Huang S, et al. (2007). Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovascular diabetology 6: 6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55903 | - |
| dc.description.abstract | 前言
糖尿病病人主要症狀為血糖不耐及相關心血管併發症。在動物實驗的研究已有許多治療方法被證明可有效治療糖尿病及相關心血管疾病。蜂膠中主要成分-咖啡酸苯乙基酯 (Caffeic acid phenethyl ester, CAPE) 已在許多研究中被證實可改善血糖代謝、保護心臟缺血/再灌流損傷,及改善糖尿病相關心血管併發症。近期的藥效篩選中發現 CAPE衍生物-咖啡酸苯乙基胺 (Caffeic acid phenethyl amide, CAPA) 在結構上具有較高的穩定性,可在血液中維持較長的半衰期。本論文主要探討CAPA在第一型糖尿病大鼠中之血糖代謝、心血管功能及心臟缺血/再灌流損傷之藥理作用評估。 實驗方法 本研究使用 STZ 誘導之第一型糖尿病大鼠。使用 Langendorff 系統由主動脈反灌流心臟測量冠狀動脈流速;使用胸主動脈測量藥物對血管收縮張力之影響。在心臟/缺血再灌流試驗中,將左冠狀動脈前降支暫時綁緊產生心臟缺血 45 分鐘,再鬆開 2 小時產生心臟再灌流;藥物在再灌流前 30 分鐘給予。最後,使用誘導糖尿病 4 週後之大鼠給予藥物長期治療 4 週測試藥物對糖尿病大鼠相關心血管併發症之改善作用。 實驗結果 口服 0.1 mg/kg CAPA 在正常及糖尿病鼠均可有效降低血糖。離體給予 1–10 μM CAPA 可在正常及糖尿病鼠有效增加冠狀動脈流速,但此作用可被一氧化氮合成酶抑制。在血管張力試驗中,給予 100 μM CAPA 可使 phenylephrine 產生之劑量/反應曲線右移。腹腔注射給予CAPA (3 and 15 mg/kg) 可有效減少心肌缺血/再灌流之損傷體積;給予 dmCAPA (15 mg/kg,無抗氧化能力之 CAPA 衍生物) 或前處理一氧化氮合成酶抑制劑則無保護效果。 在誘導 4 週後之糖尿病鼠給予CAPA (3 mg/kg) 每天腹腔注射兩次持續四週可改善糖尿病降低之冠狀動脈流速,增加血管對 phenylephrine 之反應。每天口服給予 1 mg/kg 持續四週亦可改善糖尿病鼠之心臟功能及缺血/再灌流損傷。 結論 在本研究中發現咖啡酸苯乙基胺在糖尿病大鼠中可降血糖、改善冠狀動脈血流、增加血管反應性及減少心肌缺血/再灌流損傷。主要機轉可能與其抗氧化能力及保存一氧化氮功能有關。其改善糖尿病心血管功能之詳細分子機轉仍需進一步研究。 | zh_TW |
| dc.description.abstract | Background
Glucose intolerance and cardiovascular complications are major symptoms in patients with diabetes. Many therapies have proven beneficial in treating diabetes in animals by protecting the cardiovascular system and increasing glucose utilization. Caffeic acid phenethyl ester (CAPE), the major component in extracts of propolis has been shown to ameliorate cardiovascular complications in diabetes. In this study, we evaluated the protective effects of a CAPE analog with more structural stability in plasma, caffeic acid phenethyl amide (CAPA), on glucose homeostasis, cardiovascular function and I/R injury in streptozotocin (STZ)-induced type 1 diabetic rats. Methods Diabetes was induced in 8-week old rats by STZ. Hypoglycemic effects were then assessed in normal and type 1 diabetic rats. In addition, coronary blood flow in Langendorff-perfused hearts was evaluated. The thoracic aorta was used to measure vascular response to phenylephrine. To produce the I/R injury, the left anterior descending coronary artery was occluded for 45 minutes, followed by 2 hours of reperfusion. Finally, the effect of chronic treatment of CAPA and insulin on coronary artery flow, vascular response to phenylephrine and the cardioprotective effect of chronic treatment of CAPA were analyzed in diabetic rats. Results Oral administration of CAPA decreased plasma glucose in normal and diabetic rats. In normal and diabetic rat hearts, CAPA increased coronary arterial flow rate, and this increase was abolished by NOS inhibitor. In the thoracic aorta, the concentration/response curve of phenylephrine was right-shifted by administration of 100 μM CAPA. Compared to the control group, CAPA administration significantly reduced the myocardial infarct size after I/R. However, 4 weeks of treatment with CAPA started at 4 weeks after STZ induction increased flow rate. In addition, a 4-week CAPA treatment could effectively decrease the infarct size and ameliorate the cardiac dysfunction by pressure-volume loop analysis in STZ-induced diabetic animals. Conclusions CAPA, which is structurally similar to CAPE, induced hypoglycemic activity, increased coronary blood flow and vascular response to phenylephrine in type 1 diabetic rats, exerts cardioprotective activity in I/R injury through its antioxidant property and by preserving nitric oxide levels. On the other hand, chronic CAPA treatment could also ameliorate cardiac dysfunction in diabetic animals. However, the detailed cellular mechanisms need to be further evaluated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:10:29Z (GMT). No. of bitstreams: 1 ntu-103-D94443007-1.pdf: 2461266 bytes, checksum: 4eeaf6ab0d8429e5c409fe5a61c83425 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Tables of Contents
Chapter 1. Introduction 1 1.1. The cardiovascular complications in diabetes 1 1.2. Role of CAPE and CAPA in diabetes and cardiovascular system 6 Chapter 2. Materials and Methods 8 Compound 8 Chemicals 10 Animals 10 The induction of diabetic rats and research design 11 Effect of CAPA on plasma glucose in normal and STZ-induced diabetic rats 14 Effects of CAPA on insulin secretion 14 Effect of CAPA on intravenous glucose tolerance test 15 Effect of CAPA on coronary arterial flow rate in Langendorff- perfused hearts 15 Effect of CAPA on thoracic aorta 16 Vascular effects of CAPA chronic treatment on STZ-induced diabetic rats 17 Surgical procedure of I/R injury in rat heart 17 Estimation of myocardial damage 18 Tissue malondialdehyde (MDA) content analysis 19 Tissue myeloperoxidase (MPO) activity analysis 19 Physiological hemodynamic parameters recording 20 Data analysis 21 Chapter 3. Effect of CAPA on glucose homeostasis 22 CAPA decreased plasma glucose levels in normal and STZ-induced diabetic rats 22 CAPA increased insulin secretion 24 CAPA improved glucose tolerance 25 Discussion 27 Chapter 4. Effect of CAPA on vascular dysfunction in diabetes 28 CAPA increased coronary arterial flow rate 28 CAPA relaxed the thoracic aorta and shifts the dose–response curve of Phenylephrine-induced contraction 32 CAPA attenuated the progression of vascular dysfunction in STZ-induced diabetic rats 35 Discussion 38 Chapter 5. Effect of CAPA on ischemia/reperfusion injury and cardiac dysfunction in diabetic rats 40 CAPA protected the heart from I/R injury via a NO-dependent pathway 40 CAPA decreased the MDA content and MPO activity in I/R injury 42 The chronic effect of CAPA on body weight and heart weight in diabetic rats 44 CAPA increased heart rate and mean blood pressure during the I/R period in diabetic rats 46 CAPA decreased the infarct size after I/R in diabetic rats 49 CAPA ameliorated I/R-induced cardiac dysfunction in diabetic rats on PV loop analysis 51 Discussion 58 The antioxidant effect of CAPA on I/R injury 58 NO preservation effect of CAPA on I/R injury 59 Effect of chronic CAPA treatment on cardiac dysfunction in diabetes 60 The underlying mechanisms of CAPA against cardiac dysfunction in diabetes 61 Chapter 6. Conclusions and perspective 67 References 69 Publications 88 | |
| dc.language.iso | en | |
| dc.subject | 咖啡酸苯乙基胺 | zh_TW |
| dc.subject | 缺血/再灌流損傷 | zh_TW |
| dc.subject | 心血管併發症 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | Diabetes | en |
| dc.subject | Cardiac dysfunction | en |
| dc.subject | Vascular dysfunction | en |
| dc.subject | Ischemia/reperfusion injury | en |
| dc.subject | Caffeic acid phenethyl amide | en |
| dc.title | 咖啡酸苯乙基胺在第一型糖尿病大鼠之血糖代謝及心血管之藥理作用 | zh_TW |
| dc.title | Pharmacological Effects of Caffeic Acid Phenethyl Amide on Glucose Homeostasis and Cardiovascular System in Type 1 Diabetic Rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳文彬(Wen-Pin Chen),吳美環(Mei-Hwan Wu),莊立民(Lee-Ming Chuang),李安生(An-Sheng Lee) | |
| dc.subject.keyword | 糖尿病,心血管併發症,缺血/再灌流損傷,咖啡酸苯乙基胺, | zh_TW |
| dc.subject.keyword | Diabetes,Cardiac dysfunction,Vascular dysfunction,Ischemia/reperfusion injury,Caffeic acid phenethyl amide, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
