請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張富雄 | |
| dc.contributor.author | Chung-Hsuan Chiu | en |
| dc.contributor.author | 邱仲軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:10:22Z | - |
| dc.date.available | 2016-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-18 | |
| dc.identifier.citation | Aggarwal, B. B., and Sung, B. (2009). Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences 30, 85–94.
Ammon, H. P., and Wahl, M. A. (1991). Pharmacology of Curcuma longa. Planta Medica 57, 1–7. Anand, P., Kunnumakkara, A.B., Newman, R. A., and Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics 4, 807– 818. Barui, S., Saha, S., Mondal, G., Haseena, S., and Chaudhuri, A. (2014). Simultaneous delivery of doxorubicin and curcumin encapsulated in liposomes of pegylated RGDK-lipopeptide to tumor vasculature. Biomaterials 35, 1643-56. Caliceti, P., and Veronese, FM. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug. Deliv. Rev. 55, 1261-77. Darandale, S. S., and Vavia, P. R. (2013). Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. Journal of Inclusion Phenomena and Macrocyclic Chemistry 75, 315–322. Deen, W.M., Lazzara MJ., and Myers, B.D. (2001). Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, 579-96. Drakalska, E., Momekova, D., Manolova, Y., Budurova, D., Momekov, G., Genova, M., Antonov, L., Lambov, N., and Rangelov, S. (2014). Hybrid liposomal PEGylated calix arene systems as drug delivery platforms for curcumin. Int. J. Pharm. 472, 165-74. Eichhorn, ME., Ischenko, I., Luedemann, S., Strieth, S., Papyan, A., Werner, A., Bohnenkamp, H., Guenzi, E., Preissler, G., Michaelis, U., Jauch, KW., Bruns, CJ., and Dellian, M. (2010). Vascular targeting by EndoTAG-1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer. Int. J. Cancer 126, 1235-45. Fang, J., Nakamura, H., and Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations andaugmentation of the effect. Adv. Drug. Deliv. Rev. 63, 136-51. Farrugia, A. (2010). Albumin usage in clinical medicine: tradition or therapeutic? Transfus Med. Rev. 24, 53-63. Ferreira, V., Petry, H., and Salmon, F. (2014). Immune Responses to AAV-Vectors, the Glybera Example from Bench to Bedside. Front Immunol. 3, 82-85. Freitas Jr, R. A. (2005). What is nanomedicine? Nanomedicine: NBM 1, 2–9. Gururaj, AE., Belakavadi, M., Venkatesh, DA., Marmé ,D., and Salimath, BP. (2002).Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem. Biophys. Res. Commun. 297, 934-42. Jeengar, M.K., Shrivastava, S., Nair, K., Singareddy, S.R., Putcha, U.K., Talluri, M.V., Naidu, V.G., and Sistla, R. (2014). Improvement of Bioavailability and Anti-Inflammatory Potential of Curcumin in Combination with Emu Oil. Inflammation Epub Jul 16. Karewicz, A., Bielska, D., Gzyl-Malcher, B., Kepczynski, M., Lach, R., and Nowakowska, M. (2011). Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids and Surfaces B: Biointerfaces 88, 231–239. Kawanishi, N1., Kato, K., Takahashi, M., Mizokami, T., Otsuka, Y., Imaizumi, A., Shiva, D., Yano, H., and Suzuki, K. (2013). Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochem. Biophys. Res. Commun. 441, 573-8. Khaniki, M., Azizian, S., Alizadeh, A.M., Hemmati, H., Emamipour, N., and Mohagheghi, M. A. (2013). The antiproliferative and anticancerogenic effects of nano-curcumin in rat colon cancer. Tehran University Medical Journal 71, 277–284. Klibanov, AL., Maruyama, K., Torchilin, VP., and Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett.268, 235-7. Knop, K., Hoogenboom, R., Fischer, D., and Schubert, U.S. (2010). Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem.Int. Ed. Engl. 49, 6288-308. Krasnici, S., Werner, A., Eichhorn, ME., Schmitt-Sody, M., Pahernik, SA., Sauer, B., Schulze, B., Teifel, M., Michaelis, U., Naujoks, K., and Dellian, M. (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int. J. Cancer 105, 561-7. Kunwar, A., Barik, A., Mishra, B., Rathinasamy, K., Pandey, R., and Priyadarsini, KI. (2007). Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta. 1780, 673-9. Longmire, M., Choyke, PL., and Kobayashi, H. (2008). Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 3, 703-17. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65, 271-84. Ohlson, M., Sörensson, J., and Haraldsson, B. (2001). A gel-membrane model of glomerular charge and size selectivity in series. Am. J. Physiol. Renal Physiol. 280,396-405. Rose, WC. (1992). Taxol: a review of its preclinical in vivo antitumor activity. Anticancer Drugs 3, 311-21. Schmitt-Sody, M., Strieth, S., Krasnici, S., Sauer, B., Schulze, B., Teifel, M., Michaelis, Uwe., Naujoks, Kurt., and Dellian, M. (2003). Neovascular Targeting Therapy: Paclitaxel Encapsulated in Cationic Liposomes Improves Antitumoral Efficacy. Clin. Cancer Res. 9, 2335–2341. Strieth, S., Dunau, C., Kolbow, K., Knuechel, R., Michaelis, U., Ledderose, H., Eichhorn, M.E., Strelczyk, D., Tschiesner, U., Wollenberg, B., and Dellian, M. (2013). Phase I clinical study of vascular targeting fluorescent cationic liposomes in head and neck cancer. Eur. Arch. Otorhinolaryngol. 270, 1481-7. Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer,S.K., and Stauber, RH. (2013). Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772-81. Thurston, G., McLean, J. W., Rizen, M., Baluk, P., Haskell, A., Murphy, T. J., Hanahan, D., and McDonald, D. M. (1998). Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Investig. 101, 1401–1413. Vance, JE., and Steenbergen, R. (2005). Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 44, 207-34. Venditto, VJ., and Simanek, EE. (2010). Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Mol. Pharm. 7, 307-49. Yoysungnoen-Chintana, P., Bhattarakosol, P., and Patumraj, S. (2014). Antitumor and antiangiogenic activities of curcumin in cervical cancer xenografts in nude mice. Biomed. Res. Int. 2014, 817972. Zhang, F., Zhang, Z., Chen, L., Kong, D., Zhang, X., Lu, C., Lu, Y., and Zheng, S. (2014). Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J. Cell. Mol. Med. Epub Apr 30. Zubareva, A., Ily'ina, A., Prokhorov, A., Kurek, D., Efremov, M., Varlamov, V., Senel, S., Ignatyev, P., and Svirshchevskaya, Е. (2013). Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Molecules 18, 7848-64. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55897 | - |
| dc.description.abstract | 薑黃素為薑黃中之主要成份,其功能包含治療癌症、抗發炎、抗血管新生等疾病,但因其親脂的特性造成其生物利用性低,因此如何增進其水溶性往往是發展薑黃素藥物第一個要解決的問題。
本實驗利用不同的正價脂質包覆薑黃素後,分析在不同脂質組成下各種奈米粒子對薑黃素之包覆率,並以其處理細胞八小時後觀察不同的奈米粒子其遞送藥物之效率,並且進一步去分析影響藥物釋放的要素,最後將薑黃素脂微粒打入小鼠血液中測量藥物在小鼠體內被清除的速率,並觀察這些粒子在體內器官的分布情形。 利用膽固醇作為基底的脂微粒對薑黃素的包覆率大約在35 %到50 %之間,而磷脂類基底的脂微粒其包覆率則只有不到10 %;而共軛焦顯微鏡的結果顯示當降低奈米粒子中正價脂質比例時可有效降低薑黃素進入細胞中的量,並且血清中蛋白質的主要成份白蛋白對不帶有PEG-Chol 的脂微粒其藥物釋放有顯著的影響,在和白蛋白溶液混合1 小時後,約有80 % 的薑黃素會從不帶有PEG-Chol 之奈米粒子中釋放出去,而帶有PEG-Chol 之奈米粒子則只有約40 % 成的藥物釋放;而在 活體中正價脂質比例及PEG-Chol 的存在與否皆會影響藥物在血液中的清除速度,可以有效地將循環時間由15 分鐘延長至4 小時以上,並且大幅降低了奈米粒子被腎臟清除的比例。 本論文探討了脂微粒包覆薑黃素藥物之基本性質,並分析在體外及活體中影響其藥物釋放之因素,期望可以作為未來可以將此正價奈米粒子應用於活體治療時之參考。 | zh_TW |
| dc.description.abstract | Curcumin is the principle ingredient of the wild-used spice turmeric. It can be used in treating various diseases including cancer, inflammation, or abnormal angiogenesis. But the low bioavailability of curcumin resulting from its lipophilic property leads to poor absorption. As a result, increasing its solubility in vivo is often the major concern when applying curcumin as therapeutic agent.
In this research, different cationic lipids were used as curcumin carriers. And their encapsulation efficiencies were assessed first. The drug delivery efficiencies toward different kinds of cell were investigated after 8 hours of treatment and the factors affecting drug release rate were also analyzed. Finally, the in vivo circulation time of curcumin in different lipid formulations were obtained after i.v. injection, and the biodistributions of curcumin-encapsulating cholesterol-based micelles were assessed. The encapsulation efficiencies of cholesterol-based cationic micelles lied between 35 ~ 50 %, while those of phosphor-based cationic micelles were under 10 %. The confocal microscope results demonstrated the ability to greatly reduce the amount of curcumin in cells by lowering cationic lipid ratio in curcumin-encapsulating micelles. Albumin, the major protein in serum, also had profound effect on curcumin releasing rate, causing micelles without PEGylation to release almost 80 % of their payload in one hour, while those with PEG modification only losing 40 %. Similar effects of PEGylation and lowering cationic lipid ratio were also observed in vivo, as the circulation time was effectively increased from 15 minutes to over 4 hours, and the renal clearance was greatly reduced in those groups. These findings provide basic understandings of curcumin-encapsulating cholesterol-based micelles as a possible anti-angiogenesis therapeutic agent in cancer treatmen. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:10:22Z (GMT). No. of bitstreams: 1 ntu-103-R01442027-1.pdf: 1508726 bytes, checksum: 3c0c732368abb31a149f13feec34ebff (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 Ⅰ
中文摘要 Ⅱ 英文摘要 Ⅲ 第一章 緒論 1.1 包覆薑黃素之奈米藥物應用 1 1.2 包覆薑黃素之奈米粒子 2 1.2.1 微脂體 2 1.2.2 環糊精 2 1.2.3 樹狀聚合物 2 1.3 正電脂微粒之應用 3 1.4 PEGylayion 藥物應用 3 1.5 研究動機與目的 4 第二章 實驗材料與方法 2.1 實驗材料 5 2.1.1 細胞株 5 2.1.2 奈米粒子 5 2.1.3 脂質 5 2.1.4 氧化鐵合成所需之藥品 5 2.1.5 實驗動物 6 2.1.6 儀器 6 2.2 實驗方法 7 2.2.1 氧化鐵奈米粒子之製備 7 2.2.2 薑黃素脂微粒之製備 8 2.2.3 薑黃素脂微粒粒徑大小、均質度以及表面電荷之分析 10 2.2.4 薑黃素脂微粒於溶液中穩定性之研究 10 2.2.5 以雷射共軛焦顯微鏡觀察薑黃素脂微粒在細胞中之影像10 2.2.6 薑黃素脂微粒於血液中循環時間之研究 11 2.2.7 薑黃素脂微粒於小鼠器官內分布情形之研究 11 第三章 實驗結果 12 3.1 GEC-Chol/ Cholesterol/ PEG-Chol/ Fe3O4 及DOTAP/ DSPE-PEG/ Fe3O4 脂微粒之大小、表面電荷以及薑黃素包覆 率分析 12 3.2 不同脂肪組成及PEG-脂肪比例之GEC-Chol 及PEG-Chol 對薑 黃素脂微粒被細胞攝取效率之影響 13 3.3 不同脂肪組成及PEG-脂肪比例之薑黃素脂微粒於溶液狀態釋 放之情形 13 3.4 不同脂肪組成及PEG-脂肪比例之薑黃素脂微粒於小鼠體內清 除速率分析 14 第四章 討論 16 4.1 不同脂肪組成及PEG-脂肪比例之脂微粒之大小、表面電荷以及 薑黃素包覆率之分析 16 4.2 不同比例之PEG-脂肪量在奈米結構之脂微粒中包覆之薑黃素 被細胞攝取效率之討論 17 4.3 不同脂肪組成及PEG-脂肪比例之薑黃素脂微粒於溶液狀態釋 放情形之分析 18 第五章 圖表與說明 22 表一 不同組成比例薑黃素脂微粒之物性分析 22 圖一 不同組成比例薑黃素脂微粒被HeLa 及EMT6 細胞攝取之分 析 23 圖二 奈米粒子包覆薑黃素於含有10 % 胎牛血清細胞培養液中之 滯留率 25 圖三 奈米粒子包覆之薑黃素於10 % 胎牛血清溶液/白蛋白溶液中 之滯留率 26 圖四 奈米粒子包覆之薑黃素於小鼠活體中之滯留率 27 第六章 參考文獻 28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗血管新生 | zh_TW |
| dc.subject | 血液清除 | zh_TW |
| dc.subject | 脂微粒 | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 血液清除 | zh_TW |
| dc.subject | 脂微粒 | zh_TW |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 抗血管新生 | zh_TW |
| dc.subject | 腎清除 | zh_TW |
| dc.subject | 腎清除 | zh_TW |
| dc.subject | plasma clearance | en |
| dc.subject | anti-angiogenesis | en |
| dc.subject | renal clearance | en |
| dc.subject | plasma clearance | en |
| dc.subject | liposome | en |
| dc.subject | curcumin | en |
| dc.subject | anti-angiogenesis | en |
| dc.subject | liposome | en |
| dc.subject | renal clearance | en |
| dc.subject | curcumin | en |
| dc.title | 血清成份對脂微粒包覆薑黃素之藥物釋放效率之研究 | zh_TW |
| dc.title | Effect of serum on drug release rate of
liposomal-curcumin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁碧惠,林文澧,張明富 | |
| dc.subject.keyword | 薑黃素,脂微粒,血液清除,腎清除,抗血管新生, | zh_TW |
| dc.subject.keyword | curcumin,liposome,plasma clearance,renal clearance,anti-angiogenesis, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
