請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55888
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 溫在弘(Tzai-Hung Wen) | |
dc.contributor.author | Chieh-Ting Tsai | en |
dc.contributor.author | 蔡介庭 | zh_TW |
dc.date.accessioned | 2021-06-16T05:10:11Z | - |
dc.date.available | 2016-08-25 | |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-18 | |
dc.identifier.citation | Reference
Aldstadt, J., I.K. Yoon, D. Tannitisupawong, R.G. Jarman, S.J. Thomas, R.V. Gibbons, A. Uppapong, S. Iamsirithaworn, A.L. Rothman, T.W. Scott, T. Endy (2012) Space-time analysis of hospitalised dengue patients in rural Thailand reveals important temporal intervals in the pattern of dengue virus transmission. Tropical Medicine & International Health 17(9): 1076-1085. Bhatt, S., P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, J.M. Drake, J.S. Brownstein, A.G. Hoen, O. Sankoh, M.F. Myers, D.B. George, T. Jaenisch, G.R. Wint, C.P. Simmons, T.W. Scott, J.J. Farrar, S.I. Hay (2013) The Global Distribution and Burden of Dengue. Nature 496(7446): 504-7. Buckee, C.O., A. Wesolowski, N.N. Eagle, E. Hansen, and R.W. Snow (2013) Mobile phones and malaria: modeling human and parasite travel. Travel medicine and infectious disease 11(1): 15-22. Budd, L., M. Bell, and A. Warren (2011). Maintaining the sanitary border: air transport liberalisation and health security practices at UK regional airports.Transactions of the Institute of British Geographers, 36(2), 268-279. Carbajo, A.E., N. Schweigmann, S.I. Curto, A. de Garin, R. Bejaran (2001) Dengue transmission risk maps of Argentina. Tropical Medicine and International Health 6(3): 170-183. Council for Economic Planning and Development (2012) Adaptation Strategy to Climate Change in Taiwan. Taipei: Council for Economic Planning and Development. Cummings, D.A., R.A. Irizarry, N.E. Huang, T.P. Endy, A. Nisalak, K. Ungchusak, D.S. Burke (2004) Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427(6972): 344-347. Freedman, D., P. Kozarskym, E. Schwartz (2002) Thailand: out of season dengue outbreak in travelers to Koh Phangan. ProMed. Archive number: 20020426.4039 [updated 26 April 2002; cited 6 May 2014]. Available from: http://www.promedmail.org. Freedman, D.O., P.E. Kozarsky, L.H. Weld, M.S. Cetron (1999) GeoSentinel: the global emerging infections sentinel network of the international society of travel medicine. J. Travel Med. 6: 94-98. Gardner, L.M., D. Fajardo, S.T. Waller, O. Wang, S. Sarkar (2012) A Predictive Spatial Model to Quantify the Risk of Air-Travel-Associated Dengue Importation into the United States and Europe. Journal of Tropical Medicine 2012: 103679. Galvani, A.P., M. May (2005) Epidemiology: Dimensions of superspreading. Nature 438: 293-295. Gubler, D.J. (2011) Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Tropical Medicine and Health 39(4 Supplement): 3-11. Hales, S., N. de Wet, J. Maindonald, A. Woodward (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. The Lancet 360(9336): 830-834. Hu, W., A. Clements, G. Williams, S. Tong, K. Mengersen (2012) Spatial patterns and socioecological drivers of dengue fever transmission in Queensland, Australia. Environmental health perspectives 120(2): 260. Huang, Z., A. Das, Y. Qiu, A.J. Tatem (2012) Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool. International journal of health geographics 11(1): 33. Huang, J.H., C.L. Su, C.F. Yang, T.L. Liao, T.C. Hsu, S.F. Chang, C.C. Lin, P.Y. Shu (2012) Molecular Characterization and Phylogenetic Analysis of Dengue Viruses Imported into Taiwan during 2008-2010. The American Journal Tropical Medicine and Hygiene 87(2): 349-58. Keeling, M. J., P. Rohani (2008) Modeling infectious diseases in humans and animals. Princeton University Press. Kuan, M.M., T. Lin, J.H. Chuang, H.S. Wu (2010) Epidemiological Trends and The Effect of Airport Fever Screening on Prevention of Domestic Dengue Fever Outbreaks in Taiwan, 1998-2007. International Journal of Infectious Diseases 14(8): e693-e697. Kuan, M.M., F.Y. Chang (2012) Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan. BMC infectious diseases, 12(1), 182. Liew, C., C.F. Curtis (2004) Horizontal and Vertical Dispersal of Dengue Vector Mosquitoes, Aedes Aegypti and Aedes Albopictus, in Singapore. Medical and Veterinary Entomology 18(4): 351-360. Liu, C.Y., Y.T. Hung, Y.L. Chuang, Y.J. Chen, W.S. Weng, J.S. Liu, K.Y. Liang (2006) Incorporating Development Stratification of Taiwan Townships into Sampling Design of Large Scale Health Interview Survey. Journal of Health Management 4(1): 1-22. Market Intelligence and Consulting Institute (2011) 臺灣在地力. Taipei: Institute for Information Industry. McMichael, A.J., R.E. Woodruff, S. Hales (2006) Climate change and human health: present and future risks. The Lancet 367(9513): 859-869. Ministry of Interior (2014) Monthly Bulletin of Interior Statistics. 24 Apr. 2014< http://sowf.moi.gov.tw/stat/month/list.htm> Naish, S., P. Dale, J.S. Mackenzie, J. McBride, K. Mengersen, S. Tong (2014) Climate change and dengue: a critical and systematic review of quantitative modelling approaches. BMC infectious diseases 14(1): 167. Reiter, P., S. Lathrop, M. Bunning, B. Biggerstaff, D. Singer, T. Tiwari, L. Baber, M. Amador, J. Thirion, J. Hayes, C. Seca, J. Mendez, B. Ramirez, J. Robinson, J.Rawlings, V. Vorndam, S. Waterman, D. Gubler, G. Clark, E. Hayes (2003) Texas lifestyle limits transmission of dengue virus. Emerging infectious diseases 9(1): 86. Saifur, R.G., H. Dieng, A.A. Hassan, M.R.C. Salmah, T. Satho, F. Miake, A. Hamdan (2012) Changing domesticity of Aedes aegypti in northern peninsular Malaysia: reproductive consequences and potential epidemiological implications. PloS one 7(2): e30919. Schmidt, W.P., M. Suzuki, V.D. Thiem, R.G. White, A. Tsuzuki, L.M. Yoshida, H. Yanai, U. Haque, L.H. Tho, D.D. Anh, K. Ariyoshi (2011) Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis. PLoS Medicine 8(8): e1001082. Schwartz, E., L.H. Weld, A. Wilder-Smith, F. von Sonnenburg, J.S. Keystone, K.C. Kain, J. Torresi, D.O. Freedman (2008) Seasonality, Annual Trends, and Characteristics of Dengue among Ill Returned Travelers, 1997-2006. Emerging Infectious Diseases 14(7): 1081-8. Shang, C.S., C.T. Fang, C.M. Liu, T.H. Wen, K.H. Tsai, C.C. King (2010) The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics. PLOS Neglected Tropical Diseases 4(8): e775. Shu, P.Y., C.L. Su, T.L. Liao, C.F. Yang, S.F. Chang, C.C. Lin, M.C. Chang, H.C. Hu, J.H. Huang (2009) Molecular Characterization of Dengue Viruses Imported into Taiwan during 2003-2007: Geographic Distribution and Genotype Shift. The American Journal Tropical Medicine and Hygiene 80(6): 1039-46. Stoddard, S.T., A.C. Morrison, G.M. Vazquez-Prokopec, V.P. Soldan, T.J. Kochel, U. Kitron, J.P. Elder, T.W. Scott. (2009) The Role of Human Movement in the Transmission of Vector-Borne Pathogens. PLoS Neglected Tropical Diseases 3(7): e481. Tatem, A.J, Z. Huang, A. Das, Q. Qi, J. Roth, Y. Qiu (2012) Air Travel and Vector-borne Disease Movement. Parasitology 139(14): 1816-1830. The Centers for Disease Control T., ROC (2012) Guidelines for Dengue Control. Taipei: The Centers for Disease Control T., ROC. The Centers for Disease control T., ROC (2013) Dengue fever / Dengue Hemorrhagic Fever. 24 Apr. 2014< http://www.cdc.gov.tw/english/page.aspx?treeid=e79c7a9e1e9b1cdf&nowtreeid=0711c3f6821a0929 > Wesolowski, A., N. Eagle, A.J. Tatem, D.L. Smith, A.M. Noor, R.W. Snow, C.O. Buckee (2012) Quantifying the impact of human mobility on malaria. Science 338(6104): 267-270. Wilder-Smith, A., D.J. Gubler (2008) Geographic Expansion of Dengue: the Impact of International Travel. Medical Clinics of North America 92(6): 1377-90. Wilder-Smith, A. (2012) Dengue infections in travelers. Pediatrics and International Child Health 32(S1): 28-32. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55888 | - |
dc.description.abstract | 登革熱為近三十年在全球擴張的蚊媒性疾病,伴隨全球暖化所帶來的擔憂,是此類熱帶性疾病於亞熱帶甚至溫帶地區的流行病區在地化成常年病,因此極需瞭解流行病區境外移入與本土流行的關係。本研究以臺灣登革熱流行病區做為先驅研究,在日益蓬勃的航空運輸中,抬升旅客從東南亞等常年病區攜入登革熱病毒的風險,誘發臺灣流行的爆發。既有研究已指出境外移入案例為登革熱流行爆發的點火器,但過往資料在解釋登革熱傳遞特性側重於氣象資料,而忽略人類活動的介入,使得氣象資料的解釋不夠完備,因此對於誘發本土案例出現的時空關係仍然不清楚。本研究旨在使用台灣各鄉鎮的社經條件和特性,對境外移入案例誘發本土案例的傳遞風險和時間延遲長度進行分析,以細緻化境外移入案例在空間上和時間上的異質性影響效果。
本研究透過2003至2012年臺灣各鄉鎮每週境外移入案例數與本土案例數,建構一基礎分析單位,傳遞的起終點配對(Origin-Destination pair),並依傳遞關係區分出境外移入鄉鎮及本土案例出現鄉鎮兩類別,每個類別皆選用臺灣鄉鎮發展類型、社會經濟指標、是否位於潛在傳染區為解釋變數,再進行多元迴歸分析,依全域模型和分月模型對境外移入對向外傳遞風險與傳遞速度進行討論。 研究發現,在境外移入傳遞風險在流行季節(7至12月)經距離倒數的權重調整後,社經條件即具備解釋能力,都市化程度高但收入低之境外移入鄉鎮對外傳遞的風險較高。在傳遞速度上,社經條件只在晚春(3至4月)具備較高解釋力,高人口密度但收入低之境外移入鄉鎮和高人口密度且高收入本土案例鄉鎮的組合加速傳遞速度,然而在初夏(5至6月)境外移入鄉鎮和本土案例鄉鎮的高人口密度反而延緩了傳遞速度。透過時間延遲預測地圖顯示,晚春(3到4月)需要預警的地方主要集中在高度都市化與中度都市化之鄉鎮。初夏(5到6月)時,都市化程度高之鄉鎮的其本土案例的時間延遲聚集效應消失。 本研究指出境外移入案例出現的所在地,其在地的人口特性、經濟條件和都市類型能決定本土案例出現的風險,且這些影響效果跼限於特定的季節,待未來研究進一步指出內部原因。本研究結果可提供疫政單位,在境外移入案例出現時,提前預警可能出現本土案例之鄉鎮及時間,而有效的進行防治工作,阻斷登革熱疫情的爆發。 | zh_TW |
dc.description.abstract | Dengue fever, a mosquito-borne disease, is an expanding public-health problem worldwide. One major research question involves the geographic expansion of such tropical diseases with global warming. Therefore, it is important to examine the relationship between imported cases and indigenous cases in epidemic regions. This pilot study took place in Taiwan. Air travel has brought more travelers from a dengue-endemic region, Southeast Asia, who have introduced virus strains that increase the risk of local epidemics in Taiwan. Past research has concentrated on meteorological data and ignored human behavior and socioeconomic conditions that influence dengue transmission at the meso- or micro-scale. The objective of this study is to examine the influences of socioeconomic conditions on the risk and speed of transmission.
This study used origin-destination (OD) pairs to measure the risk and speed of transmission as dependent variables. Each OD pair was taken from cases of dengue fever in Taiwan between 2003 and 2012. The multiple-regression analysis included socioeconomic indicators, urbanization type, and past record of local emergence, as explanatory variables. The results showed that the risk of diffusion is correlated with the socioeconomic status of imported townships and with inverse distance between locations between July and December. Low average income in urbanized townships raised the risk of transmission of imported townships. Transmission speed was best explained by socioeconomic status of imported and local townships in late spring (from March to April). Higher population density in both imported and local townships was associated with increased transmission speeds, as was the pairing of low-average-income imported townships with higher-average-income local townships. In early summer (from May to June), higher population density was associated with lower transmission speeds. A predicted distribution of time lags shows the importance of urbanization with short time lags in late spring, though this effect disappeared in early summer. This study indicates that socioeconomic status of townships would influence transmission; however, the effect is limited to particular seasons, and the drivers are still unclear. Future research should focus on clarifying these relationships. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T05:10:11Z (GMT). No. of bitstreams: 1 ntu-103-R01228021-1.pdf: 3198079 bytes, checksum: 06fd841225fba03c5ad86fc9b5f8ae7c (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Content
摘要 i Abstract iii Content v List of Figures vii List of Tables viii List of Equations viii 1 Introduction 1 2 Literature review 5 2.1 Dengue Fever as a vector-borne disease 5 2.2 Human movement as a reason of diseases diffusion 6 2.3 GeoSentinel and travelers 8 2.4 Locating a scope and concepts 9 3 Method 11 3.1 Framework 11 3.2 Data collection 13 3.3 Dataset and processing 14 3.3.1 The Origin-Destination pair 14 3.3.2 The dependent variable 16 3.3.3 Independent variables 18 3.4 Statistical methods and softwares 20 4 Results 22 4.1 Results in the risk of diffusion 25 4.1.1 Identifying significances in the global model 25 4.1.2 Identifying significances in the monthly model 26 4.1.3 Mapping warning of imported townships 29 4.2 Results in the speed of transmission 31 4.2.1 Identifying significances in the global model 31 4.2.2 Identifying significances in the monthly model 32 4.2.3 Mapping spatial distribution of predictors of time lags starting from a special location 37 5 Discussions 41 5.1 The effect of socioeconomic variables 41 5.2 The risk of transmission 42 5.3 The climate pattern 43 5.4 The speed of transmission 44 5.5 The meaning of an OD pair 46 5.6 Implications 47 5.7 Limitations 48 6 Conclusion 49 Reference 51 Appendix A 55 | |
dc.language.iso | en | |
dc.title | 境外移入病例與社會人口因子在登革熱疫情空間擴散的角色 | zh_TW |
dc.title | The Role of Imported Cases and Social-demographic Conditions in the Spatial Transmission of Dengue Epidemics | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 方?泰(Chi-Tai Fang),余化龍(Hwa-Lung Yu) | |
dc.subject.keyword | 起終點配對,傳遞風險,傳遞速度,時間延遲,登革熱,臺灣,流行病區, | zh_TW |
dc.subject.keyword | Origin?Destination pair,the risk of transmission,transmission speed,time lag,dengue fever,Taiwan,epidemic regions, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。