請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55860完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾嘉綾(Chung-Chia Lin) | |
| dc.contributor.author | Yu-Chia Chen | en |
| dc.contributor.author | 陳又嘉 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:09:40Z | - |
| dc.date.available | 2019-09-02 | |
| dc.date.copyright | 2014-09-02 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | 王喻其、王泰權、陳富翔、蔡永勝、李宏萍、費雯綺。2012。植物保護手冊。行政院農業委員會農業藥物毒物試驗所。臺中。1079頁。
宇國勝、孫守恭。1976。稻苗徒長病菌子囊孢子之逸散與稻種汙染。植保會刊 18:319-329。 張義璋。1975。水稻徒長病。植物保護圖鑑系列 8 - 水稻保護。第 258-264 頁。林慶元、洪士程、徐保雄、施錫彬、陳治官、黃益田、劉清和、劉達修、蔣永正、蔣慕琰、鄭清煥、羅幹成編。行政院農業委員會動植物防疫檢疫局。臺北。 許晴情。2013。水稻徒長病菌:開發建別性培養基、建立病害評估平台及探討土壤接種源之角色。國立中興大學植病研究所第四十四屆畢業碩士論文。臺中。83頁。 許晴情、黃振文、陳啟予。2013a。探討在台灣造成水稻徒長病之病原菌。植病會刊 22:279-289。 許晴情、賴明信、林宗俊、黃振文、陳啟予。2013b。建立水稻對徒長病菌之抗感性篩檢流程。植病會刊 22:291-299。 許晴情、賴明信、林宗俊、黃振文、陳啟予。2013c。稻種感染徒長病菌與成株水稻發生徒長病之關聯。植病會刊 22:381-388。 黃德昌、朱盛祺。2009。台灣水稻徒長病之發生與防治。台灣水稻保護成果及新展望研討會專刊 15:29-43。 蘇宗振、黃淑娟、劉若瑜。2011。農糧署稻作空間資訊管理發展。國土資訊系統通訊 79:20-30。 Amatulli M, Spadaro D, Gullino M, Garibaldi A, 2010. Molecular identification of Fusarium spp. associated with bakanae disease of rice in Italy and assessment of their pathogenicity. Plant Pathology 59, 839-44. Amatulli M, Spadaro D, Gullino M, Garibaldi A, 2012. Conventional and real-time PCR for the identification of Fusarium fujikuroi and Fusarium proliferatum from diseased rice tissues and seeds. European Journal of Plant Pathology 134, 401-8. Ammar GA, Tryono R, Döll K, Karlovsky P, Deising HB, Wirsel SG, 2013. Identification of ABC Transporter Genes of Fusarium graminearum with Roles in Azole Tolerance and/or Virulence. PloS one 8, e79042. Avalos J, Cerdá-Olmedo E, Reyes F, Barrero A, 2007. Gibberellins and other metabolites of Fusarium fujikuroi and related fungi. Current Organic Chemistry 11, 721-37. Bacon C, Yates I, 2006. Endophytic Root Colonization by Fusarium Species: Histology, Plant Interactions, and Toxicity. In: Schulz BE, Boyle CC, Sieber T, eds. Microbial Root Endophytes. Springer Berlin Heidelberg, 133-52. (Soil Biology; vol. 9.) Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SG, 2010. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology 100, 444-53. Becher R, Weihmann F, Deising HB, Wirsel SG, 2011. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC genomics 12, 52. Brent K, 1995. Fungicide resistance in crop pathogens: how can it be managed? FRAC Monograph. Brownstein MJ, Carpten JD, Smith JR, 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20, 1004-6, 8-10. Carter L, Leslie J, Webster R, 2008. Population structure of Fusarium fujikuroi from California rice and water grass. Phytopathology 98, 992-8. Chen F, Fan J, Zhou T, Liu X, Liu J, Schnabel G, 2012. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants. Plant Disease 96, 416-22. Cools H, Hawkins N, Fraaije B, 2013. Constraints on the evolution of azole resistance in plant pathogenic fungi. Plant Pathology 62, 36-42. Cruz A, Marín P, González‐Jaén MT, Aguilar KGI, Cumagun CJR, 2013. Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines. Journal of the Science of Food and Agriculture 93, 3032-9. Cumagun CJR, Arcillas E, Gergon E, 2011. UP-PCR analysis of the seed borne pathogen Fusarium fujikuroi causing bakanae disease in rice. Int. J. Agric. Biol 13, 1029-32. Desjardins A, Manandhar H, Plattner R, Manandhar G, Poling S, Maragos C, 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Applied and Environmental Microbiology 66, 1020-5. Desjardins AE, Plattner RD, Nelson PE, 1997. Production of Fumonisin B (inf1) and Moniliformin by Gibberella fujikuroi from Rice from Various Geographic Areas. Applied and Environmental Microbiology 63, 1838-42. Fan J, Chen F, Diao Y, Cools H, Kelly S, Liu X, 2013. The Y123H substitution perturbs FvCYP51B function and confers prochloraz resistance in laboratory mutants of Fusarium verticillioides. Plant Pathology. Harvey RB, Edrington TS, Kubena LF, et al., 2001. Toxicity of moniliformin from Fusarium fujikuroi culture material to growing barrows. Journal of Food Protection® 64, 1780-4. Hayden MJ, Nguyen T, Waterman A, Mcmichael GL, Chalmers KJ, 2008. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Molecular breeding 21, 271-81. Holsinger KE, Weir BS, 2009. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10, 639-50. Hsieh WH, Smith SN, Snyder WC, 1977. Mating Groups in Fusarium moniliforme. Phytopathology 67, 1041-3. Hsuan HM, Salleh B, Zakaria L, 2011. Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International journal of molecular sciences 12, 6722-32. Hwang IS, Kang W-R, Hwang D-J, Bae S-C, Yun S-H, Ahn I-P, 2013. Evaluation of bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L. Journal of Microbiology 51, 858-65. Kim SH, Park MR, Kim YC, et al., 2010. Degradation of prochloraz by rice bakanae disease pathogen Fusarium fujikuroi with differing sensitivity: a Possible explanation for resistance mechanism. Journal of the Korean Society for Applied Biological Chemistry 53, 433-9. Leslie JF, 1995. Gibberella fujikuroi: available populations and variable traits. Canadian Journal of Botany 73, 282-91. Leslie JF, Summerell BA, 2006. The Fusarium laboratory manual. Blackwell publishing. Liu K, Muse SV, 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128-9. Matić S, Spadaro D, Prelle A, Gullino ML, Garibaldi A, 2013. Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice. International journal of food microbiology 166, 515-23. Nur Izzati Mohd Z, Azmi R, Baharuddin S, 2009. Bakanae Disease of Rice in Malaysia and Indonesia: Etiology of the Causal Agent Based on Morphological, Physiological and Pathogenicity Characteristics. Journal of Plant Protection Research 48, 475-85. O'donnell K, Cigelnik E, Nirenberg HI, 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 465-93. Ou SH, 1984. Exploring tropical rice diseases: a reminiscence. Annu Rev Phytopathol 22, 1-11. Ou SH, 1985. Rice diseases. IRRI. Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-59. Quantum G, 2011. Development Team, 2012. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. URL:[http://qgis. osgeo. org]. Raymond M, Rousset F, 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of heredity 86, 248-9. Schuelke M, 2000. An economic method for the fluorescent labeling of PCR fragments. Nature biotechnology 18, 233-4. Spolti P, Jorge BCD, Del Ponte EM, 2012. Sensitivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungicides. Tropical Plant Pathology 37, 419-23. Steenkamp ET, Wingfield BD, Coutinho TA, et al., 2000. PCR-Based Identification of MAT-1 and MAT-2 in the Gibberella fujikuroi Species Complex. Applied and Environmental Microbiology 66, 4378-82. Suga H, Kitajima M, Nagumo R, et al., 2014. A single nucleotide polymorphism in the translation elongation factor 1α gene correlates with the ability to produce fumonisin in Japanese Fusarium fujikuroi. Fungal biology 118, 402-12. Sunder S, 1998. Vegetative compatibility, biosynthesis of GA3 and virulence of Fusarium moniliforme isolates from bakanae disease of rice. Plant Pathology 47, 767-72. Van Belkum A, Scherer S, Van Alphen L, Verbrugh H, 1998. Short-sequence DNA repeats in prokaryotic genomes. Microbiology and Molecular Biology Reviews 62, 275-93. Voigt K, Schleier S, Brückner B, 1995a. Genetic variability in Gibberella fujikuroi and some related species of the genus Fusarium based on random amplification of polymorphic DNA (RAPD). Current Genetics 27, 528-35. Voigt K, Schleier S, Bruckner B, 1995b. Genetic-Variability in Gibberella-fujikuroi and some related species of the genus Fusarium based on random amplification of polymorphic DNA (Rapd). Current Genetics 27, 528-35. Watanabe T, Umehara Y, 1977. The perfect state of the causal fungus of Bakanae disease of rice plants re-collected at Toyama [Japan]. Transactions of the Mycological Society of Japan. Wiemann P, Brown DW, Kleigrewe K, et al., 2010. FfVel1 and FfLae1, components of a velvet‐like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Molecular microbiology 77, 972-94. Yin Y, Liu X, Li B, Ma Z, 2009. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99, 487-97. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55860 | - |
| dc.description.abstract | 水稻徒長病 (Bakanae disease) 是臺灣水稻古老病害之一,已被記載超過 100年的歷史。近年來水稻徒長病在臺灣各地似有逐漸流行的趨勢,本病崛起的原因,除了農友的稻種消毒操作不確實之外,很可能與田間病原菌族群變異,產生高致病力或具藥劑耐受性的菌株有關,這也成為臺灣水稻生產的潛在威脅。本研究與農業試驗所及各區農業改良場合作,分析由全臺各地稻種、稻苗、田間植株上分離所得 900 株可能之水稻徒長病菌菌株。接著以針對 TEF (translation elongation factor-1 alpha gene) 新設計之專一性引子對 FfTef-F/FfTef-R 輔助形態鑑定,確認菌株為Fusarium fujikuroi 者共 663 株,再根據 2013 年韓國 Jeong 氏等人發表之 F. fujikuroi B14 全解序基因體之序列,設計並建立水稻徒長病菌之高通量簡單重複性序列 (Simple sequence repeats, SSRs) 分子標誌平臺。本研究共開發 48 對引子對,選用其中 16 對進行全臺菌株之分子分群,結果顯示臺灣水稻徒長病菌族群主要分為四群 (A1、A2、B1、B2)。為瞭解其病原性,本研究根據分子分群結果選出 24 株代表性菌株,對八個水稻品種 (Budda、IR78581-12-3-2-2、豐錦、越光、臺南 11 號、高雄 139 號、臺稉 16 號及臺農 71 號) 進行接種,結果顯示相較於 A1、A2、B1 族群,B2 族群屬於弱病原性菌株,且在試驗之菌株與水稻品種中並未發現臺灣水稻徒長病菌有生理小種的存在,而水稻品種 Budda 則對所測試之代表性菌株有明顯之抗性,臺南 11 號則在商業品種中具有較佳抗性。另外針對臺中地區,選取所有早期 (1998及2000年) 菌株 8 株及近期 (2012年) 之代表性菌株4株,對不同時代之水稻領先品種臺南 11 號、臺農 67 號以及臺農 71 號進行接種試驗,發現過去與現在之菌株其病原性並無顯著變化。利用交配型引子對 GFmat1a/1b 與 GFmat2c/2d 對選用收集之菌株進行分析,發現臺灣水稻徒長病菌菌株存在兩種交配型 MAT-1 與 MAT-2 (比例為 171:307),顯示在適合之環境條件下,F. fujikuroi 可能行有性生殖,增加其族群內遺傳變異性。在藥劑耐受性方面,本研究利用一般常用於稻種消毒之撲克拉 (prochloraz) 與得克利 (tebuconazole) 對 1998、2000 及 2012 年共 60 株代表性菌株進行試驗,發現 2012 年整體菌株對撲克拉藥劑之耐受性有提升之現象,顯示臺灣徒長病菌已演化出抗藥性,其中 B2 族群對撲克拉有較低耐受性,而對得克利則有較高耐受性,另外亦檢測出 1 株耐撲克拉之菌株及 3 株耐得克利之菌株。本研究之成果,有助於瞭解臺灣田間水稻徒長病菌族群之演變,相關資訊亦可供未來抗病育種及防治措施擬定之參考。 | zh_TW |
| dc.description.abstract | Bakanae disease is an old disease in Taiwan. It was first reported around 100 years ago. Since 2009, the Bakanae disease of rice has become more prevalent in many rice growing areas all around Taiwan, which has been a potential risk to rice production. The epidemic can be caused by ineffective seed sterilization or the evolution of highly virulent or fungicide-resistant Fusarium fujikuroi strain(s). Collaborating with Taiwan Agricultural Research Institute and seven Agricultural Research and Extension Stations, we totally collected 899 isolates originated from rice seeds, diseased seedlings from breeding farms, and diseased rice plants in selected patty fields. We designed a specific primer pair FfTef-F/FfTef-R based on the TEF gene (translation elongation factor-1 alpha gene), and identify a total of 663 F. fujikuroi isolates. A high-throughput SSR (simple sequence repeat) marker system was also established to reveal the population structure of F. fujikuroi. A total of 48 SSR markers were developed based on the whole-genome sequences of a F. fujikuroi isolate B14, from which 16 SSR markers were chosen to analyze the collected isolates. The result showed that there are mainly four subpopulations (A1, A2, B1, and B2) in Taiwan. In the virulence analysis, we chose 24 F. fujikuroi isolates representative for different genetic clusters and different geographical regions, to inoculate a set of eight selected cultivars. The result showed that compared to the isolates in A1, A2, and B1 clusters, the isolates in B2 cluster displayed lower virulence. Different physiological races were not observed among the 24 isolates. Among the rice cultivars under test, Budda exhibited high resistance to all the 24 representative isolates, and TN11 showed relatively higher resistance than other commercial cultivars. To evaluate the evolution of F. fusarium pathogenicity in Taichung, we used all the 8 available early isolates (1998 and 2000) and 4 representative recent isolates (2012) to inoculate three mainstream cultivars in different eras. No significant difference was found between early and recent isolates on TN11, TNG67, and TNG71. Determined by two specific primer pairs GFmat1a/GFmat1b and Gfmat2c/GFmat2d targeting MAT1 and MAT2 genes, respectively, the mating type composition in F. fujikuroi in Taiwan was found to be MAT1:MAT2 = 171:307. The coexistence of both mating types indicated the possibility of increased genetic diversity due to meiotic recombination of F. fujikuroi under suitable environmental condition. In the fungicide tolerance analysis, we used prochloraz and tebuconazole to test 60 representative isolates from 1998, 2002, and 2012. The 2012 isolates were less sensitive to prochloraz than the isolates from 1998 and 2000, indicating that fungicide-resistant strains are present in Taiwan. The B2 subpopulation showed less tolerance to prochloraz but higher tolerance to tebuconazole. We also detected one prochloraz-tolerant isolate and three tebuconazole-tolerant isolates. This study can facilitate our understanding of the evolution of the F. fujikuroi population in Taiwan, and provide useful information for resistance breeding and the development of control measures in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:09:40Z (GMT). No. of bitstreams: 1 ntu-103-R01645007-1.pdf: 2075273 bytes, checksum: ea38fb05366f99e3ff55190a9bdb1125 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v 目錄 vii 表目錄 x 圖目錄 xi 第 1 章 研究動機 1 第 2 章 前人研究 2 2.1 臺灣水稻徒長病及其病原菌 2 2.2 病原菌之鑑定 3 2.3 病原菌遺傳多樣性研究 5 2.4 水稻徒長病菌之有性生殖 6 2.5 水稻徒長病之傳播及防治 7 第 3 章 材料與方法 9 3.1 菌株之收集、保存 9 3.2 DNA萃取 10 3.3 菌株鑑定 11 3.4 SSR 分子標誌之設計及基因型分析 12 3.5 族群遺傳分析 13 3.6 交配型分析 14 3.7 藥劑耐受性分析 14 3.8 代表性菌株之病原性分析 15 3.8.1 2012 年代表性菌株之接種測試 15 3.8.2 各分群菌株對 3 種商業水稻品種接種 17 3.8.3 臺中霧峰及潭子區之不同年代菌株接種當地不同年代領先品種 17 3.9 利用SSR分子標誌追蹤田間感染源 17 3.9.1 水稻於田間罹染F. fujikuroi之測試 18 3.9.2 稻種帶菌分析 18 第 4 章 結 果 20 4.1 菌株之收集、保存與鑑定 20 4.2 SSR分子標誌之設計及基因型分析 20 4.3 交配型分析 21 4.4 病原性分析 22 4.4.1 菌株對抗性、感性及商業水稻品種之病原性 22 4.4.2 各族群菌株對過去及現在水稻主流品種之病原性 22 4.4.3 臺中霧峰及潭子區菌株之病原性演化不顯著 23 4.5 藥劑耐受性分析 23 4.6 徒長病菌之傳播方式 24 第 5 章 討 論 25 第 6 章 參考文獻 29 第 7 章 表 ...................................................................................................................34 第 8 章 圖 ...................................................................................................................78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藥劑耐受性 | zh_TW |
| dc.subject | 水稻徒長病 | zh_TW |
| dc.subject | Fusarium fujikuroi | zh_TW |
| dc.subject | 簡單重複序列 | zh_TW |
| dc.subject | 族群遺傳 | zh_TW |
| dc.subject | 交配型 | zh_TW |
| dc.subject | 生理小種 | zh_TW |
| dc.subject | mating type | en |
| dc.subject | fungicide tolerance | en |
| dc.subject | physiological race | en |
| dc.subject | Bakanae disaease | en |
| dc.subject | Fusarium fujikuroi | en |
| dc.subject | simple sequence repeats (SSR) | en |
| dc.subject | population genetics | en |
| dc.title | 臺灣水稻徒長病菌族群之遺傳組成、致病力及藥劑感受性分析 | zh_TW |
| dc.title | Analysis of the genetic structure, virulence and fungicide susceptible in the Fusarium fujikuroi population in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃振文(Jenn-Wen Huang),陳啟予(Chi-Yu Chen),賴明信(Ming-Hsing Lai),林宗俊(Tsung-Chun Lin),楊景程(Chin-Cheng Yang) | |
| dc.subject.keyword | 水稻徒長病,Fusarium fujikuroi,簡單重複序列,族群遺傳,交配型,生理小種,藥劑耐受性, | zh_TW |
| dc.subject.keyword | Bakanae disaease,Fusarium fujikuroi,simple sequence repeats (SSR),population genetics, mating type,physiological race,fungicide tolerance, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
| 顯示於系所單位: | 植物醫學碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
