Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55855
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮南(Rong-Nan Huang)
dc.contributor.authorXinyu Toby Huangen
dc.contributor.author黃欣宇zh_TW
dc.date.accessioned2021-06-16T05:09:34Z-
dc.date.available2014-08-25
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationAdams CT. 1986. Agricultural and medical impact of the imported fire ants. Fire Ants and Leaf cutting ants: biology and management. Westview Press. 48 pp.
Allen CR, Epperson DM, & Garmestani AS. 2004. Red imported fire ant impacts on wildlife: a decade of research. Am Midl Nat 152:88-103.
Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Gnirke A. 2011. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:18.
Ascunce MS, Yang CC, Oakey J, Calcaterra L, Wu WJ, Shih CJ, Goudet J, Ross KG, Shoemaker D. 2011. Global invasion history of the fire ant Solenopsis invicta. Science 331:1066-1068.
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. 2008. Rapid SNP discovery and genetic mapping using dequenced RAD markers. Plos One 3:10.
Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5:433-438
Collins FS, Morgan M, Patrinos A. 2003. The human genome project: lessons from large-scale biology. Science 300: 286-290.
Eliyahu D, Ross KG, Haight KL, Keller L, Liebig J. 2011. Venom alkaloid and cuticular hydrocarbon profiles are associated with social organization, queen fertility status, and queen genotype in the fire ant Solenopsis invicta. J Chem Ecol 37:1242-1254.
Gotzek D, Ross KG. 2007. Genetic regulation of colony social organization in fire ants: An integrative overview. Q Rev Biol 82:201-226.
Gotzek D, Ross KG. 2009. Current status of a model system: The Gene Gp-9 and its asssociation with social organization in fire ants. Plos One 4:11.
Hammock EA, Young LJ. 2006. Oxytocin, vasopressin and pair bonding: implications for autism. Philos T Roy Soc B 361:2187-2198.
Keller L, Ross KG. 1998. Selfish genes: a green beard in the red fire ant. Nature 394:573-575.
Kibbe WA. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:43-46.
Krieger MJ, Ross KG. 2005. Molecular evolutionary analyses of the odorant-binding protein gene Gp-9 in fire ants and other Solenopsis species. Mol Biol Evol 22:2090-2103.
Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinfo 9:299-306.
Li JB, Heinz KM. 2000. Genome complexity and organization in the red imported fire ant Solenopsis invicta Buren. Genet Res 75:129-135.
Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24:713-714.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV,
Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380
Metzker ML. 2010. Sequencing technologies - the next generation. Nat Rev Genet 11:31-46.
Morrison LW, Porter SD, Daniels E, Korzukhin MD. 2004. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol Invasions 6:183-191.
Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S,
Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N, Kanaya S. 2011. Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 19:1-13.
Reuter J, Mathews DH. 2010. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11:129.
Ross K, Keller L. 2002. Experimental conversion of colony social organization by manipulation of worker genotype composition in fire ants (Solenopsis invicta). Behav Eco 51:287-295.
Shapiro JA, von Sternberg R. 2005. Why repetitive DNA is essential to genome function. Biol Rev 80:227-250.
Stein LD. 2010. The case for cloud computing in genome informatics. Genome Biol 11:207.
Tschinkel RW. 1996. The Fire Ants. Cambridge: Belknap Press of Harvard University Press. 752pp.
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:71-74.
Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang YC, Shoemaker D, Keller L. 2013. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493:664-668.
Wurm Y. 2011. Behind the scenes of an ant genome project. Formosan Entomol 31:149-156.
Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, Ingram KK, Falquet L, Nipitwattanaphon M, Gotzek D, Dijkstra MB, Oettler J, Comtesse F, Shih CJ, Wu WJ, Yang CC, Thomas J, Beaudoing E, Pradervand S, Flegel V, Cook ED, Fabbretti R, Stockinger H, Long L, Farmerie WG, Oakey J, Boomsma JJ, Pamilo P, Yi SV, Heinze J, Goodisman MA, Farinelli L, Harshman K, Hulo N, Cerutti L, Xenarios I, Shoemaker D, Keller L. 2011. The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci USA 108:5679-5684.
Yang CC, Shoemaker D, Wu WJ, Shih CJ. 2008. Population genetic structure of the red imported fire ant, Solenopsis invicta, in Taiwan. Insect Soc 55:54-65.
Yotvat N, Pnina WS, Michael F. 1995 The fragile X syndrome single strand d(CGG)n nucleotide repeats readily fold back to form unimolecular hairpin structures. J Biol Chem 270: 28970-28977.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55855-
dc.description.abstract隨著新的定序技術的快速發展和定序成本的減少,基因體的研究現在可以應用到曾經不具有的參考基因體的非模型生物。最近發表的入侵紅火蟻紅火蟻的基因體是應用了次世代(Next Generation Sequencing)來定序一個對經濟和生態重要的非模式物種。然而,定序和裝配技術的局限性對於基因體的完整組裝造成了一些困難。這些新組裝的基因組被認為是基因體初稿,因為它們的片段基因序列內和之間含有未定序的間隙 (gaps)。因此,本論文旨在使用PCR、克隆和Sanger定序技術,以解決部分紅火蟻基因組體裡Linkage Group 16(LG16)的間隙。 LG 16,或 LG S(“social”)是有牽連到火蟻的社會行為的基因控制的重要染色體,本論文針對279缺口在染色體的特殊非重組區域 ( non-recombining supergene region)嘗試解析。而較大的間隙則透過跨越BAC克隆封閉。試驗結果顯示,在supergene區域的重複元素比此區域外的高10%。此現象可支持關於在非重組的區域容易造成有害元素累積的假說。透過這些解析的間隙序列不僅可以有利於一個更完整的基因體的組裝,而且還可以有助於揭示重要的基因組特徵,例如,在社會型染色體(social chromosome)裡的重複序列的瞭解。zh_TW
dc.description.abstractWith the rapid development of new sequencing technologies and the drastic reduction to sequencing costs, genome wide sequencing studies can now be applied to non-model organisms that do not have established reference genomes. The recent publication of the genome of the invasive fire ant Solenopsis invicta is a good example of how such new advances in next generation sequencing technologies can be readily adopted for an economically and ecologically important non-model species. Nevertheless, limitations of the sequencing and assembly technologies create difficulties in achieving complete coverage of the entire genome. These newly assembled genomes are considered draft genomes, because they contain many gaps of unknown bases within and in between scaffolds. This project aims to resolve some of these gaps on linkage group 16 (LG 16) of the S. invicta draft genome by using a combination of PCR, cloning, and Sanger sequencing techniques. LG 16, or LG S (“social”), corresponds to a chromosome implicated to have important roles in the genetic control of the fire ant’s social behavior. A total of 279 gap closures were attempted inside and outside a special non-recombining region on LG 16. While larger inter-scaffold gaps were closed by screening for BAC clones that span across scaffolds. Sequencing results revealed a 10% higher proportion of repetitive elements inside the supergene than that of outside. These patterns are consistent with assembly biases which might support previous predictions regarding the accumulation of deleterious elements in the non-recombining region. These resolved gap sequences, in combination with BAC sequences that span inter-scaffold gaps would not only allow for the assembly of a more complete genome, but may also contribute to revealing important genomic features such as repetitive elements and genomic repeats in the social chromosome.en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:09:34Z (GMT). No. of bitstreams: 1
ntu-103-R00632016-1.pdf: 1278683 bytes, checksum: ef776991300c48c53df3bf33551005bf (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsTable of Contents
Thesis Defense Completion Form ………………………………………………… i
Acknowledgements ……………………………………………………………… ii
Chinese Abstract ………………………………………………………………… iii
Abstract …………………………………………………………………………… iv
Table of Contents ………………………………………………………………… vi
List of Figures …………………………………………………………………… viii
List of Tables …………………………………………………………………… ix
Introduction
Next (Now) Generation Sequencing ……………………………………… 1
The Fire Ant Genome …………………………………………………… 2
Genetic Control of Social Structure …………………………………… 4
Gaps in the Social Chromosome …………………………………… 6
Materials and Methods
General Strategy ………………………………………………………… 9
Gap Isolation ………………………………………………………………… 10
Primer Design …………………………………………………………… 10
PCR ………………………………………………………………………… 11
Cloning ……………………………………………………………………… 12
BAC Clones ………………………………………………………………… 12
Sequence Alignment ………………………………………………………… 13
Gap Reintegration …………………………………………………………… 14
Results
Gap Resolution ……………………………………………………………… 15
Gap Closure Efficacy ……………………………………………………… 16
Gap Prediction …………………………………………………………… 17
Gap Categories ……………………………………………………………… 18
BAC Results ………………………………………………………………… 19
Gap Sizes …………………………………………………………………… 19
Non-repetitive Gaps ………………………………………………………… 20
Gap Reintegration …………………………………………………………… 20
Discussion
Repetitive Elements ………………………………………………………… 21
Sequence/Assembly Bias …………………………………………………… 22
Conclusion ………………………………………………………………… 25
References ……………………………………………………………………… 27
Appendix I Gap Primer Pairs …………………………………………………… 44
Appendix II Gap Identities …………………………………………………… 60
dc.language.isoen
dc.subject基因體組裝zh_TW
dc.subject入侵紅火蟻zh_TW
dc.subject基因體間隙zh_TW
dc.subject基因體重複zh_TW
dc.subject重複序列zh_TW
dc.subjectRed imported fire anten
dc.subjectgenome assemblyen
dc.subjectgenomic gapsen
dc.subjectgenomic repeatsen
dc.subjectrepetitive elementsen
dc.title入侵紅火蟻Solenopsis invicta基因體的間隙解析zh_TW
dc.titleClosing Gaps in the Genome of the Fire Ant Solenopsis invictaen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor王忠信(John Wang)
dc.contributor.oralexamcommittee許如君(Ju-Chun Hsu),楊景程(Chin-Cheng Yang)
dc.subject.keyword入侵紅火蟻,基因體組裝,基因體間隙,基因體重複,重複序列,zh_TW
dc.subject.keywordRed imported fire ant,genome assembly,genomic gaps,genomic repeats,repetitive elements,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved