Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55850
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游政谷(Cheng-Ku Yu)
dc.contributor.authorWEI-FAN LIUen
dc.contributor.author劉偉帆zh_TW
dc.date.accessioned2021-06-16T05:09:29Z-
dc.date.available2026-02-08
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-08
dc.identifier.citationCheng, L.-W., and C.-K. Yu, 2019: Investigation of orographic precipitation over an isolated, three-dimensional complex topography with a dense Gauge network, radar observations, and upslope model. J. Atmos. Sci., 76, 3387-3409.
Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588–606.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367–374.
Durran, D. R., and J. B. Klemp, 1982: On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39, 2152–2158.
Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873–900.
Gheusi, F., and H. C. Davies, 2004: Autumnal precipitation distribution on the southern flank of the Alps: A numerical model study of the mechanisms. Quart. J. Roy. Meteor. Soc., 130, 2125-2152.
Houze, R. A., Jr., James, C. N. and Medina, S., 2001: Radar observations of precipitation and airflow on the Mediterranean side of the Alps: Autumn 1998 and 1999. Q. J. R. Meteorol. Soc., 127, 2537–2558.
——, 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001.
Hsu, J., 1998: ARMTS up and running in Taiwan. Vaisala News, 146, 24-26.
Jiang, Q., 2003: Moist dynamics and orographic precipitation. Tellus, 55A, 301–316.
——, 2006: Precipitation over concave terrain. J. Atmos. Sci., 63, 2269–2288.
Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 424 pp.
Medina, S., and R. A. Houze Jr, 2015: Small-scale precipitation elements in midlatitude cyclones crossing the California Sierra Nevada. Mon. Wea. Rev., 143, 2842–2870.
Overland, J. E., and N. A. Bond, 1995: Observations and scale analysis of coastal wind jets. Mon. Wea. Rev., 123 , 2934–2941.
Pierrehumbert, R. T., and B. Wyman, 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 977–1003.
Purnell, D. J., and D. J. Kirshbaum, 2018: Synoptic control over orographic precipitation distributions during the Olympics Mountains Experiment (OLYMPEX). Mon. Wea. Rev., 146, 1023–1044.
Rotunno, R., and R. Ferretti, 2001: Mechanisms of intense Alpine rainfall. J. Atmos. Sci., 58, 1732–1749.
Schneidereit, M., and C. Schär, 2000: Idealised numerical experiments of Alpine flow regimes and southside precipitation events. Meteor. Atmos. Phys., 72, 233–250.
Sinclair, M. R., 1994: A diagnostic model for estimating orographic precipitation. J. Appl. Meteor., 33, 1163–1175.
Skamarock, W.C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G, Huang, X.-Y., Wang, W., and Powers, J. G., 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp.
Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, 87–230.
——, 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 3889–3896.
——, 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, 1–41.
Watson, C. D., and T. P. Lane, 2012: Sensitivities of orographic precipitation to terrain geometry and upstream conditions in idealized simulations. J. Atmos. Sci., 69, 1208–1231.
——, and ——, 2014: Further sensitivities of orographic precipitation to terrain geometry in idealized simulations. J. Atmos. Sci., 71, 3068–3089.
White, A. B., P. J. Neiman, F. M. Ralph, D. E. Kingsmill, and P. O. G. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment. J. Hydrometeor., 4, 264–282.
Yu, C.-K., and L.-W. Cheng, 2008: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000). Mon. Wea. Rev., 136, 497–521.
——, and ——, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., 71, 3202–3222.
——, and C.-L. Tsai, 2017: Structural changes of an outer tropical cyclone rain band encountering the topography of northern Taiwan. Quart. J. Roy. Meteor. Soc., 143, 1107–1122.
——, C.-Y. Lin, L.-W. Cheng, J.-S. Luo, C.-C. Wu, and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep., 8, 8247.
Zagrodnik, J. P., L. A. McMurdie, and R. A. Houze, 2018: Stratiform precipitation processes in cyclones passing over a coastal mountain range. J. Atmos. Sci., 75, 983–1004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55850-
dc.description.abstract本研究的目的在利用密集的地面觀測、五分山都卜勒雷達與WRF數值模式,來分析探討2018年12月13~14日大屯山區山谷降水加強之機制。大屯山為一座小尺度的凹向性山脈,由兩個山臂與一個山谷所組成,其水平尺度約為15公里,高度約為1公里。地面密集的雨量觀測顯示個案期間降水極值的位置常落在山谷位置,而地面與雷達觀測分析顯示在兩個山臂迎風坡都有明顯的風場分流特徵。
透過WRF模式模擬更進一步發現,山谷降水加強伴隨著明顯的氣流輻合區,此輻合主要與前述山臂前緣分流的側向輻合有關,且其強度隨高度有所變化。山谷地區最顯著的側向輻合是位在山脈中層的高度(~500公尺),可能由於兩個山臂的距離在此高度恰好有利於引導氣流輻合。垂直速度的定量診斷分析顯示側向輻合在山谷降水極值出現的期間貢獻約38.4%的垂直速度,稍微大於地形強迫舉升之貢獻度(約32.4%)。大屯山區上游的局部Froude number具有顯著的時空變化,當上游Froude number較小時易在山臂前緣出現氣流分流特徵,山谷附近的低層風場與降水的演變受到兩個山臂分流程度差異性的影響甚鉅。
zh_TW
dc.description.abstractThis study investigates the mechanisms responsible for valley precipitation enhancement over Da-Tun Mountain (DT) observed on 13-14 December 2018, using detailed surface and Doppler radar observations and numerical simulations. DT is a small-scale concave ridge comprising two ridge arms and a concave valley. The horizontal scale of DT is around 15 km, and the mountain peak of DT is around 1 km MSL. Rainfall measurements from dense rain gauge network show that local rainfall maximum frequently falls within the valley in the present case. Analyses of surface and radar-observed winds indicate that significant flow splitting signal is present at both ridge arms over the duration of the present case.
Case simulations by the WRF model further reveal that the precipitation over the valley is closely related to lateral convergence produced by the splitting flows over the ridge arms. The most prominent lateral convergence is found near the middle of the mountain layer (~500 m MSL), presumably due to a suitable separation between the two ridge arms at this altitude. Quantitative diagnoses of vertical motions indicate that the lateral convergence contributes ~38.4% to the total vertical velocity valid inside the valley, which is slightly greater than that contributed by upslope lifting mechanism (~32.4%). The local upstream Froude number calculated is varied temporally and spatially, and the flow splitting tends to occur in areas with low upstream Froude number. The splitting flows over the two ridge arms, with differential characteristics and intensities, appear to interact with each other to produce evolving, complicated nature of airflow and precipitation over DT.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:09:29Z (GMT). No. of bitstreams: 1
U0001-0402202119131400.pdf: 12299801 bytes, checksum: 92b06aaee27c50dc11e662f54588b81d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents摘要 I
Abstract III
List of Figures VII
List of Tables XVII
Chapter 1 Introduction 1
Chapter 2 Data and model configuration 8
2.1 Data 8
2.1.1 Surface observations 8
2.1.2 Doppler radar 10
2.2 Numerical models 12
2.2.1 WRF model and its configuration 12
2.2.2 Upslope model 13
Chapter 3 Case overview 14
Chapter 4 Observed airflow features 18
Chapter 5 Numerical simulations 22
5.1 Upslope model simulation 22
5.2 WRF model simulation 22
5.2.1 Upstream condition 22
5.2.2 Three-dimensional structure of the enhanced valley precipitation 28
Chapter 6 Diagnoses of vertical motions 33
Chapter 7 Characteristics of flow deflection 39
Chapter 8 Conclusion 49
References 53
Figures 57
Tables 98
dc.language.isoen
dc.title大屯山區冬季山谷降水加強之個案研究zh_TW
dc.titleCase Study of Wintertime Valley Precipitation Enhancement over Da-Tun Mountainen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee吳俊傑(Chun-Chieh Wu),林沛練(Pay-Liam Lin),羅敏輝(Min-Hui Lo),林傳堯(Chuan-Yao Lin)
dc.subject.keyword大屯山,山谷降水加強,凹向性山脈,Froude number,氣流分流,zh_TW
dc.subject.keywordDa-Tun Mountain,valley precipitation enhancement,concave ridge,Froude number,flow splitting,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202100533
dc.rights.note有償授權
dc.date.accepted2021-02-09
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept大氣科學研究所zh_TW
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
U0001-0402202119131400.pdf
  目前未授權公開取用
12.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved