請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張富雄 | |
| dc.contributor.author | Hui-Ling Chang | en |
| dc.contributor.author | 張慧玲 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:09:26Z | - |
| dc.date.available | 2016-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | Ajuebor, M.N., Flower, R.J., Hannon, R., Christie, M., Bowers, K., Verity, A., and Perretti, M. (1998). Endogenous monocyte chemoattractant protein-1 recruits monocytes in the zymosan peritonitis model. J. Leukoc. Biol. 63, 108-116.
Ajuebor, M.N., Das, A.M., Virag, L., Flower, R.J., Szabo, C., and Perretti, M. (1999). Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10. J. Immunol. 162, 1685-1691. Aramaki, Y., Takano, S., and Tsuchiya, S. (1999). Induction of apoptosis in macrophages by cationic liposomes. FEBS Lett. 460, 472-476. Aramaki, Y., Takano, S., Arima, H., and Tsuchiya, S. (2000). Induction of apoptosis in WEHI 231 cells by cationic liposomes. Pharm. Res. 17, 515-520. Aramaki, Y., Takano, S., and Tsuchiya, S. (2001). Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Arch. Biochem. Biophys. 392, 245-250. Arima, H., Aramaki, Y., and Tsuchiya, S. (1997). Contribution of trypsin-sensitive proteins to binding of cationic liposomes to the mouse macrophage-like cell line RAW 264.7. J. Pharm. Sci. 86, 786-790. Baeuerle, P. A., and Henkel, T. (1994). Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12, 141–179. Banisadr, G., Gosselin, R. D., Mechighel, P., Kitabgi, P., Rostene, W., and Parsadaniantz, S. M. (2005). Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: Evidence for its colocalization with neurotransmitters and neuropeptides. J. Comp. Neurol. 489, 275-292. Barnes, P. J. (1998). Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin. Sci. 94, 557-572. Beck, R.C.R., Guterres, S.S., Frrido, R.J., Michalowsk, C.B., Barcellos, I., and Funck, J.A.B. (2003). Nanoparticles containing Dexamethasone : Physicochemical Properties and Anti-Inflammatory Activity. Acta. Farm. Bonaerense. 22,1-5. Beg, A. A., and Baltimore, D. (1996). An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 274, 782–784. Blackwell, T. S., and Christman, J. W. (1997). The role of nuclear factor-kappa B in cytokine gene regulation. Am. J. Respir. Cell Mol. Biol. 17, 3–9. Bohuslav, J., Kravchenko, V. V., Parry, G. C., Erlich, J. H., Gerondakis, S., Mackman, N., and Ulevitch, R. J. (1998). Regulation of an essential innate immune response by the p50 subunit of NF-kappaB. J. Clin. Invest. 102, 1645–1652. Borges, F.R., Silva, M.D., Cordova, M.M., Schambach, T.R., Pizzolatti, M.G., and Santos, A.R. (2014). Anti-inflammatory action of hydroalcoholic extract, dichloromethane fraction and steroid α-spinasterol from Polygala sabulosa in LPS-induced peritonitis in mice. J. Ethnopharmacol. 151, 144-150. Carmona-Ribeiro, A.M. (2000). Interactions between cationic liposomes and drugs or biomolecules. An. Acad. Bras. Cienc. 72, 39-43. Chenevier, P., Veyret, B., Roux, D., and Henry-Toulme, N. (2000). Interaction of cationic colloids at the surface of J774 cells: a kinetic analysis. Biophys. J. 79, 1298-1309. David, S.A., Bechtel, B., Annaiah, C., Mathan, V.I., and Balaram, P. (1994). Interaction of cationic amphiphilic drugs with lipid A: implications for development of endotoxin antagonists. Biochim. Biophys. Acta. 1212, 167-175. De Bosscher K., Vanden Berghe W., and Haegeman G. (2003) Interplay between the glucocorticoid receptor and nuclear factor-kB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev. 24, 488-522. DiCarlo, F. J., and Fiore, J., V. (1957). On the composition of zymosan. Science. 127, 756-757. Elouahabi, A., and Ruysschaert, J.M. (2005). Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 17, 336-347. Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science. 240, 889-95. Fichter, M., Baier, G., Dedters, M., Pretsh, L., Nguyen, A.P., Landfester, K., and Gehring S. (2013). Nanocapsules generated out of a polymeric dexamethasone shell suppress the inflammatory response of liver macrophages. Nanomedicine. 9, 1223-1234. Gaete, G. C., Tsapis, N., Besnard, M., Bochot, A., and Fattal, E. (2007). Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int. J. Pharm. 331, 153-159. Gaete, G. C., Fattal, E., Silva, L., Besnard, M., and Tsapis, N. (2008). Dexamethasone acetate encapsulation into Trojan particles. J. Controlled Release. 128, 41-49. Hadinoto, K., Zhu, K., and Tan, R.B. (2007). Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int. J. Pharm. 341, 195-206. Hafezi-Moghadam, A., Simoncini, T., Yang, Z., Limbourg, F.P., Plumier, J.C., Rebsamen, M.C., Hsieh, C.M., Chui, D.S., Thomas, K.L., Prorock, A.J., Laubach, V.E., Moskowitz, M.A., French, B.A., Ley, K., and Liao, J.K. (2002). Acute cardiovascular protective effects of corticosteroids are mediated by non- transcriptional activation of endothelial nitric oxide synthase. Nat. Med. 8, 473-479. Hebbar P.B., and Archer T.K. (2003). Chromatin remodeling by nuclear receptors. Chromosoma. 111, 495-504. Hoekstra, D., Rejman, J., Wasungu, L., Shi, F., and Zuhorn, I. (2007). Gene delivery by cationic lipids: in and out of an endosome. Biochem. Soc. Trans. 35, 68-71. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. (1999). Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749-3752. Karmali, P.P., and Chaudhuri, A. (2007). Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med. Res. Rev. 27, 696–722. Kenyon, N.J., Bratt, J.M., Lee J., Luo, J., Franzi, L.M., Zeki, A.A., and LAM, K.S. (2013). Self -Assembling Nanoparticles Containing Dexamethasone as Novel Therapy in Allergic Airways Inflammation. PLOS ONE. DOI:10.1371/journal.pone.0077730 Khalil, I.A., Kogure, K., Akita, H., and Harashima, H. (2006). Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 58, 32-45. Kino, T., De Martino, M. U., Charmandari, E., Mirani, M., and Chrousos, G. P. (2003). Tissue glucocorticoid resistance/hypersensitivity syndromes. J. Steroid. Biochem. Mol. Biol. 85, 457-67. Koyanagi, M., Egashira, K., Kitamoto, S. Ni, W., Shimokawa, H., Takeya, M., et al. (2000). Role of monocyte chemoattractant protein-1 in cardiovascular remodeling induced by chronic blockade of nitric oxide synthesis. Circulation. 102, 2243-2248. Krishnan, V., Xu, X., Barwe, S.P., Yang, X., Czymmek, K., Waldman, S.A., Mason, R.W., Jia X., and Rajasekaran, A.K. (2013). Dexamethasone-Loaded Block Copolymer Nanoparticles Induce Leukemia Cell Death and Enhance Therapeutic Efficacy : A Novel Application in Pediatric Nanomedicine. Mol. Pharm. 10, 2199-2210. Kusumoto, K., and Ishikawa, T. (2010). Didodecyldimethylammonium bromide (DDAB) induces caspase-mediated apoptosis in human leukemia HL-60 cells. J. Control. Release. 147, 246-252. Lamberts, S. W., Huizenga, A. T., de Lange, P., de Jong, F. H., and Koper, J. W. (1996). Clinical aspects of glucocorticoid sensitivity. Steroids. 61, 157-60. Lonez ,C., Vandenbranden, M., and Ruysschaert, J.M. (2012). Cationic lipids activate intracellular signaling pathways. Adv. Drug Deliv. Rev. 64, 1749-1758. Leon-Ponte, M, Kirchhof, M.G., Sun, T., Stephens, T., Singh, B., Sandhu, S., and Madrenas, J. (2005). Polycationic lipids inhibit the pro-inflammatory response to LPS. Immunol Lett. 96, 73-83. Martin, B., Sainlos, M., Aissaoui, A., Oudrhiri, N., Hauchecorne, M., Vigneron, J.M., Lehn, J.P., and Lehn, P. (2005). The design of cationic lipids for gene delivery. Curr. Pharm. 11, 375–394. McKay, L.I., and Cidlowski, J.A. (1999). Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr. Rev. 20, 435-59. Mikasa, K., Kita, E., Sawaki, M., Kunimatsu, M., Hamada, K., Konishi, M., Kashiba, S., Narita, N. (1992). The anti-inflammatory effect of erythromycin in zymosan-induced peritonitis of mice. J. Antimicrob. Chemother. 30, 339-348. Ming, W. J., Bersani, L., and Mantovani, A. (1987). Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J. Immunol. 138, 1469–1474. Mishra, D., Hubenak, J. R., and Mathur, A. B. (2013). Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J. Biomed. Mater. Res. Part A. 101, 3646-3660. Monteiro, N., Martins1, A., Ribeiro1, D., Faria, S., Fonseca, N.A., Moreira, J.N., Reis1, R.L., and Neves, N.M. (2013). On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. DOI: 10.1002/term Montier, T., Benvegnu, T., Jaffres, P.A., Yaouanc, J.J., and Lehn, P. (2008). Progress in cationic lipid-mediated gene transfection: a series of bio-inspired lipids as an example. Curr. Gene Ther. 8, 296–312. Nagaich, A.K., Rayasam, G.V., Martinez, E.D., Becker, M., Qiu, Y., Johnson, T.A., Elbi, C., Fletcher, T.M., John, S., and Hager, G.L. (2004). Subnuclear trafficking and gene targeting by steroid receptors. Ann. N. Y. Acad. Sci. 1024, 213-20. Ouali, M., Ruysschaert, J.M., Lonez, C., and Vandenbranden, M. (2007). Cationic lipids involved in gene transfer mobilize intracellular calcium. Mol. Membr. Biol. 24, 225-232. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., and Aderem. A. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. 97, 13766-13771. Quan, L., Zhang, Y., Crielaard, B.J., Dusad, A., Lele, S.M., Rijcken, C.J., Metselaar, J.M., Kostkova, H., Etrych, T., Ulbrich, K., Kiessling, F., Mikuls, T.R., Hennink, W.E., Storm, G., Lammers, T., and Wang, D. (2014). Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS. Nano. 8, 458-466. Ren, R., Oakley, R. H., Cruz-Topete, D., and Cidlowski, J. A. (2012). Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology. 153, 5346-5560. Rhen T., and Cidlowski J. A. (2005). Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N. Engl. J. Med. 16, 1711-23. Sanguedolce, M. V., Capo, C., Bongrand, J., and Mege., J. L. (1992). Zymosanstimulated tumor necrosis factor-production by human monocytes: down-modulation by phorbol ester. J. Immunol. 148, 2229-2236. Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55-89. Saraiya, N.V., and Goldstein, D.A. (2011). Dexamethasone for ocular inflammation. Expert. Opin. Pharmacother. 7, 1127-1131. Sato, M., Sano, H., Iwaki, D., Kudo, K., Konishi, M., Takahashi, H., Takahashi, T., Imaizumi, H., Asai, Y., and Kuroki, Y. (2003). Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. 171, 417-425. Syam, S., Bustamam, A., Abdullah, R., Sukari, M.A., Hashim, N.M., Mohan, S., Looi, C.Y., Wong, W.F., Yahayu, M.A., Abdelwahab, S.I. (2014). β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo. J. Ethnopharmacol. 153, 435-445. Tagami, T., Hirose, K., Barichello, J.M., Ishida, T., and Kiwada, H. (2008). Global gene expression profiling in cultured cells is strongly influenced by treatment with siRNA-cationic liposome complexes. 25, 2497-2504. Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. (1999). Differential roles of TLR2 and TLR4 in recognition of Gramnegative and Gram-positive bacterial cell wall components. Immunity. 11, 443-451. Tanaka, T., Legat, A., Adam, E., Steuve, J., Gatot, J.S., Vandenbranden, M., Ulianov, L., Lonez, C., Ruysschaert, J.M., Muraille, E., Tuynder, M., Goldman, M., and Jacquet, A. (2008). DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like re-ceptor 4. Eur. J. Immunol. 38, 1351–1357. Traynor, T. R., Herring, A. C., Dorf, M. E., Kuziel, W. A., Toews, G. B., and Huffnagle, G. B. (2002). Differential roles of CC chemokine ligand 2/monocyte chemotactic protein-1 and CCR2 in the development of T1 immunity. J. Immunol. 168, 4659-4666. Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M., and Aderem, A. (1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. 401, 811-815. Urbańska, J., Karewicz, A., and Nowakowska, M. (2014). Polymeric delivery systems for dexamethasone. J. Life Sci. 96, 1-6. Vangasseri, D. P., Cui, Z., Chen, W., Hokey, D. A., Falo Jr., L. D., and Huang, L. (2006). Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol. 23, 385–395. White, G. E., Iqbal, A. J., and Greaves, D. R. (2013). CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol. Rev. 65, 47-89. Wilmar, A., Lonez, C., Vermeersch, M., Andrianne, M., Perez-Morga, D., Ruysschaert, J. M., Vandenbranden, M., Leo, O., and Temmerman, S. T., (2012). The cationic lipid, diC14 amidine, extends the adjuvant properties of aluminum salts through a TLR-4- and caspase-1-independent mechanism. Vaccine 30, 414–424. Yan, W., Chen, W., and Huang, L. (2007). Mechanism of adjuvant activity of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Mol. Immunol. 44, 3672-3681. Yan, W., Chen, W., and Huang, L. (2008). Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J. Control. Release 130, 22-28. Young, S. H., Ye, J., Frazer, D. G., Shi, X., and Castranova, V. (2001). Molecular mechanism of tumor necrosis- production in 1→3-β-glucans (zymosan)-activated macrophages. J. Biol. Chem. 276, 20781-20787. Zhang, L. Li, Y., Zhang, C., Wang, Y., and Song, C. (2009). Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int. J. Nanomedicine 4, 175-183. Zhang, S., Xu, Y., Wang, B., Qiao, W., Liu, D., and Li, Z. (2004). Cationiccompounds usedinlipoplexes and polyplexes for gene delivery. J. Control. Release 100, 165–180. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55847 | - |
| dc.description.abstract | Dexamethasone為一種合成的類葡萄糖皮質素 (Glucocorticoid),在臨床上,dexamethasone具有抗發炎、治療自體免疫病 (autoimmune disease) 或是治療血癌,甚至是改善術後症狀。但是在治療上,長期使用這類藥物會產生代謝上異常以及高血壓 (hypertension)、血脂異常 (dyslipidaemia)等副作用,如何達到療效且降低劑量和副作用即成為了問題。先前文獻指出,奈米粒子包覆dexamethasone後,具有保護藥物和促進藥物功能的效用,且奈米脂微粒本身具有生物相容性高、低毒性和在攜帶藥物達到效用後,能被生物體代謝的優點。
本實驗利用膽固醇構造的脂質GCC包覆dexamethasone,確定粒徑和均質度最佳的莫耳比例 (1 : 1 : 1) 後,以HPLC分析GCC_Dex的包覆率,其值約為68 %。分析脂多醣 (lipopolysaccharide, LPS) (100 ng/ml) 和酵母多醣 (zymosan) (25 μg/ml) 刺激Raw 264.7細胞在不同時間點的TNF-α和MCP-1濃度,結果為兩者刺激的分泌量相近。在降低Raw 264.7細胞分泌發炎因子TNF-α和MCP-1的實驗中,當LPS和zymosan先處理Raw 264.7細胞2小時,以PBS洗滌後,再以GCC、dexamethasone和GCC_Dex處理細胞22小時,結果顯示GCC本身並無降低TNF-α和MCP-1分泌量的效果,其中LPS處理的組別中,GCC_Dex相對於dexamethasone的處理,減少了約20 % (TNF-α) 和25 % (MCP-1) 的分泌量。而在zymosan處理的組別中,則減少了約30 % (TNF-α) 和 25 % (MCP-1) 的分泌量。另一方面,當GCC、dexamethasone和GCC_Dex先處理Raw 264.7細胞1小時,以PBS洗滌後,LPS和zymosan處理細胞4小時,再以PBS洗滌,繼續培養至第24小時,結果顯示GCC、dexamethasone和GCC_Dex處理的組別其TNF-α和MCP-1分泌量並無差異。 本篇初步研究發現將dexamethasone包覆於奈米脂微粒GCC中,可增強dexamethasone降低發炎因子TNF-α和MCP-1分泌量的效果,未來配合其他修飾延長在體內時間和釋放時間,有希望應用於長期治療疾病,降低劑量和副作用。 | zh_TW |
| dc.description.abstract | Dexamethasone is a synthetic glucocorticoid. On clinical application, dexamethasone with the properties of anti-inflammation could treat autoimmune diseases. It also could be chemotherapeutic drugs to treat leukemia. But long-term usages of dexamethasone often produce the side effects such as metabolism dysfunction, hypertension or dyslipidaemia. How to achieve the effective goal and reduce the dose and side effects is a problem. According to the reference, encapsulation of dexamethasone into nanoparticles could improve the effects on anti-inflammation and lipid nanoparticles possess the advantages of high biocompatible and low toxicity.
In this study, dexamethasone was encapsulated into cholesterol-based nanoparticle GCC and the optimal ratio of GEC-cholesterol : cholesterol : dexamethasone was 1 : 1 : 1. The encapsulation efficiency (EE %) was measured by HPLC and the value was approximately 68 %. In the pro-inflammatory factors secretion experiment, the TNF-α and MCP-1 secretion of Raw 264.7 cells treated with LPS or zymosan showed similar results. Raw 264.7 cells treated with LPS followed by GCC did not reduce the TNF-α and MCP-1 secretion compared to LPS treatment but GCC_Dex reduced the TNF-α (approximately 20 %) and MCP-1 (approximately 30 %) secretion compared to dexamethasone treatment. Resemblance to LPS, Raw 264.7 cells treated with zymosan followed by GCC did not reduce the TNF-α and MCP-1 secretion compared to zymosan treatment alone but GCC_Dex approximately reduced the TNF-α (30 %) and MCP-1 (25 %) secretion, compared to dexamethasone treatment. These findings showed that encapsulation dexamethasone into lipid nanoparticles could reduce TNF-α and MCP-1 secretion. With chemical modification of nanoparticles in the future to prolong the circulation time in blood and drug release time will have the potential on long-term disease control with lower dosage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:09:26Z (GMT). No. of bitstreams: 1 ntu-103-R01442025-1.pdf: 2074051 bytes, checksum: a70059bc039ef64305ddfccbad95dbc0 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝…………………..…………………………………………………………………I 中文摘要…………….…………………………………………………………………II ABSTRACT…………………………………………………………………………...III 第一章 緒論 1.1 多功能奈米藥物傳遞系統………………………………………………....…..1 1.2 葡萄糖皮質素 (Glucocorticoid) ……………………………...………………..1 1.3 Dexamethasone…………………………………………………………….…...2 1.3.1 脂多醣和酵母多醣促發的發炎反應…………………………..………….3 1.4 葡萄糖皮質素與抗發炎…………..………………….………………..……….5 1.5 Dexamethasone與奈米粒子……………………....……………………...…....7 1.6 研究動機與目的…………………………………..…………………….……...8 第二章 實驗材料與方法 2.1 實驗材料 2.1.1 細胞株 ……………………………………………………………………9 2.1.2 氧化鐵奈米粒子……...……………………………………………………9 2.1.3 脂質.............……………..…………………………………………………9 2.1.4 藥品與試劑……………..………………………………………….......... 10 2.1.5 溶液.............................................................................................................10 2.1.6 儀器.............................................................................................................10 2.2 實驗方法 2.2.1 奈米脂微粒製備.........................................................................................12 2.2.2 奈米脂微粒粒徑大小及表面電位之分析.................................................13 2.2.3 Dexamethasone在奈米脂微粒中的包覆率...............................................13 2.2.4 以雷射共軛焦顯微鏡觀察Raw 264.7細胞吞GCC_Dex.......................14 2.2.5 LPS或zymosan以及奈米脂微粒對於Raw 264.7細胞的毒性.............15 2.2.6 GCC和GCC_Dex對於Raw 264.7細胞的TNF-α和MCP-1分泌濃度的 影響............................................................................................................15 第三章 實驗結果 3.1 GCC和GCC_Dex奈米脂微粒之粒徑、均質度和表面電荷分析……………17 3.2 GCC_Dex的 dexamethasone包覆率和脂質承載率分析…………...........….17 3.3 Raw264.7細胞攝入GCC_Dex 之影像紀錄……………...…………….........18 3.4 奈米脂微粒、LPS和zymosan對於Raw 264.7細胞毒性評估……………..18 3.5 LPS和zymosan處理Raw 264.7後,不同時間點的TNF-α和MCP-1分泌 量分析………………………………………………………………………...19 3.6 以奈米脂微粒、dexamethasone和LPS同時處理Raw 264.7細胞,對TNF-α 和MCP-1的分泌濃度之影響………………………………………….…….19 3.7 以奈米脂微粒和dexamethasone與LPS或zymosan分別處理Raw 264.7細 胞,對TNF-α和MCP-1分泌濃度的影響………………………………….20 第四章 討論 4.1 GCC與GCC_Dex 奈米脂微粒物性之分析比較…………………………....22 4.2 奈米脂微粒與LPS或zymosan同時處理Raw 264.7細胞之探討…………..24 4.3 奈米脂微粒與LPS或zymosan分別處理Raw 264.7細胞之探討…………..27 第五章 圖表與說明 表一、不同組成奈米脂微粒之物性分析………………………………………......31 圖一、以脂多醣 (LPS) 和酵母多醣 (zymosan) 處理Raw 264.7細胞後,不同時 間點TNF-α和MCP-1分泌濃度………………………..………………….32 圖二、先以脂多醣 (LPS) 或酵母多醣 (zymosan) 處理Raw264.7細胞,再以奈 米脂微粒和Dex處理,觀察TNF-α和MCP-1分泌濃度差異…………..34 圖三、先以奈米脂微粒和Dex處理Raw264.7細胞,再以脂多醣 (LPS) 或酵母 多醣 (zymosan) 處理,觀察TNF-α和MCP-1分泌濃度差異…………36 第六章 參考文獻……………………………………………………………………...38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 脂質奈米粒子 | zh_TW |
| dc.subject | dexamethasone | zh_TW |
| dc.subject | Raw 264.7 | zh_TW |
| dc.subject | MCP-1 | zh_TW |
| dc.subject | TNF-α | zh_TW |
| dc.subject | dexamethasone | en |
| dc.subject | lipid nanoparticle | en |
| dc.subject | Raw 264.7 | en |
| dc.subject | MCP-1 | en |
| dc.subject | TNF-α | en |
| dc.title | 奈米脂微粒包覆Dexamethasone對Raw 264.7細胞之影響 | zh_TW |
| dc.title | Effects of dexamethasone-encapsulated lipid nanoparticles in Raw 264.7 cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謬希椿,梁碧惠,林文澧,張明富 | |
| dc.subject.keyword | 脂質奈米粒子,dexamethasone,Raw 264.7,MCP-1,TNF-α, | zh_TW |
| dc.subject.keyword | lipid nanoparticle,dexamethasone,Raw 264.7,MCP-1,TNF-α, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
