Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55846
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周涵怡(Han-Yi Chou)
dc.contributor.authorPei-Han Taien
dc.contributor.author戴珮涵zh_TW
dc.date.accessioned2021-06-16T05:09:25Z-
dc.date.available2016-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationAndrali SS, Sampley ML, Vanderford NL, Ozcan S (2008) Glucose regulation of insulin gene expression in pancreatic beta-cells. Biochem J 415: 1-10
Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J (2008) Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 295: E1323-1332
Curry DL, Bennett LL, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83: 572-584
Dalle S, Quoyer J, Varin E, Costes S (2011) Roles and regulation of the transcription factor CREB in pancreatic beta -cells. Current molecular pharmacology 4: 187-195
Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J, 3rd, Montminy M (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449: 366-369
Du J, Chen Q, Takemori H, Xu H (2008) SIK2 can be activated by deprivation of nutrition and it inhibits expression of lipogenic genes in adipocytes. Obesity (Silver Spring) 16: 531-538
Fu A, Eberhard CE, Screaton RA (2013) Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 366: 127-134
Gao Z, Young RA, Trucco MM, Greene SR, Hewlett EL, Matschinsky FM, Wolf BA (2002) Protein kinase A translocation and insulin secretion in pancreatic beta-cells: studies with adenylate cyclase toxin from Bordetella pertussis. Biochem J 368: 397-404
Hennige AM, Burks DJ, Ozcan U, Kulkarni RN, Ye J, Park S, Schubert M, Fisher TL, Dow MA, Leshan R, Zakaria M, Mossa-Basha M, White MF (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112: 1521-1532
Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010) Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 23: 809-819
Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun XJ, Yamamoto H, Kasayama S, Muraoka M, Nonaka Y, Okamoto M (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278: 18440-18447
Inada A, Hamamoto Y, Tsuura Y, Miyazaki J, Toyokuni S, Ihara Y, Nagai K, Yamada Y, Bonner-Weir S, Seino Y (2004) Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic beta cells. Mol Cell Biol 24: 2831-2841
Jhala US, Canettieri G, Screaton RA, Kulkarni RN, Krajewski S, Reed J, Walker J, Lin X, White M, Montminy M (2003) cAMP promotes pancreatic beta-cell survival via CREB-mediated induction of IRS2. Genes & development 17: 1575-1580
Katsumata T, Oishi H, Sekiguchi Y, Nagasaki H, Daassi D, Tai PH, Ema M, Kudo T, Takahashi S (2013) Bioluminescence imaging of beta cells and intrahepatic insulin gene activity under normal and pathological conditions. PloS one 8: e60411
Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes & development 15: 111-127
Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, Tsubamoto Y, Komeda K, Nakano R, Miki H, Satoh S, Sekihara H, Sciacchitano S, Lesniak M, Aizawa S, Nagai R, Kimura S, Akanuma Y, Taylor SI, Kadowaki T (2000) Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 49: 1880-1889
Leahy JL, Hirsch IB, Peterson KA, Schneider D (2010) Targeting beta-cell function early in the course of therapy for type 2 diabetes mellitus. J Clin Endocrinol Metab 95: 4206-4216
Li DS, Yuan YH, Tu HJ, Liang QL, Dai LJ (2009) A protocol for islet isolation from mouse pancreas. Nature protocols 4: 1649-1652
Li F, Wang D, Zhou Y, Zhou B, Yang Y, Chen H, Song J (2008) Protein kinase A suppresses the differentiation of 3T3-L1 preadipocytes. Cell research 18: 311-323
Macfarlane WM, McKinnon CM, Felton-Edkins ZA, Cragg H, James RF, Docherty K (1999) Glucose stimulates translocation of the homeodomain transcription factor PDX1 from the cytoplasm to the nucleus in pancreatic beta-cells. J Biol Chem 274: 1011-1016
Macotela Y, Boucher J, Tran TT, Kahn CR (2009) Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes 58: 803-812
Muraoka M, Fukushima A, Viengchareun S, Lombes M, Kishi F, Miyauchi A, Kanematsu M, Doi J, Kajimura J, Nakai R, Uebi T, Okamoto M, Takemori H (2009) Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab 296: E1430-1439
Pouli AE, Emmanouilidou E, Zhao C, Wasmeier C, Hutton JC, Rutter GA (1998) Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera. Biochem J 333 ( Pt 1): 193-199
Rorsman P, Renstrom E (2003) Insulin granule dynamics in pancreatic beta cells. Diabetologia 46: 1029-1045
Sakamaki J, Fu A, Reeks C, Baird S, Depatie C, Al Azzabi M, Bardeesy N, Gingras AC, Yee SP, Screaton RA (2014) Role of the SIK2-p35-PJA2 complex in pancreatic beta-cell functional compensation. Nat Cell Biol 16: 234-244
Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69: 106-119
Sato Y, Henquin JC (1998) The K+-ATP channel-independent pathway of regulation of insulin secretion by glucose: in search of the underlying mechanism. Diabetes 47: 1713-1721
Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR, 3rd, Takemori H, Okamoto M, Montminy M (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119: 61-74
Seino S, Shibasaki T, Minami K (2011) Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 121: 2118-2125
Seino S, Takahashi H, Fujimoto W, Shibasaki T (2009) Roles of cAMP signalling in insulin granule exocytosis. Diabetes Obes Metab 11 Suppl 4: 180-188
Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes/metabolism research and reviews 18: 451-463
Taylor KW (1972) The biosynthesis and secretion of insulin. Clinics in endocrinology and metabolism 1: 601-622
Wang X, Zhou J, Doyle ME, Egan JM (2001) Glucagon-like peptide-1 causes pancreatic duodenal homeobox-1 protein translocation from the cytoplasm to the nucleus of pancreatic beta-cells by a cyclic adenosine monophosphate/protein kinase A-dependent mechanism. Endocrinology 142: 1820-1827
Wang Z, Takemori H, Halder SK, Nonaka Y, Okamoto M (1999) Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett 453: 135-139
Yang FC, Lin YH, Chen WH, Huang JY, Chang HY, Su SH, Wang HT, Chiang CY, Hsu PH, Tsai MD, Tan BC, Lee SC (2013) Interaction between Salt-inducible Kinase 2 (SIK2) and p97/Valosin-containing Protein (VCP) Regulates Endoplasmic Reticulum (ER)-associated Protein Degradation in Mammalian Cells. J Biol Chem 288: 33861-33872
Zhang S, Kim KH (1995) Glucose activation of acetyl-CoA carboxylase in association with insulin secretion in a pancreatic beta-cell line. J Endocrinol 147: 33-41
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55846-
dc.description.abstractSalt-inducible Kinase 2 (SIK2) 是屬於AMPK家族的一員,先前的研究已指出SIK2在維持身體的代謝恆定中扮演很重要的角色。另外,在胰島β cell中,經由血糖的刺激,活化cAMP-PKA後可以調控SIK2而促使與胰島細胞存活相關的基因,IRS2的表現,進而增加胰島β cell細胞的存活率。而先前我們實驗室的研究更發現,SIK2不只表現在細胞質裡,在Rinm5F胰臟癌細胞為模式的研究中,被PKA 磷酸化的SIK2蛋白直接位於胰島素囊泡中。然而SIK2在胰島素囊泡中的功能則尚未釐清。在本實驗裡,我們認為SIK2藉由其磷酸酶活性的調控參與在胰島素囊泡的運送過程。當加抑制劑使SIK2磷酸酶的活性被抑制時,會有較多的胰島素囊泡被運送並且釋放。另外一方面,在生理狀況下的胰島細胞,SIK2是藉由被PKA的磷酸化在Ser-587的位置,而使得其SIK2本身的磷酸酶活性下降。因此,當胰島細胞經由SIK2抑制劑 (compound C),及PKA 活化的促進劑 (glucose)刺激後,會有較高的SIK2-pS587表現伴隨著胰島素分泌的增加。綜合來說,SIK2本身的功能是藉由限制胰島素囊泡的運送而抑制胰島素分泌。
此外,為了瞭解SIK2 對於胰島素分泌的調控,是否具有生理上的價值。我們製造胰島β cell專一性的SIK2基因轉殖鼠。而當這些基因轉殖鼠在正常進食的情況下,年紀到達11周的時候,顯示出了較高的禁食血糖,及較少的胰島素分泌。
當我們直接給與代謝壓力時,20周大的老鼠,餵食12周的高脂食物,則顯示出葡萄糖清除率明顯的降低。這些現象可能都是由於高度表現的SIK2蛋白抑制了胰島素的分泌。我們也發現了胰島我們也發現了胰島 α cell的數量有增加的趨勢,而這則是糖尿病早期的症狀之一。除此之外,在胰島 β cell專一性的SIK2基因轉殖鼠中,我們做了胰島素相關基因的測試,發現與胰島素製造有關的Ins 1基因有顯著的下降。
根據我們的研究結果,當我們在胰島 β cell高度表現SIK2時,會影響正常的血糖恆定。這個研究結果,可能可以提供糖尿病治療一個新的標的,進而改善胰島素分泌的問題。
zh_TW
dc.description.abstractSalt-inducible Kinase 2 (SIK2), is a member of AMPK family, has been reported to play an important role in metabolism and it also regulatesβcell survival by driving IRS-2(insulin receptor substrate 2) gene expression upon glucose stimulation. The SIK2 expression was previously found in not only cytosol but also insulin vesicles; however, the specific function of SIK2 in pancreaticβcells remains unclear. Here we hypothesized that inhibition of SIK2 kinase activity may lead to the insulin vesicle translocation from reserve pool to readily releasable pool. Vesicle dynamic were imaged in single pancreatic RINm5F cells by total internal reflection fluorescence microscope. Inactivation of SIK2 kinase by treated relatively inhibitor, compound C, resulted in unconstrained reserved pool insulin vesicle mobilization and concomitant increase in insulin release. On the other hand, SIK2 kinase activity is physically inhibited while phosphorylation at Ser-587 by cAMP-PKA in pancreaticβcells. An hour treatment of 0.3 uM compound C or 16.7 mM glucose stimulation made isolated islets increase insulin secretion and higher SIK2-pS587 expression. Therefore, we concluded that SIK2 kinase activity is critical for forbidding insulin secretion through restricting their vesicle movement.
Furthermore, for examine the physiological relevance of SIK2 in pancreatic βcells, the β cell-specific sik2 transgenic mice were generated by using bacterial artificial chromosomes (BACs) system. Glucose-stimulated insulin secretion test from 11-week-old transgenic mice fed with regular diet showed higher fasting blood glucose and lower insulin secretion compared to control. Moreover, under metabolic stress, 20-week-old transgenic mice had been fed with high fat diet for 12 week showed significant decreased in glucose clearance rate. This phenotype might result from suppression of insulin vesicle transportation by over-expressed SIK2 protein. The slightly increasedα cells, which was the phenomenon in early stage of diabetes was also observed. The gene expression profile was examined by real-time PCR, and over-expression of sik2 inβcell resulted in down-regulated Ins1 mRNA level. We speculated that this may result from an inhibitory effect on the CREB activity by over-expression of sik2. Above phenotypes indicated that theβcell specific sik2 transgenic mice might have the tendency for development abnormal glucose homeostasis. Taken together, our results uncovered a novel function of SIK2 in the regulation of insulin secretion inβ-cells via insulin transcription and insulin vesicle transportation. These findings suggested that SIK2 is an attractive target for developing new strategies for diabetes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:09:25Z (GMT). No. of bitstreams: 1
ntu-103-R00450005-1.pdf: 4044914 bytes, checksum: 5f3a70b31e47d43175fc4c7c2a868e52 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 1
ACKNOWLEDGMENTS 2
中文摘要 3
ABSTRACT 5
CONTENTS 7
Chapter 1 Introductions
1.1 Diabetes Mellitus 10
1.2 Regulation of insulin secretion 11
1.2.1.Insulin synthesis. 11
1.2.2 Insulin is secreted in a biphasic pattern 12
1.2.3 Mechanisms involved in first phase (triggering pathway) 13
1.2.4 Mechanisms involved in second phase (amplifying pathway) 13
1.3 PKA function in pancreatic β cell 14
1.4 Salt-inducible kinase (SIK) 15
1.4.1 The expression of SIK2 protein in pancreatic β cells. 17
Chapter 2 Specific Aim 19
Chapter 3 Material and Method
3.1 Generation of transgenic mice 20
3.2 DNA extraction from mouse tail to genotyping 21
3.3 Immunohistochemistry 21
3.4 Western blot analysis 22
3.5 Immunofluorescence staining 23
3.6 Isolation of pancreatic islets 25
3.7 Reverse transcriptase PCR and real-time PCR 26
3.8 Cell culture and treatment 26
3.9 High fat diet 27
3.10Glucose Stimulated Insulin Secretion 27
3.11Fasting blood glucose detection 28
3.12 TIRF Microscopy and living image 28
3.13 Statistical analysis 29
Chapter 4 Results
4.1 SIK2 was expressed in murine pancreatic islets 30
4.2 SIK2 regulated the processes of insulin secretion through its kinase activity in vitro 31
4.3 SIK2 altered the dynamics of insulin vesicle transportation 33
4.4 SIK2 pS587 co-localized with insulin containing vesicles in pancreatic islet cell upon glucose stimulation 35
4.5 Inhibition of SIK2 kinase activity promotes insulin secretion 36
4.6 Highly expression of SIK2-pS587 related to increased insulin secretion. 37
4.7 Generation of β cell specific sik2 transgenic mice 38
4.8 Over-expression of sik2 gene in pancreatic β cell showed the tendency of higher fasting blood glucose in female mice. 39
4.9 The decrease of glucose clearance rate in Ins-sik2 BAC transgenic on HFD treatment 40
4.10 Over-expression of sik2 gene inβcells down-regulated Ins1 mRNA level 41
Chapter 5 Discussion
5.1 The mechanism of SIK2 regulate insulin transcription 44
5.2 SIK2 may involve in the balance of insulin vesicle dynamic inβcells 45
5.3 SIK2 plays a functional role to response several stresses in cells 46
5.4 PP2A may play a potential role of dephosphorylation of SIK2 protein 47
5.5 Role of SIK2 in insulin secretion……………………………………………… 48
5.6 Future perspectives SIK2 regulation in clinical applications 49
Chapter6 Conclusion 50
Chapter7 Reference 51
Chapter8 Figures, Appendix and Table 56
dc.language.isoen
dc.subjectSIK2zh_TW
dc.subject磷酸?活性zh_TW
dc.subject胰島素囊泡zh_TW
dc.subject運送zh_TW
dc.subject禁食血糖zh_TW
dc.subjectSIK2en
dc.subjectHFDen
dc.subjecttranslocationen
dc.subjectinsulin vesicleen
dc.subjectglucose clearanceen
dc.titleSIK2 調控胰島素產量之動態平衡zh_TW
dc.titleSIK2 controls dynamics of insulin production in pancreatic β cellsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor高橋 智(Satoru Takahashi)
dc.contributor.oralexamcommittee鄭永銘(Yung-Ming Jeng),李財坤(Tsai-Kun Li)
dc.subject.keywordSIK2,磷酸?活性,胰島素囊泡,運送,禁食血糖,zh_TW
dc.subject.keywordSIK2,HFD,translocation,insulin vesicle,glucose clearance,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2014-08-19
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved