請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55822完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為(Chee Wee Liu) | |
| dc.contributor.author | Kun-Jing Chung | en |
| dc.contributor.author | 鍾昆璟 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:09:01Z | - |
| dc.date.available | 2019-09-02 | |
| dc.date.copyright | 2014-09-02 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | [1] C. Breyer and A. Gerlach, 'Global overview on grid-parity,' Prog. Photovolt:
Res. Appl, p. doi: 10.1002/pip.1254, 2012. [2] S. W. Glunz, 'High-Efficiency Crystalline Silicon Solar Cells,' Advances in OptoElectronics, vol. 2007, p. 15, 2007. [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, 'Solar cell efficiency tables (version 43),' Prog. Photovolt: Res. Appl., vol. 22, 2014. [4] J. Zhao, A. Wang, and M. A. Green, '19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,' APPLIED PHYSICS LETTERS, vol. 73, 1998. [5] K. T, F. D, O. A. Yano A, Tohoda, M. K, N. Y, et al., 'The approaches for high efficiency HIT solar cell with very thin (<100mm) silicon wafer over 23%,' presented at the Proceedings, 26th European Photovoltaic Solar Energy Conference, Hamburg, 2011. [6] D. Macdonald and L. J. Geerligs, 'Recombination activity of interstitial iron and other transition metal point defects in p - and n -type crystalline silicon,' Applied Physics Letters, vol. 85, 2004. [7] J. Schmidt and K. Bothe, 'Structure and transformation of the metastable boronand oxygen-related defect center in crystalline silicon,' Phys. Rev. B, vol. 69, 2004. [8] S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, 'Minority carrier lifetime degradation in boron-doped Czochralski silicon,' Journal of Applied Physics, vol. 90, 2001. [9] A. G. Aberle, Crystalline silicon solar cells : advanced surface passivation and 59 analysis. Sydney, 1999. [10] R. R. King, R. A. Sinton, and R. M. Swanson, 'Doped surface in one sun, point contact solar cells,' Appl. Phys. Lett., vol. 54, pp. 1460-1462, 1989. [11] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, '22.8% Efficient Silicon Solar Cells,' Appl. Phys. Lett., vol. 55, pp. 1363-1365, 1989. [12] R. Castagn’e and A. Vapaille, 'Description of the SiO2 -Si interface properties by means of very low frequency MOS capacitance measurements,' Surf. Sci., vol. 28, pp. 157-193, 1971. [13] D. A. Neamen, SEMICONDUCTOR PHYSICS AND DEVICES, 2003. [14] K. Mallik, R. J. Falster, and P. R. Wilshaw, 'Schottky diode back contacts for high frequency capacitance studies on semiconductors,' Solid-State Electronics, vol. 48, pp. 231-238, 2004. [15] G. Agostinelli, P. Vitanov, Z. Alexieva, A. Harizanova, H. Dekkers, S. D. Wolf, et al., 'Surface passivation of silicon by means of negative charge dielectrics,' Proceedings of the 19th European Photovoltaic Solar Energy Conference, p. 132, 2004. [16] B. Hoex, J. J. H. Gielis, M. C. M. v. d. Sanden, and W. M. M. Kessels, 'On the c-Si surface passivation mechanism by the negative-chargedielectric Al2O3,' J. Appl. Phys, vol. 104, 2008. [17] B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. v. d. Sanden, and W. M. M. Kessels, 'Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3,' APPLIED PHYSICS LETTERS, vol. 89, 2006. [18] J. M. Rafı, M. Zabala, O. Beldarrain, and F. Campabadal, 'Deposition Temperature and Thermal Annealing Effects on the Electrical Characteristics of 60 Atomic Layer Deposited Al2O3 Films on Silicon,' Journal of The Electrochemical Society, vol. 158, pp. 108-114, 2011. [19] S. Mack, A. Wolf, C. Brosinsky, S. Schmeisser, A. Kimmerle, P. Saint-Cast, et al., 'Silicon Surface Passivation by Thin Thermal Oxide/PECVD Layer Stack Systems,' IEEE JOURNAL OF PHOTOVOLTAICS, vol. 1, pp. 135-145, 2011. [20] R. A. Sinton and A. Cuevas, 'Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data,' Applied physics letters, vol. 69, p. 2510, 1996. [21] W. Kern, 'The Evolution of Silicon Wafer Cleaning Technology,' Journal of the Electrochemical Society, vol. 137 pp. 1887–1892, 1990. [22] M. A. Green, Solar Cells-Operating Principles, Tecjnology and System Applications. [23] R. Hezel and K. Jaeger, 'Low-Temperature Surface Passivation of Silicon for Solar Cells,' J. Electrochem. Soc., vol. Vol. 136, 1989. [24] J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology Fundamentals, Practice and Modeling: Prentice Hall Upper Saddle River NJ, 2000. [25] A. A. G, Crystalline Silicon Solar Cells—Advanced Surface Passivation and Analysis, 1999. [26] A. A. G and H. R, Prog. Photovolt., vol. 5, 1997. [27] L. o. P. Leguijt C, Eikelboom J A, Weeber A W, Schuurmans F M, Sinke W C, Alkemade P F A, Sarro P M, Maree C H M and Verhoef L A, Solar Energy Mater. Solar Cells, vol. 40, 1996. [28] A. O. P, J. S. C, P. J, S. J, B. G, N. J, et al., Semicond. Sci. Technol., vol. 15, 61 2000. [29] S. J, L. T, A. A. G, and H. R, presented at the Proc. 25th IEEE Photovoltaic Specialists Conf., Washington, DC, 1996. [30] L. T. Lenkeit B, Aberle A G and Hezel R, presented at the Proc. 2nd World Conf. on Photovoltaic Solar Energy Conversion, Vienna, 1998. [31] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, '22.8% efficient silicon solar cell,' Appl. Phys. Lett., vol. 55, 1989. [32] J. Wu, Y. Liu, X. Wang, and L. Zhang, 'Application of ion Implantation Emitter in PERC Solar Cells,' IEEE JOURNAL OF PHOTOVOLTAICS, vol. 4, 2014. [33] A. Wolf, S. Mack, C. Brosinsky, M. Hofmann, P. Saint-Cast, and D. Biro, 'IMPACT OF THIN INTERMEDIATE THERMAL OXIDE FILMS ON THE PROPERTIES OF PECVD PASSIVATION LAYER SYSTEMS ' presented at the Photovoltaic Specialists Conference (PVSC), Seattle, WA, 2011. [34] P. PAPET, O. NICHIPORUK, A. FAVE, A. KAMINSKI, B. BAZER-BACHI, and M. LEMITI, 'TMAH texturisation and etching of interdigitated back-contact solar cells,' Materials Science-Poland, vol. 24, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55822 | - |
| dc.description.abstract | 在本篇論文中,著重在矽基板太陽能電池表面鈍化層的探討以及研究 n 型矽
基板太陽能電池的光電特性以及設計、製作、量測。為了使矽基太陽能電池達到 市電平衡,太陽能產業界面臨提高轉換效率和降低單位發電成本的挑戰。因此本 篇論文研究方向重視與產業界相容及其應用的廣泛性。 在論文的第二章中,主要探討傳統矽基板太陽能電池的二氧化矽鈍化層。由 於產業界在大量生產太陽能電池時,需要有效地確保鈍化層的品質、均勻度,因 此可藉由電性量測得知鈍化層在不同位置的電容等效厚度、介面缺陷和固定電荷。 第三章中,利用準穩態光電導和光激發光量測分析不同厚度氧化鋁在n 型矽基板 的鈍化效果來因應未來太陽能電池需要有效降低成本和提高效率的趨勢。然而為 了更進一步增進氧化鋁的鈍化效果,在氧化鋁與矽基板接面處利用多種化學溶液 成長介面氧化層分析。而第四章則選擇較長生命週期的n 型矽晶圓作為基板,利 用離子佈值製作出p+n 接面,接著成長介面氧化層和用原子層沉積成長氧化鋁以減 少表面的缺陷復合效應,提高開路電壓。最後將兩層表面做粗糙化結構,增加太 陽能電池的光捕捉能力,以提高短路電流。 | zh_TW |
| dc.description.abstract | In this thesis, the passivation layer of silicon based solar cell is investigated and the
research of the enhancement of n-type silicon based solar cell is also studied. In order to reach grid parity, the solar cell industry must overcome the difficulties such as the improvement of high efficiency and cost down. Thus, the technology of passivation which could increase open voltage (Voc) is more significant. Much attention has been focused on technologies what are compatible with the solar cell industry and possible that they could be widely used. In this work, a capacitance-voltage (C-V) characterization is carried out on SiO2 films deposited by thermal oxidation at different positions in the furnace. Pad sizes of Aluminum in the Metal-Oxide-Semicondutor structure are different that it could make sure the uniformity of the films by the C-V measurement. The optimized thickness of Al2O3 is 24 nm obtained by quasi-steady-state photoconductance (QSSPC) method and photoluminescence (PL) measurement. To further improve surface passivation of Al2O3, the Al2O3 layers are deposited onto wet chemically grown silicon oxide. This work shows that SC1-based chemical oxide as the interfacial layer is the most suitable for Al2O3 passivation. Then, we apply the interfacial layer to fabricate n-type ion implanted solar cells. Next, we texturize both sides of surface for the capability of light trapping in our solar cell. The efficiency of 17% is demonstrated in the work. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:09:01Z (GMT). No. of bitstreams: 1 ntu-103-R01941006-1.pdf: 1108976 bytes, checksum: eae6bc12b1baab4b706c7c58e88b5123 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 ...........................................................................................................#
Acknowledgement ..............................................................................................................i 摘要 .............................................................................................................................. ii ABSTRACT .................................................................................................................... iii LIST OF FIGURES ........................................................................................................... v LIST OF TABLES ............................................................................................................ix CONTENTS ...................................................................................................................... 1 Chapter 1 Introduction .............................................................................................. 3 1.1 Background and Motivation ........................................................................... 3 1.2 Organization ................................................................................................... 4 Chapter 2 Investigation of Dielectric Passivation on Si solar cells ........................ 6 2.1 Introduction .................................................................................................... 6 2.2 Al/SiO2/Si/Al devices for C-V measurement ................................................. 7 2.3 Results and discussion of Metal-Oxide-Silicon Structure ............................ 10 2.3.1 Schottky back contact and the issue of pad size ................................. 10 2.3.2 Furnace position .................................................................................. 16 2.4 Conclusion .................................................................................................... 20 Chapter 3 Characterization of Al2O3 Passivation Layer for Si solar Cells by QSSPC and PL ....................................................................................... 21 3.1 Introduction .................................................................................................. 21 3.2 Experiment details ........................................................................................ 22 3.2.1 Al2O3 optimized thickness .................................................................. 23 2 3.2.2 Interfacial chemically passivated layer ............................................... 24 3.3 Results and discussion .................................................................................. 26 3.3.1 Al2O3 optimized thickness .................................................................. 26 3.3.2 Interfacial chemically passivated layer ............................................... 30 3.4 Conclusion .................................................................................................... 35 Chapter 4 Double Surface Texture on N-type Silicon Ion Implanted Solar Cells36 4.1 Introduction .................................................................................................. 36 4.2 Fabrication of planar n-Si solar cells using SiNx as rear passivation and dielectric mirror ............................................................................................ 37 4.3 Fabrication of planar Si solar cells using SiNx/Al2O3 as rear passivation and dielectric mirror ............................................................................................ 44 4.4 Fabrication of double texture N-type monocrystalline Si solar cells ........... 49 4.5 Conclusion .................................................................................................... 54 Chapter 5 Summary and Future Work .................................................................. 55 5.1 Summary ....................................................................................................... 55 5.2 Future Work .................................................................................................. 57 REFERENCE .................................................................................................................. 58 | |
| dc.language.iso | en | |
| dc.subject | 介面氧化層 | zh_TW |
| dc.subject | 鈍化層 | zh_TW |
| dc.subject | 離子佈值 | zh_TW |
| dc.subject | n 型矽基 | zh_TW |
| dc.subject | 太陽電池 | zh_TW |
| dc.subject | 表面紋理 | zh_TW |
| dc.subject | passivation | en |
| dc.subject | ion implanted solar cell | en |
| dc.subject | n-type silicon based | en |
| dc.subject | texture | en |
| dc.subject | interfacial layer | en |
| dc.title | N型離子佈植矽基太陽能電池研究 | zh_TW |
| dc.title | The Study of N-type Ion Implanted Si Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張正陽(Jeng-Yang Chang),李敏鴻(Min-Hung Lee),林中一(Chung-Yi Lin) | |
| dc.subject.keyword | 鈍化層,離子佈值,n 型矽基,太陽電池,表面紋理,介面氧化層, | zh_TW |
| dc.subject.keyword | passivation,ion implanted solar cell,n-type silicon based,texture,interfacial layer, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
