請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑華(Shu-Wha Lin) | |
| dc.contributor.author | Chien-Yu Lin | en |
| dc.contributor.author | 林建宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:08:59Z | - |
| dc.date.available | 2019-10-09 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | 1. Mitch, W.E. and A.L. Goldberg, Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. N Engl J Med, 1996. 335(25): p. 1897-905.
2. Dunn, W.A., Jr., Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol, 1994. 4(4): p. 139-43. 3. Seglen, P.O. and P. Bohley, Autophagy and other vacuolar protein degradation mechanisms. Experientia, 1992. 48(2): p. 158-72. 4. Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 2005. 6(1): p. 79-87. 5. Rock, K.L., et al., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell, 1994. 78(5): p. 761-71. 6. Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001. 70: p. 503-33. 7. Molineaux, S.M., Molecular pathways: targeting proteasomal protein degradation in cancer. Clin Cancer Res, 2012. 18(1): p. 15-20. 8. Cvek, B. and Z. Dvorak, The ubiquitin-proteasome system (UPS) and the mechanism of action of bortezomib. Curr Pharm Des, 2011. 17(15): p. 1483-99. 9. Nakayama, K.I. and K. Nakayama, Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer, 2006. 6(5): p. 369-81. 10. Goldberg, A.L., Development of proteasome inhibitors as research tools and cancer drugs. J Cell Biol, 2012. 199(4): p. 583-8. 11. Coux, O., K. Tanaka, and A.L. Goldberg, Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem, 1996. 65: p. 801-47. 12. Voges, D., P. Zwickl, and W. Baumeister, The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 1999. 68: p. 1015-68. 13. Petroski, M.D. and R.J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005. 6(1): p. 9-20. 14. Iwai, K., Diverse ubiquitin signaling in NF-kappaB activation. Trends Cell Biol, 2012. 22(7): p. 355-64. 15. Jackson, S. and Y. Xiong, CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci, 2009. 34(11): p. 562-70. 16. Sarikas, A., T. Hartmann, and Z.Q. Pan, The cullin protein family. Genome Biol, 2011. 12(4): p. 220. 17. Ohta, T., et al., ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell, 1999. 3(4): p. 535-41. 18. Tyers, M. and P. Jorgensen, Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev, 2000. 10(1): p. 54-64. 19. Bosu, D.R. and E.T. Kipreos, Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div, 2008. 3: p. 7. 20. Kipreos, E.T., et al., cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell, 1996. 85(6): p. 829-39. 21. Zou, Y., et al., Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem, 2009. 284(48): p. 33320-32. 22. Chen, C.Y., et al., Rescue of the genetically engineered Cul4b mutant mouse as a potential model for human X-linked mental retardation. Hum Mol Genet, 2012. 21(19): p. 4270-85. 23. Higa, L.A. and H. Zhang, Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div, 2007. 2: p. 5. 24. Angers, S., et al., Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature, 2006. 443(7111): p. 590-3. 25. Higa, L.A., et al., CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 2006. 8(11): p. 1277-83. 26. He, Y.J., et al., DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev, 2006. 20(21): p. 2949-54. 27. Jin, J., et al., A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell, 2006. 23(5): p. 709-21. 28. Leung-Pineda, V., J. Huh, and H. Piwnica-Worms, DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res, 2009. 69(6): p. 2630-7. 29. Ohtake, F., et al., Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature, 2007. 446(7135): p. 562-6. 30. Kerzendorfer, C., et al., Mutations in Cullin 4B result in a human syndrome associated with increased camptothecin-induced topoisomerase I-dependent DNA breaks. Hum Mol Genet, 2010. 19(7): p. 1324-34. 31. Li, X., et al., Cullin 4B protein ubiquitin ligase targets peroxiredoxin III for degradation. J Biol Chem, 2011. 286(37): p. 32344-54. 32. Nakagawa, T. and Y. Xiong, X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell, 2011. 43(3): p. 381-91. 33. Dealy, M.J., et al., Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet, 1999. 23(2): p. 245-8. 34. Singer, J.D., et al., Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev, 1999. 13(18): p. 2375-87. 35. Arai, T., et al., Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proc Natl Acad Sci U S A, 2003. 100(17): p. 9855-60. 36. Liu, L., et al., CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell, 2009. 34(4): p. 451-60. 37. Kopanja, D., et al., Cul4A is essential for spermatogenesis and male fertility. Dev Biol, 2011. 352(2): p. 278-87. 38. Yin, Y., et al., The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol, 2011. 356(1): p. 51-62. 39. Kopanja, D., et al., Proliferation defects and genome instability in cells lacking Cul4A. Oncogene, 2009. 28(26): p. 2456-65. 40. Tarpey, P.S., et al., Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet, 2007. 80(2): p. 345-52. 41. Zou, Y., et al., Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet, 2007. 80(3): p. 561-6. 42. Badura-Stronka, M., et al., A novel nonsense mutation in CUL4B gene in three brothers with X-linked mental retardation syndrome. Clin Genet, 2010. 77(2): p. 141-4. 43. Isidor, B., et al., Deletion of the CUL4B gene in a boy with mental retardation, minor facial anomalies, short stature, hypogonadism, and ataxia. Am J Med Genet A, 2010. 152A(1): p. 175-80. 44. Ravn, K., et al., Deletion of CUL4B leads to concordant phenotype in a monozygotic twin pair. Clin Genet, 2011. 45. De Kretser, D.M. and H.W. Baker, Infertility in men: recent advances and continuing controversies. J Clin Endocrinol Metab, 1999. 84(10): p. 3443-50. 46. Matzuk, M.M. and D.J. Lamb, Genetic dissection of mammalian fertility pathways. Nat Cell Biol, 2002. 4 Suppl: p. s41-9. 47. Braun, R.E., Post-transcriptional control of gene expression during spermatogenesis. Semin Cell Dev Biol, 1998. 9(4): p. 483-9. 48. Okabe, M., M. Ikawa, and J. Ashkenas, Male infertility and the genetics of spermatogenesis. Am J Hum Genet, 1998. 62(6): p. 1274-81. 49. Escalier, D., Impact of genetic engineering on the understanding of spermatogenesis. Hum Reprod Update, 2001. 7(2): p. 191-210. 50. Toshimori, K., et al., Impairment of spermatogenesis leading to infertility. Anat Sci Int, 2004. 79(3): p. 101-11. 51. Cooke, H.J. and P.T. Saunders, Mouse models of male infertility. Nat Rev Genet, 2002. 3(10): p. 790-801. 52. Yomogida, K., et al., Developmental stage- and spermatogenic cycle-specific expression of transcription factor GATA-1 in mouse Sertoli cells. Development, 1994. 120(7): p. 1759-66. 53. Kyronlahti, A., et al., GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol, 2011. 333(1): p. 85-95. 54. Lesch, B.J. and D.C. Page, Genetics of germ cell development. Nat Rev Genet, 2012. 13(11): p. 781-94. 55. Buaas, F.W., et al., Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet, 2004. 36(6): p. 647-52. 56. Costoya, J.A., et al., Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet, 2004. 36(6): p. 653-9. 57. Payne, C. and R.E. Braun, Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol, 2006. 293(2): p. 461-72. 58. Schmekel, K., et al., Organization of SCP1 protein molecules within synaptonemal complexes of the rat. Exp Cell Res, 1996. 226(1): p. 20-30. 59. Di Carlo, A.D., G. Travia, and M. De Felici, The meiotic specific synaptonemal complex protein SCP3 is expressed by female and male primordial germ cells of the mouse embryo. Int J Dev Biol, 2000. 44(2): p. 241-4. 60. Yuan, L., et al., The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell, 2000. 5(1): p. 73-83. 61. Arya, M. and T. Vanha-Perttula, Comparison of lectin-staining pattern in testis and epididymis of gerbil, guinea pig, mouse, and nutria. Am J Anat, 1986. 175(4): p. 449-69. 62. Lin, Y.N., et al., Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol, 2007. 27(19): p. 6794-805. 63. Russell, L.D., Histological and histopathological evaluation of the testis. 1st ed. 1990, Clearwater, Fl: Cache River Press. xiv, 286 p. 64. Jan, S.Z., et al., Molecular control of rodent spermatogenesis. Biochim Biophys Acta, 2012. 1822(12): p. 1838-50. 65. Kimmins, S. and P. Sassone-Corsi, Chromatin remodelling and epigenetic features of germ cells. Nature, 2005. 434(7033): p. 583-9. 66. Gaucher, J., et al., From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J, 2010. 277(3): p. 599-604. 67. Yan, W., Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol, 2009. 306(1-2): p. 24-32. 68. Leblond, C.P. and Y. Clermont, Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat, 1952. 90(2): p. 167-215. 69. Clermont, Y. and C.P. Leblond, Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff technique. Am J Anat, 1955. 96(2): p. 229-53. 70. McKinney, T.D. and C. Desjardins, Postnatal development of the testis, fighting behavior, and fertility in house mice. Biol Reprod, 1973. 9(3): p. 279-94. 71. Moreno, R.D., et al., Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res, 2006. 325(3): p. 533-40. 72. Sauer, B. and N. Henderson, Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res, 1989. 17(1): p. 147-61. 73. Gu, H., et al., Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, 1994. 265(5168): p. 103-6. 74. Nagy, A., et al., Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A, 1993. 90(18): p. 8424-8. 75. Liu, P., N.A. Jenkins, and N.G. Copeland, A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 2003. 13(3): p. 476-84. 76. Yu, I.S., et al., TXAS-deleted mice exhibit normal thrombopoiesis, defective hemostasis, and resistance to arachidonate-induced death. Blood, 2004. 104(1): p. 135-42. 77. Hayashi, S., et al., Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev, 2002. 119 Suppl 1: p. S97-S101. 78. Hayashi, S., T. Tenzen, and A.P. McMahon, Maternal inheritance of Cre activity in a Sox2Cre deleter strain. Genesis, 2003. 37(2): p. 51-3. 79. Lin, Y.H., et al., The expression level of septin12 is critical for spermiogenesis. Am J Pathol, 2009. 174(5): p. 1857-68. 80. Latendresse, J.R., et al., Fixation of testes and eyes using a modified Davidson's fluid: comparison with Bouin's fluid and conventional Davidson's fluid. Toxicol Pathol, 2002. 30(4): p. 524-33. 81. Skeie, J.M. and V.B. Mahajan, Proteomic interactions in the mouse vitreous-retina complex. PLoS One, 2013. 8(11): p. e82140. 82. Ekins, S., et al., Pathway mapping tools for analysis of high content data. Methods Mol Biol, 2007. 356: p. 319-50. 83. O'Donnell, L., et al., Spermiation: The process of sperm release. Spermatogenesis, 2011. 1(1): p. 14-35. 84. Upadhyay, R.D., et al., Tubulobulbar complex: Cytoskeletal remodeling to release spermatozoa. Reprod Biol Endocrinol, 2012. 10: p. 27. 85. Russell, L.D., et al., Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod, 2002. 66(4): p. 950-8. 86. Shaha, C., R. Tripathi, and D.P. Mishra, Male germ cell apoptosis: regulation and biology. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1546): p. 1501-15. 87. Abou-Haila, A. and D.R. Tulsiani, Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys, 2000. 379(2): p. 173-82. 88. Becker, S., et al., Spermiogenesis defects in human: detection of transition proteins in semen from some infertile men. Andrologia, 2008. 40(4): p. 203-8. 89. Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 90. Harris, M.A., et al., The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res, 2004. 32(Database issue): p. D258-61. 91. Solari, A.J., The behavior of the XY pair in mammals. Int Rev Cytol, 1974. 38(0): p. 273-317. 92. McKee, B.D. and M.A. Handel, Sex chromosomes, recombination, and chromatin conformation. Chromosoma, 1993. 102(2): p. 71-80. 93. Turner, J.M., Meiotic sex chromosome inactivation. Development, 2007. 134(10): p. 1823-31. 94. Hendriksen, P.J., et al., Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse. Dev Biol, 1995. 170(2): p. 730-3. 95. Dadoune, J.P., J.P. Siffroi, and M.F. Alfonsi, Transcription in haploid male germ cells. Int Rev Cytol, 2004. 237: p. 1-56. 96. Rossant, J. and J.C. Cross, Placental development: lessons from mouse mutants. Nat Rev Genet, 2001. 2(7): p. 538-48. 97. Watson, E.D. and J.C. Cross, Development of structures and transport functions in the mouse placenta. Physiology (Bethesda), 2005. 20: p. 180-93. 98. Soares, M.J., et al., Differentiation of trophoblast endocrine cells. Placenta, 1996. 17(5-6): p. 277-89. 99. Vuorela, P., et al., Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod, 1997. 56(2): p. 489-94. 100. Achen, M.G., et al., Placenta growth factor and vascular endothelial growth factor are co-expressed during early embryonic development. Growth Factors, 1997. 15(1): p. 69-80. 101. Teesalu, T., et al., Expression of matrix metalloproteinases during murine chorioallantoic placenta maturation. Dev Dyn, 1999. 214(3): p. 248-58. 102. Teesalu, T., F. Blasi, and D. Talarico, Expression and function of the urokinase type plasminogen activator during mouse hemochorial placental development. Dev Dyn, 1998. 213(1): p. 27-38. 103. de Vries, W.N., et al., Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes. Genesis, 2000. 26(2): p. 110-2. 104. Sun, Q.Y., K. Liu, and K. Kikuchi, Oocyte-specific knockout: a novel in vivo approach for studying gene functions during folliculogenesis, oocyte maturation, fertilization, and embryogenesis. Biol Reprod, 2008. 79(6): p. 1014-20. 105. Lan, Z.J., X. Xu, and A.J. Cooney, Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice. Biol Reprod, 2004. 71(5): p. 1469-74. 106. O'Gorman, S., et al., Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14602-7. 107. Shin, B.C., et al., Immunolocalization of GLUT1 and connexin 26 in the rat placenta. Cell Tissue Res, 1996. 285(1): p. 83-9. 108. Cox, B.J., et al., Phenotypic annotation of the mouse X chromosome. Genome Res, 2010. 20(8): p. 1154-64. 109. Goto, T., E. Wright, and M. Monk, Paternal X-chromosome inactivation in human trophoblastic cells. Mol Hum Reprod, 1997. 3(1): p. 77-80. 110. Harrison, K.B. and D. Warburton, Preferential X-chromosome activity in human female placental tissues. Cytogenet Cell Genet, 1986. 41(3): p. 163-8. 111. Monk, M., The X chromosome in development in mouse and man. J Inherit Metab Dis, 1992. 15(4): p. 499-513. 112. Cang, Y., et al., Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell, 2006. 127(5): p. 929-40. 113. Yu, C., et al., CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science, 2013. 342(6165): p. 1518-21. 114. Lee, J.T., Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol, 2011. 12(12): p. 815-26. 115. Maltepe, E., A.I. Bakardjiev, and S.J. Fisher, The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest, 2010. 120(4): p. 1016-25. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55820 | - |
| dc.description.abstract | 蛋白質降解必須維持嚴密之調控,以確保細胞正常生理作用,在真核細胞中,蛋白質主要以被泛素標記的方式進行降解,稱為泛素蛋白酶體降解系統。E3連接酶複合體具有辨識特定蛋白受質並將之泛素化之功能,其中一群由Cullin蛋白家族為主體而組成。Cullin 4B為該家族成員之一,其基因在人類與小鼠都位於X染色體,而蛋白將成為CUL4B-RING-E3連接酶複合體之骨架結構。臨床報告指出,人類CUL4B基因突變後將導致性聯遺傳智能障礙與性腺功能低下等病徵,然而相關研究病例僅有外觀描述,對於病理分析與致病機制目前仍一無所悉,此外也欠缺Cul4b基因剔除小鼠疾病動物模式進行病理機制研究。為了探討Cul4b在生物體內所扮演的角色及參與之功能,本論文以條件式基因剔除策略建立了Cul4b基因標的小鼠,在將其第四與第五外顯子於早期胚胎特異性剔除後,成功得到Cul4b全身性基因剔除小鼠。第一部分結果:首先將小鼠進行動物行為學與神經學分析,發現Cul4b基因剔除小鼠呈現出與臨床病人類似的學習障礙行為與病徵,且海馬迴的神經元數量、樹突複雜性和棘密度與對照組相比均顯著性降低,證實Cul4b基因剔除小鼠可作為具有潛力的人類疾病動物模型。此外,本論文亦發現在小鼠所有器官中,睪丸具有最高濃度CUL4B表現量,同時也觀察到Cul4b基因剔除公鼠無法產生任何子代,顯示CUL4B可能參與精子生成作用。分析結果顯示,基因剔除公鼠副睪中所含有的成熟精子數量非常稀少,且碩果僅存的精子其結構呈現廣泛性頭部損傷,顯示大部分精子於精子生成過程中死亡,少部分精子雖存活但於精子形成過程中產生變異,最終導致雄性不孕症。雖然成鼠睪丸中精原幹細胞有絲分裂與精母細胞減數分裂過程均不受CUL4B缺失的影響,但減數分裂後的單倍體精細胞數量卻逐漸降低,同時伴隨著凋亡細胞的增加。由於單倍體精細胞最重要的機制為精子形成,經過頂體形成、染色質重組與核濃縮過程後,可將圓形精細胞轉變為延長形成熟精蟲,這些過程也是控制精細胞凋亡與頭部濃縮成形的關鍵作用。共軛焦與電子顯微鏡分析發現基因剔除鼠單倍體精細胞在頂體形成初期的高爾基氏期沒有受到影響,但是在頂體期即出現膨大或環繞的頂體結構與不規則核濃縮的缺陷精細胞。這些細胞依損傷程度不同,有些會死亡、萎縮而被賽氏細胞吸收,有些則順利釋出至副睪,但異常頭部結構仍然使這些精蟲無法與卵子接觸受精。分析出生後第一波精子生成過程,發現在出生後二十七天出現的圓形精細胞數量顯著降低,且凋亡細胞於此時期顯著增加。此外,超微結構觀察亦發現精細胞於頂體形成的頂體期產生死亡、萎縮或結構異常,此結果與成鼠的精子生成循環過程相符合,證實不論是Cul4b基因剔除成鼠或發育中仔鼠,精子生成主要於頂體形成的頂體期產生死亡或缺陷。進一步將正值第一波精子生成的睪丸組織進行蛋白質體分析,區分出野生型小鼠與基因剔除小鼠間的差異性蛋白質,再經由軟體分析,判斷差異性蛋白質所參與的分子機制或細胞功能,藉此尋找CUL4B專一性調控的受質蛋白,解開缺乏CUL4B後導致精子生成異常的調控機制。目前已知CUL4B主要影響到的訊息傳遞路徑為細胞骨架重整、細胞附著、細胞凋亡與存活、蛋白質降解與蛋白質折疊等,未來將經由蛋白質交互作用分析來驗證顯著變化的蛋白質是否為CUL4B之受質蛋白。本論文結果證實Cul4b基因剔除公鼠不孕的原因為單倍體精細胞形成過程中頂體形成與核濃縮產生缺陷,導致精子細胞大量死亡、精子頭部變形與頂體結構異常,最終精子數量減少、頭型結構異常、缺乏泳動力,使得基因剔除公鼠無法藉由正常精卵結合過程產生子代。第二部分結果:第一部分指出小鼠Cul4b基因突變後將導致學習障礙與雄性不孕症,但由於採用了E6.5胚胎特異性剔除方式,無法觀察到最早期胚胎發育與胎盤形成之影響。為研究Cul4b在小鼠體內早期胚胎發育與胎盤形成所扮演的角色及參與之功能,本論文第二部分以精卵基因剔除策略建立Cul4b基因缺乏小鼠,將其第四與第五外顯子敲除後,發現全身性Cul4b基因剔除胚胎將於胚胎期7.5天發育中止且死亡。至於Cul4b異合子基因剔除母鼠的表現型會因突變對偶基因來自父源或母源而有所差異。突變基因來自父源的Cul4b+/Δ小鼠可以正常生長及繁衍子代,外觀上和野生型小鼠無異。然而,突變基因來自母源的Cul4bΔ/+小鼠將於胚胎期11.5天後產生嚴重的發育遲緩現象,且大多於出生前死亡。根據X染色體失活的原理,在胚胎外組織內,來自父源的X染色體將優先被靜默化,使得Cul4bΔ/+小鼠的胎盤組織將完全沒有CUL4B表現。結果發現Cul4bΔ/+小鼠胎盤的滋養層巨細胞在胚胎期8.5天僅剩一半,海綿層滋養母細胞在胚胎期11.5天厚度嚴重不足,而迷宮層的血管組織從胚胎期11.5天開始呈現失序的結構。除此之外,由於迷宮層裡的物質交換空間被破壞,導致小鼠血管與母體血竇都顯著擴大,造成母體與胎兒血液氧氣與養分交換的表面積下降,胎兒因此營養不良導致死亡。若將胚胎期6.5天的小鼠於外胚層特異性剔除Cul4b,保留胎盤的CUL4B表現,此策略則可以使Cul4b基因剔除鼠與Cul4b異合子基因剔除鼠順利娩出。總結而言,我們的結果證明胚胎外組織的發育需要CUL4B參與,而我們也在第一部分提供了一個策略產生Cul4b基因剔除鼠,藉以模擬CUL4B突變患者,進行組織病理分析與分子機制探討。 | zh_TW |
| dc.description.abstract | In mammals, Cullin genes constitute a family of eight proteins (CUL1, 2, 3, 4A, 4B, 5, 7, 9). Cullin 4B (CUL4B), a member of the Cullin protein family, serves as the structural scaffolds of the CUL4B-RING ligase complex, which recognizes and ubiquitinates selective substrates for protein degradation via the ubiquitin-proteasome system. Mutation of CUL4B in human results in X-linked intellectual disability (XLID) associated with impaired behavior and hypogonadism. However, the pathogenic role of CUL4B mutation in neuronal or other developmental defects is not understood and a mouse model for targeted Cul4b has not been described. Part I: To investigate the biological function of CUL4B, we here report the generation of Cul4b genetically engineered Cul4b mutant mice, in which exons 4 to 5 were deleted by gene targeting approach using Cre/loxP recombination system. We generated Cul4b mutant mice by crossing females carrying Cul4b floxed alleles with Sox2-Cre transgenic males, in which the deletion of Cul4b takes place specifically in embryo proper during embryogenesis. Firstly, Cul4b mutant mice were analyzed by behavior and neurological manners and we found mutant mice had abnormal spatial learning and memory ability and fewer parvalbumin-positive hippocampal neurons. Moreover, Cul4b mutant hippocampal neurons exhibited reduced dendritic complexity and spine density compared with control neurons. These data indicated the genetically engineered Cul4b mutant mouse as a potential model for human X-linked intellectual disability. In addition, CUL4B is strongly expressed in testes, suggesting that CUL4B- dependent protein degradation is involved in the control of the precisely timed and highly organized process of spermatogenesis. We found that Cul4b mutant male mice were infertile and displayed a progressive loss of germ cells from an initially normal germ epithelium of the tubules leading to oligoasthenospermia. Adult Cul4b mutant epididymides contained very low number of mature spermatozoa with pronounced morphological abnormalities. Mitosis of spermatogonial stem cells and meiosis of spermatocytes appeared unaffected. However, the loss-of-function allele affected the post-meiotic haploid spermatids during spermiogenesis. Decreased spermatids and an increased number of apoptotic germ cells were observed in Cul4b mutant testes. Because the most prominent defects were found during haploid differentiation, CUL4B was demonstrated to be critical for acrosome formation, chromatin remodeling and nuclear condensation which controls the cell death and sperm head shaping. In Cul4b mutant testes, spermatids with normal Golgi phase acrosome could be detected. However there were a variety of acrosome abnormalities including overly extended acrosomes and acrosomes encircled the nuclei in acrosome phase spermatids. Analysis of the first wave of spermatogenesis in Cul4b mutant mice also showed degeneration of round spermatids, amorphous acrosomes and disintegrated nuclei by day 27 and this phenomenon was consistent with adult spermatogenic cycle. We further isolated total protein from control and mutant testes at P20 and P27 to proceed with multidimensional liquid chromatography and analyzed by mass spectrometry. Quantification of identified proteins and relative expression changes were compared using an ANOVA statistical measurement to present the proteomic dataset. To obtain a global view of the molecular pathways and process networks, differential proteins were determined by MetaCore database. The pathways and networks with the higher representation were related with cytoskeleton rearrangement, cell adhesion, apoptosis, ubiquitin-proteasomal proteolysis and protein folding. Taken together, these collective data indicated that perturbed CUL4B function, as evidenced in the Cul4b mutant mice, results in disrupted haploid spermatid differentiation and male sterility characterized by decreased sperm production, sperm with abnormal head shape, and a virtual absence of progressive motility.Part II:In part I, mutation of Cul4b gene in mice causes abnormal spatial learning ability and male infertility. However, the epiblast-specific Cul4b knockout mice could not present the early embryogenesis and placentation. We here report the generation of Cul4b knockout mice, in which exons 4 to 5 were deleted by gene targeting approach using Cre/loxP recombination system. Cul4b conditional knockout mice were mated with Prm1-cre and Zp3-cre transgenic mice as deletion of Cul4b was exclusively occurred in spermatid and oocyte. We found that Cul4b null embryos exhibit arrested development and lethality around embryonic day 7.5. (E7.5). Cul4b heterozygotes had different phenotypes due to parent-of-origin mutant allele. Cul4b+/Δ heterozygotes were viable, fertile, normal in size and did not display any gross physical abnormalities. However, Cul4bΔ/+ exhibited a severe developmental delay from E11.5 and mostly suffered prenatal death due to the paternal X chromosome is preferentially inactivated in the placenta and resulted in Cul4b null placentas in Cul4bΔ/+ heterozygotes. Cul4bΔ/+ placentas exhibited deficiency of lower count of trophoblast giant cells at E8.5, decreased size in spongiotrophoblast layer from E11.5, disorganized labyrinth layer and impaired vascularization during E11.5-E18.5. The blood spaces within the labyrinthine layer were disrupted and the fetal blood vessels and the maternal sinusoids were considerably larger, leading to a reduction in the surface area available for nutrient and gas exchange. Although Cul4b null embryos exhibited more pronounced phenotypes than Cul4bΔ/+ heterozygotes, the lethality could be rescued by epiblast-specific deletion (Sox2-cre) of Cul4b and gave rise to viable Cul4b null mice and Cul4bΔ/+ heterozygotes. Together, our results showed that CUL4B is required in extra-embryonic tissues for placental development but indispensable for embryonic development in the mouse. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:59Z (GMT). No. of bitstreams: 1 ntu-103-F95424010-1.pdf: 18766220 bytes, checksum: ab15cfff843d3d46b0165198c010b770 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書..........................................i
誌謝....................................................iii 感言.....................................................iv 總目錄....................................................v 圖目錄..................................................xiv 表目錄.................................................xvii 附錄目錄..............................................xviii 第一部分 Cul4b於精子生成之角色...........................1 中文摘要..................................................3 英文摘要..................................................5 第一章 導論..............................................7 1.1 本章概要..............................................7 1.2 蛋白質降解途徑........................................7 1.3 泛素蛋白酶體降解系統..................................8 1.4 泛素連接酶複合體......................................9 1.5 CULLIN蛋白家族.......................................10 1.6 Cul4b基因、蛋白質與功能性研究........................11 1.7 男性不孕症...........................................12 1.8 小鼠生殖系統與生殖細胞...............................13 1.8.1 小鼠睪丸結構.......................................13 1.8.2 賽氏細胞...........................................13 1.8.3 精原細胞...........................................13 1.8.4 精母細胞...........................................14 1.8.5 精細胞.............................................14 1.9 精子生成.............................................15 1.10 精子形成............................................15 1.11 第一波精子生成......................................16 1.12 第一部份研究動機及實驗策略..........................16 1.13 第一部份研究成果概述................................18 第二章 材料與方法.......................................19 2.1 本章概要.............................................19 2.2 實驗動物.............................................19 2.3 Cul4b條件式基因剔除質體構築..........................19 2.4 胚胎幹細胞基因標的...................................20 2.5 嵌合鼠產製與育種.....................................21 2.6 全身性基因剔除策略...................................22 2.7 小鼠基因型、mRNA及蛋白質分析.........................23 2.7.1 DNA萃取與基因型鑑定................................23 2.7.2 RNA萃取與反轉錄分析................................24 2.7.3 Protein萃取與西方墨點法............................25 2.8 生育能力測試.........................................26 2.9 激素測定.............................................27 2.10 精子數量與泳動力分析................................27 2.11 精子結構染色與分類..................................28 2.11.1 精子抹片..........................................28 2.11.2 精子抹片蘇木紫和伊紅染色..........................28 2.11.3 精子缺陷分類......................................28 2.11.4 精子抹片螢光染色..................................29 2.12 體外受精............................................29 2.12.1 母鼠超量排卵......................................29 2.12.2 卵子收集與精子收集................................30 2.12.3 精卵體外受精與評估................................30 2.13 組織檢體處理與石蠟包埋切片..........................30 2.13.1 小鼠器官檢體......................................30 2.13.2 小鼠全身灌流與檢體固定............................30 2.13.3 石蠟包埋切片......................................31 2.14 組織病理染色分析....................................31 2.14.1 脫蠟復水..........................................31 2.14.2 蘇木紫和伊紅染色..................................32 2.14.3 免疫組織化學染色..................................32 2.14.4 免疫螢光染色......................................33 2.14.5 BrdU標記呈色......................................33 2.14.6 TUNEL標記呈色.....................................34 2.15 流式細胞技術分析....................................34 2.15.1 睪丸細胞分離......................................34 2.15.2 細胞染色與分選....................................35 2.16 共軛焦顯微鏡分析....................................35 2.17 電子顯微鏡分析......................................35 2.18 蛋白質體學..........................................36 2.18.1 蛋白質體學策略....................................36 2.18.2 蛋白質萃取與定量..................................36 2.18.3 蛋白質分解、胜肽純化與液相層析串聯質譜分析........37 2.18.4 資料分析與資料庫搜尋..............................37 2.18.5 Heat Map分析......................................38 2.18.6 Gene Ontology分析.................................38 2.18.7 MetaCore分析......................................38 2.19 數據分析與統計......................................39 第三章 實驗結果.........................................41 3.1 本章概要.............................................41 3.2 產製Cul4b條件式基因剔除小鼠..........................41 3.2.1 小鼠Cul4b基因剔除策略與標的載體設計................41 3.2.2 嵌合鼠產製與標的基因性腺傳承.......................42 3.3 培育與分析Cul4b基因剔除小鼠..........................42 3.3.1 藉由胚胎特異性剔除培育Cul4b基因剔除小鼠............42 3.3.2 Cul4b基因剔除鼠基礎生理與血清生化分析..............43 3.3.3 Cul4b基因剔除鼠動物行為學與神經學分析..............43 3.4 Cul4b基因剔除小鼠生育能力分析........................44 3.4.1 生育能力測試.......................................44 3.4.2 小鼠生殖系統解剖分析與血清激素測定.................44 3.4.3 分析小鼠精子數量與泳動力...........................44 3.4.4 小鼠精子外觀結構與分類.............................45 3.4.5 小鼠精子體外受精能力分析...........................45 3.4.6 小鼠副睪內精子染色分析.............................46 3.5 分析CUL4B於小鼠睪丸內的表現..........................46 3.5.1 CUL4B於小鼠生殖系統的表現..........................46 3.5.2 CUL4B於小鼠睪丸內的表現位置........................46 3.5.3 CUL4B於萊氏細胞的表現..............................47 3.5.4 CUL4B於睪丸內特定細胞的表現........................47 3.5.5 CUL4B於精子生成過程的表現..........................48 3.5.6 CUL4B於精子形成過程的表現..........................48 3.6 分析小鼠睪丸細胞組成.................................48 3.6.1 流式細胞技術分析小鼠睪丸細胞組成...................48 3.6.2 細精管數量與管徑測量...............................49 3.6.3 生殖細胞DNA合成與染色體複製分析....................49 3.6.4 未分化精原細胞、初級精母細胞與賽氏細胞分佈與計數...50 3.6.5 單倍體生殖細胞分佈與計數...........................50 3.6.6 追蹤精子釋放後殘餘精子.............................51 3.7 睪丸細胞凋亡分析.....................................52 3.8 精細胞頂體形成與核濃縮...............................52 3.8.1 免疫螢光染色分析...................................52 3.8.2 共軛焦螢光影像分析.................................53 3.8.3 電子顯微鏡分析.....................................53 3.9 第一波精子生成.......................................54 3.9.1 CUL4B蛋白質之表現..................................54 3.9.2 賽氏、精原、精母與精細胞之發育.....................55 3.9.3 生殖細胞數量統計...................................55 3.9.4 凋亡細胞數量統計...................................56 3.10 精子生成障礙的關鍵時間點............................56 3.10.1 二十七日齡之小鼠睪丸組織與細胞凋亡分析............56 3.10.2 第一波精細胞頂體形成..............................57 3.11 蛋白質體學分析小鼠生殖細胞..........................58 3.11.1 小鼠生殖細胞內蛋白質表現變化......................58 3.11.2 利用基因註釋與功能分類進行差異性蛋白分群..........58 3.11.3 利用MetaCore™資料庫分析蛋白質參與之訊息傳遞途徑...59 3.11.4 利用MetaCore™資料庫分析差異性蛋白質之功能網絡.....59 第四章 實驗討論.........................................61 4.1 本章概要.............................................61 4.2 Cul4b基因剔除策略....................................61 4.3 Cul4b基因剔除鼠精細胞損傷............................61 4.4 血清激素沒有變化.....................................62 4.5 CUL4B於精細胞中再表現................................62 4.6 CUL4A沒有補償作用....................................63 4.7 已知之CUL4B受質蛋白於活體組織內並無累積現象..........63 4.8 Label-free定量蛋白質體學優缺點.......................64 第五章 結論與展望.......................................65 第二部分 Cul4b於胎盤發育之角色..........................67 中文摘要.................................................69 英文摘要.................................................71 第一章 導論.............................................73 1.1 本章概要.............................................73 1.2 胎盤發育與結構介紹...................................73 1.3 第二部份研究動機及實驗策略...........................75 1.4 第二部份研究成果概述.................................75 第二章 材料與方法.......................................77 2.1 本章概要.............................................77 2.2 組織特異性基因剔除策略...............................77 2.2.1 卵子特異性剔除.....................................77 2.2.2 精子特異性剔除.....................................77 2.3 胚胎與胎盤定時採樣分析...............................78 2.4 組織檢體處理與石蠟包埋切片...........................78 2.4.1 胚胎與胎盤檢體.....................................78 2.4.2 檢體固定與石蠟包埋切片.............................78 2.5 組織病理染色分析.....................................79 2.5.1脫蠟復水與常規染色..................................79 2.5.2 鹼性磷酸酶活性呈色.................................79 2.5.3 過碘酸-雪夫染色....................................79 2.6 胎盤血管鑄型.........................................79 2.7 胎盤運輸功能分析.....................................80 2.8 電子顯微鏡分析.......................................80 2.9 蛋白質體學...........................................81 2.9.1 蛋白質萃取與定量...................................81 2.9.2 二維膠體電泳.......................................81 2.9.3 膠體影像分析.......................................82 2.9.4 膠內水解技術.......................................82 2.9.5 質譜分析與資料庫搜尋...............................82 2.10 數據分析與統計......................................83 第三章 實驗結果.........................................85 3.1 本章概要.............................................85 3.2 Cul4b基因於卵子特異性剔除............................85 3.3 Cul4b基因剔除小鼠表現型分析..........................86 3.3.1 全身性Cul4b基因剔除導致小鼠胚胎死亡................86 3.3.2 異合子Cul4b基因剔除導致小鼠胚胎生長遲緩............86 3.3.3 異合子Cul4b基因剔除小鼠胎盤發育停滯................87 3.3.4 異合子Cul4b基因剔除小鼠胚胎與胎盤重量降低..........87 3.4 Cul4b基因於精子特異性剔除............................87 3.5 分析CUL4B於小鼠胎盤內的表現..........................88 3.6 胎盤組織病理染色結果.................................89 3.6.1 蘇木紫和伊紅染色觀察胎盤結構.......................89 3.6.2 滋養層巨細胞分佈與計數.............................90 3.6.3 海綿狀滋養層細胞架構分析...........................90 3.6.4 迷宮層血管網絡複雜度比較...........................90 3.7 胎盤內血管系統結構分析...............................91 3.7.1 母體血竇狀隙空間染色分析...........................91 3.7.2 胎兒血管內皮細胞染色分析...........................91 3.7.3 單核與融合滋養層細胞電顯結構分析...................92 3.8 胎盤運輸功能與胎兒血管鑄形...........................93 3.9 胎盤組織之蛋白質體學.................................93 3.10 Cul4b基因於胚胎特異性剔除...........................94 第四章 實驗討論.........................................95 4.1 本章概要.............................................95 4.2 CULLIN家族基因剔除小鼠表現型.........................95 4.3 Cul4b基因剔除小鼠與CULL4B突變人類之差異..............95 4.4 Cul4b異合子基因剔除母鼠之胎盤差異....................96 4.5 DDB1剔除將導致胚胎死亡與卵子異常.....................96 4.6 晚期精子特異性剔除Cul4b不會導致雄性不孕..............97 4.7 X染色體失活調控CUL4B功能.............................97 4.8 小鼠滋養層細胞品系發育之調控.........................98 第五章 結論與展望.......................................99 參考文獻................................................101 圖......................................................111 表......................................................187 附錄....................................................201 個人學術簡歷............................................217 | |
| dc.language.iso | zh-TW | |
| dc.subject | 疾病動物模式 | zh_TW |
| dc.subject | 基因剔除 | zh_TW |
| dc.subject | 精子生成 | zh_TW |
| dc.subject | 不孕症 | zh_TW |
| dc.subject | 胎盤發育 | zh_TW |
| dc.subject | male infertility | en |
| dc.subject | Placentation | en |
| dc.subject | Knockout | en |
| dc.subject | CUL4B | en |
| dc.subject | Spermatogenesis | en |
| dc.title | 利用Cul4b基因剔除小鼠動物模型研究其在精子生成與胎盤發育之角色 | zh_TW |
| dc.title | Gene Targeting of Cul4b in Mice as a Model for Spermatogenesis and Placentation Study | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 何弘能,嚴仲陽,蔡亭芬,陳佑宗,胡忠怡 | |
| dc.subject.keyword | 基因剔除,精子生成,不孕症,胎盤發育,疾病動物模式, | zh_TW |
| dc.subject.keyword | Knockout,CUL4B,Spermatogenesis,male infertility,Placentation, | en |
| dc.relation.page | 218 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 18.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
