請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55791完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳琪芳(Chi-Fang Chen) | |
| dc.contributor.author | Yu-Chen Cheng | en |
| dc.contributor.author | 鄭郁蓁 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:08:32Z | - |
| dc.date.available | 2014-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | 1.Cheng, Y.-C., et al., Study and application of underwater noise impact in coastal region off western Taiwan. Journal of Computational Acoustics, 2014. 22(01).
2.Lee, D. and M.H. Schultz, Numerical ocean acoustic propagation in three dimensions. 1995: World scientific. 3.Weinberg, H. and R. Burridge, Horizontal ray theory for ocean acoustics. The Journal of the Acoustical Society of America, 1974. 55(1): p. 63-79. 4.Guthrie, K., The connection between normal modes and rays in underwater acoustics. Journal of Sound and Vibration, 1974. 32(2): p. 289-293. 5.McCracken, L., Ray theory vs normal mode theory in wave propagation problems. Antennas and Propagation, 1957. 6.Tolstoy, I., Modes, rays, and travel times. Journal of Geophysical Research, 1959. 64(7): p. 815-821. 7.Rask, B.J. and A.D. Gorman, On caustics associated with horizontal rays and vertical modes. Wave motion, 1991. 14(4): p. 321-332. 8.Červeny, V., M.M. Popov, and I. Pšenčik, Computation of wave fields in inhomogeneous media—Gaussian beam approach. Geophysical Journal International, 1982. 70(1): p. 109-128. 9.Pedersen, M.A. and D.F. Gordon, Normal‐Mode and Ray Theory Applied to Underwater Acoustic Conditions of Extreme Downward Refraction. The Journal of the Acoustical Society of America, 1972. 51(1B): p. 323-368. 10.Porter, M.B. and H.P. Bucker, Gaussian beam tracing for computing ocean acoustic fields. The Journal of the Acoustical Society of America, 1987. 82(4): p. 1349-1359. 11.Jones, R.M., J.P. Riley, and T.M. Georges, HARPO: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in an ocean with irregular bottom. 1986. 12.Jones, R.M. and T. Georges, Nonperturbative ocean acoustic tomography inversion. The Journal of the Acoustical Society of America, 1994. 96(1): p. 439-451. 13.Newhall, A.E., et al., Improvements in three-dimensional raytracing codes for underwater acoustics. 1990: Amsterdam, The Netherlands: North-Holland. 14.C.-S. Chiu, L.L.E., Three-dimensional acoustic normal mode propagation in the Gulf Stream. , in Oceanography and acoustics: prediction and propagation models, A.R. Robinson, Lee, Ding, Editor. 1994, American Institute of Physics. p. 179-197. 15.Botseas, G., D. Lee, and D. King, FOR3D: A Computer Model for Solving the LSS Three-Dimensional. Wide Angle Wave Equation, 1987. 16.Kevin B. Smith, F.D.T., UMPE: The University of Miami Parabolic Equation Model. Version 1.0. 1993. 92. 17.Smith, K.B., Convergence, stability, and variability of shallow water acoustic predictions using a split-step Fourier parabolic equation model. Journal of Computational Acoustics, 2001. 09(01): p. 243-285. 18.K. B. Smith, M.W., and A. V. van Leijen, Attenuation treatment in the Monterey-Miami Parabolic Equation Model. Department of Physics, Naval Postgraduate School: Monterey. 19.Castor, K. and F. Sturm, Investigation of 3D acoustical effects using a multiprocessing parabolic equation based algorithm. Journal of Computational Acoustics, 2008. 16(02): p. 137-162. 20.Lin, Y.-T., J.M. Collis, and T.F. Duda, A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Pade approximants. The Journal of the Acoustical Society of America, 2012. 132(5): p. EL364-EL370. 21.Collins, M.D., A split‐step Pade solution for the parabolic equation method. The Journal of the Acoustical Society of America, 1993. 93(4): p. 1736-1742. 22.Tolstoy, A., 3-D propagation issues and models. Journal of Computational Acoustics, 1996. 4(03): p. 243-271. 23.Heaney, K., W. Kuperman, and B. McDonald, Perth–Bermuda sound propagation (1960): Adiabatic mode interpretation. The Journal of the Acoustical Society of America, 1991. 90(5): p. 2586-2594. 24.McDonald, B.E., et al., Comparison of data and model predictions for Heard Island acoustic transmissions. The Journal of the Acoustical Society of America, 1994. 96(4): p. 2357-2370. 25.Sperry, B.J., Analysis of acoustic propagation in the region of the New England continental shelfbreak. 1999, DTIC Document. 26.Katsnel’son, B. and S. Pereselkov, Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea. Acoustical physics, 2000. 46(6): p. 684-691. 27.陳屏先、陳琪芳, 海洋聲音傳播模組分析. 1999. 28.Shang, E.C. and Y.Y. Wang, Acoustic. Travel Time Computation Based on PE Solution. Journal of Computational Acoustics, 1993. 01(01): p. 91-100. 29.Lin, Y.-T., T.F. Duda, and J.F. Lynch, Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area. The Journal of the Acoustical Society of America, 2009. 126(4): p. 1752-1765. 30.Heaney, K.D., R.L. Campbell, and J.J. Murray, Comparison of hybrid three-dimensional modeling with measurements on the continental shelf. The Journal of the Acoustical Society of America, 2012. 131: p. 1680-1688. 31.Ballard, M.S., Y.-T. Lin, and J.F. Lynch, Horizontal refraction of propagating sound due to seafloor scours over a range-dependent layered bottom on the New Jersey shelf. The Journal of the Acoustical Society of America, 2012. 131(4): p. 2587-2598. 32.Westwood, E.K., C. Tindle, and N. Chapman, A normal mode model for acousto‐elastic ocean environments. The Journal of the Acoustical Society of America, 1996. 100(6): p. 3631-3645. 33.Lee, D., S. McDaniel, and E.Y. Rodin, Ocean acoustic propagation by finite difference methods. 1987: Pergamon Press. 34.Frisk, G.V., Ocean and seabed acoustics: a theory of wave propagation. 1994: Pearson Education. 35.Pekeris, C.L., Theory of propagation of explosive sound in shallow water. Geological Society of America Memoirs, 1948. 27: p. 1-116. 36.Stakgold, I. and M.J. Holst, Green's functions and boundary value problems. Vol. 99. 2011: John Wiley & Sons. 37.Hildebrand, F.B., Advanced calculus for applications. 1962: Prentice-Hall Englewood Cliffs, NJ. 38.Porter, M.B., The KRAKEN normal mode program. 1992, DTIC Document. 39.Harrison, C. and J. Harrison, A simple relationship between frequency and range averages for broadband sonar. The Journal of the Acoustical Society of America, 1995. 97(2): p. 1314-1317. 40.Chiu, L. and D.B. Reeder, Acoustic mode coupling due to subaqueous sand dunes in the South China Sea: Extension of the adiabatic criterion to waveguides with bedforms. The Journal of the Acoustical Society of America, 2013. 134(5): p. 4111-4111. 41.Reeder, D.B., B.B. Ma, and Y.J. Yang, Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Marine Geology, 2011. 279(1): p. 12-18. 42.Meng-Chu, L., Three dimensional underwater acoustic propagation in comtinental slope regions with sand dunes in South China Sea, in Department of Engineering Science and Ocean Engineering. 2014, National Taiwan University. 43.陳琪芳, 高頻主動聲納效能分析研究 (Ⅱ). 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55791 | - |
| dc.description.abstract | 淺海地區的地形和水文等海洋環境的變異性易造成聲波的水平折射現象,當內波傳播方向的夾角較大時,會造成聲波在水平方向上的能量因此聚集或散發而形成三維效應,為了透過模組行徑路徑了解水平方向上聲波的折射現象及複雜海洋環境中的三維效應,同時保持計算距離大時相同的計算解析度,本研究建立卡氏座標系統上的三維聲學計算模組,結合垂直向的模組及水平面上的高斯射線群來進行聲場計算,考量高斯射線群法的高頻假設,因此聲線模態法之計算模組(Three-Dimensional acoustic propagation model of horizontal Gaussian Beam and Vertical Normal Mode, 3DGBM-M)主要處理高頻淺海的計算問題,同時改善一般簡正模態法計算時忽略模態耦合效應的缺失。模組驗證係經由Pekeris波導做為二維音傳的比較基準,模擬海洋環境中無三維效應的音傳損耗,計算結果與簡正模態法及高斯射線群法進行比較;另外,底床特徵增加仿沙丘的正弦地形,將聲源配置於波峰處,觀察三維效應下的聲場分布,並與FOR3DW(寬角度版本)比較兩者三維模擬的差異。未來聲線模態法之精進可從初始聲源驗證及模組振幅的演算精進兩方面著手,若能更精準計算各類水文環境及海洋地形時,聲線模態法則能清楚呈現三維效應中的聲場變化並具備高效率的計算優勢。 | zh_TW |
| dc.description.abstract | The bathymetry and strong oceanographic variability in shallow water area can contribute to horizontal refraction. A wavefront obliquely incident upon an ocean front can be refracted in a direction dependent upon the angle of incidence and the modal phase speed which is determined by the horizontal wavenumber of the mode. This refraction on the horizontal plane causes convergence or spreading of acoustic energies and characterizes as the 3D effect. In this thesis, a hybrid underwater acoustic propagation model (Three-Dimensional acoustic propagation model of horizontal Gaussian Beam and Vertical Normal Mode, abbreviated as 3DGBM-M) based on the approach of horizontal rays and vertical modes is developed to interpret the horizontal refraction. The horizontal rays are calculated by the Gaussian beam method, in another word, the Gaussian beam method is used to calculate the modal amplitudes of vertical local modes. The Pekeris waveguide case is used as the benchmark to verify this hybrid model (3DGBM-M) for 2D propagation. The shallow water regions with sand dunes are modelled by adding sinusoidal variation to the ocean bottom in a Pekeris waveguide, and the underwater acoustic propagation in this region are calculated with 3DGBM-M and compared with the results calculated by wide-angle version of FOR3D. This hybrid model, 3DGBM-M, offers an robust solution to three-dimensional underwater acoustic propagation with improvement in spatial resolution, a result of using the Cartesian coordinates instead of the cylindrical coordinates, and high computing efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:32Z (GMT). No. of bitstreams: 1 ntu-103-R01525053-1.pdf: 3078533 bytes, checksum: d61b6fa55986f5d2d7b7b198e8eef36e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 III Abstract IV 目錄 V 圖目錄 VII 表目錄 X 符號目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究目的及方法 2 1.3 文獻回顧 3 1.3.1 高斯射線群法之演進 4 1.3.2 三維聲學計算之現況 5 1.4 論文架構 7 第2章 理論推導 8 2.1 初始聲場定義 8 2.2 聲線模態法 10 第3章 三維聲場模組建置 18 3.1 模組開發說明 18 3.1.1 開發環境 18 3.1.2 模組架構說明 18 3.1.3 其他開發設定 19 3.2 邊界條件設定 20 3.3 計算環境設定 21 3.4 程式架構 22 3.4.1 理論與模組之轉換說明 22 3.4.2 程式執行流程 23 3.4.3 聲線模態法之聲場演算 25 第4章 程式驗證與討論 29 4.1 Case 1: Pekeris waveguide 30 4.2 Case 2: Sinusoidal bottom 35 第5章 結果與討論 42 5.1 未來工作 43 參考文獻…… 45 附件A 環境輸入檔格式範例 49 附件B 3DGBM-M之聲場演算程式碼 52 附錄C 動態射線方程式q、p 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 水平折射 | zh_TW |
| dc.subject | 高斯射線群法 | zh_TW |
| dc.subject | 三維水下音傳計算模組 | zh_TW |
| dc.subject | 聲線模態法 | zh_TW |
| dc.subject | horizontal rays and vertical modes approach | en |
| dc.subject | horizontal refraction | en |
| dc.subject | 3D underwater acoustic propagation | en |
| dc.subject | Gaussian beam method | en |
| dc.title | 水下音傳之聲線模態法建立 | zh_TW |
| dc.title | Development of Underwater Acoustic Propagation
Model by Horizontal Rays and Vertical Modes Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃乾綱(Chien-Kung Huang),邱永盛(Yung-Sheng Chiu),張元櫻(Yuan-Ying Chang) | |
| dc.subject.keyword | 聲線模態法,水平折射,三維水下音傳計算模組,高斯射線群法, | zh_TW |
| dc.subject.keyword | horizontal rays and vertical modes approach,horizontal refraction,3D underwater acoustic propagation,Gaussian beam method, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
