請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55784完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佩燁(Rita Pei-Yeh Chen) | |
| dc.contributor.author | Chun-Ting Kuo | en |
| dc.contributor.author | 郭俊廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T05:08:26Z | - |
| dc.date.available | 2025-07-29 | |
| dc.date.copyright | 2020-08-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-29 | |
| dc.identifier.citation | 1. Gaugler, J., James, B., Johnson, T., Marin, A., and Weuve, J. (2019) 2019 Alzheimer's disease facts and figures. Alzheimers Dement 15, 321-387 2. Mayeux, R., and Sano, M. (1999) Treatment of Alzheimer's disease. N Engl J Med 341, 1670-1679 3. Wang, R., and Reddy, P. H. (2017) Role of glutamate and NMDA receptors in Alzheimer's disease. J Alzheimers Dis 57, 1041-1048 4. Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., and Jones, E. (2011) Alzheimer's disease. Lancet 377, 1019-1031 5. Kumar, A., Singh, A., and Ekavali. (2015) A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep 67, 195-203 6. Piaceri, I., Nacmias, B., and Sorbi, S. (2013) Genetics of familial and sporadic Alzheimer's disease. Front Biosci (Elite Ed) 5, 167-177 7. Lista, S., O'Bryant, S. E., Blennow, K., Dubois, B., Hugon, J., Zetterberg, H., and Hampel, H. (2015) Biomarkers in sporadic and familial Alzheimer's disease. J Alzheimers Dis 47, 291-317 8. Mullan, M., Crawford, F., Axelman, K., Houlden, H., Lilius, L., Winblad, B., and Lannfelt, L. (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1, 345-347 9. Crook, R., Verkkoniemi, A., Perez-Tur, J., Mehta, N., Baker, M., Houlden, H., Farrer, M., Hutton, M., Lincoln, S., Hardy, J., Gwinn, K., Somer, M., Paetau, A., Kalimo, H., Ylikoski, R., Pöyhönen, M., Kucera, S., and Haltia, M. (1998) A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 4, 452-455 10. Woodruff, G., Young, J. E., Martinez, F. J., Buen, F., Gore, A., Kinaga, J., Li, Z., Yuan, S. H., Zhang, K., and Goldstein, L. S. (2013) The presenilin-1 ΔE9 mutation results in reduced gamma-secretase activity, but not total loss of PS1 function, in isogenic human stem cells. Cell Rep 5, 974-985 11. Medina, M., Khachaturian, Z. S., Rossor, M., Avila, J., and Cedazo-Minguez, A. (2017) Toward common mechanisms for risk factors in Alzheimer's syndrome. Alzheimers Dement 3, 571-578 12. Holtzman, D. M., Herz, J., and Bu, G. (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2(a006312), 1-23 13. Michaelson, D. M. (2014) APOE ε4: the most prevalent yet understudied risk factor for Alzheimer's disease. Alzheimers Dement 10, 861-868 14. Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., Marcus, D. S., Cairns, N. J., Xie, X., Blazey, T. M., Holtzman, D. M., Santacruz, A., Buckles, V., Oliver, A., Moulder, K., Aisen, P. S., Ghetti, B., Klunk, W. E., McDade, E., Martins, R. N., Masters, C. L., Mayeux, R., Ringman, J. M., Rossor, M. N., Schofield, P. R., Sperling, R. A., Salloway, S., Morris, J. C. (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367, 795-804 15. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185 16. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Jr., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., and Phelps, C. H. (2011) Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7, 280-292 17. Iwata, N., Takaki, Y., Fukami, S., Tsubuki, S., and Saido, T. C. (2002) Region-specific reduction of Aβ-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging. J Neurosci Res 70, 493-500 18. Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., Rowan, M. J., and Selkoe, D. J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535-539 19. Kumar, S., Wirths, O., Stüber, K., Wunderlich, P., Koch, P., Theil, S., Rezaei-Ghaleh, N., Zweckstetter, M., Bayer, T. A., Brüstle, O., Thal, D. R., and Walter, J. (2016) Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol 131, 525-537 20. Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128-1132 21. Arispe, N., Rojas, E., and Pollard, H. B. (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc Natl Acad Sci U S A 90, 567-571 22. Brito-Moreira, J., Lourenco, M. V., Oliveira, M. M., Ribeiro, F. C., Ledo, J. H., Diniz, L. P., Vital, J. F. S., Magdesian, M. H., Melo, H. M., Barros-Aragao, F., de Souza, J. M., Alves-Leon, S. V., Gomes, F. C. A., Clarke, J. R., Figueiredo, C. P., De Felice, F. G., and Ferreira, S. T. (2017) Interaction of amyloid-beta (Aβ) oligomers with neurexin 2α and neuroligin 1 mediates synapse damage and memory loss in mice. J Biol Chem 292, 7327-7337 23. Canobbio, I., Abubaker, A. A., Visconte, C., Torti, M., and Pula, G. (2015) Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease. Front Cell Neurosci 9(65), 1-15 24. Merlini, M., Rafalski, V. A., Rios Coronado, P. E., Gill, T. M., Ellisman, M., Muthukumar, G., Subramanian, K. S., Ryu, J. K., Syme, C. A., Davalos, D., Seeley, W. W., Mucke, L., Nelson, R. B., and Akassoglou, K. (2019) Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer's disease model. Neuron 101(e1096), 1099-1108 25. Hansen, D. V., Hanson, J. E., and Sheng, M. (2018) Microglia in Alzheimer's disease. J Cell Biol 217, 459-472 26. Yeh, F. L., Wang, Y., Tom, I., Gonzalez, L. C., and Sheng, M. (2016) TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91, 328-340 27. Condello, C., Yuan, P., Schain, A., and Grutzendler, J. (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat Commun 6(6176), 1-14 28. Cai, Z., Hussain, M. D., and Yan, L.-J. (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 124, 307-321 29. Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K. M., Shi, Q., Rosenthal, A., Barres, B. A., Lemere, C. A., Selkoe, D. J., and Stevens, B. (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712-716 30. Braak, H., and Braak, E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82, 239-259 31. Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., Klee, J. B., Zhang, C., Wainger, B. J., Peitz, M., Kovacs, D. M., Woolf, C. J., Wagner, S. L., Tanzi, R. E., and Kim, D. Y. (2014) A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274-278 32. Nadezhdin, K. D., Bocharova, O. V., Bocharov, E. V., and Arseniev, A. S. (2011) Structural and dynamic study of the transmembrane domain of the amyloid precursor protein. Acta Naturae 3, 69-76 33. Barrett, P. J., Song, Y., Van Horn, W. D., Hustedt, E. J., Schafer, J. M., Hadziselimovic, A., Beel, A. J., and Sanders, C. R. (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336, 1168-1171 34. Cordy, J. M., Hussain, I., Dingwall, C., Hooper, N. M., and Turner, A. J. (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 100, 11735-11740 35. Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160, 113-123 36. Kalvodova, L., Kahya, N., Schwille, P., Ehehalt, R., Verkade, P., Drechsel, D., and Simons, K. (2005) Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 280, 36815-36823 37. Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C., and Fahrenholz, F. (1999) Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. U.S.A. 96, 3922-3927 38. Zhou, R., Yang, G., Guo, X., Zhou, Q., Lei, J., and Shi, Y. (2019) Recognition of the amyloid precursor protein by human gamma-secretase. Science 363, 1-8 39. Niemelä, P. S., Ollila, S., Hyvönen, M. T., Karttunen, M., and Vattulainen, I. (2007) Assessing the nature of lipid raft membranes. PLoS Comput. Biol 3, 0304-0312 40. Nicolau, D. V., Burrage, K., Parton, R. G., and Hancock, J. F. (2006) Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell. Biol. 26, 313-323 41. Winkler, E., Kamp, F., Scheuring, J., Ebke, A., Fukumori, A., and Steiner, H. (2012) Generation of Alzheimer disease-associated amyloid beta42/43 peptide by gamma-secretase can be inhibited directly by modulation of membrane thickness. J Biol Chem 287, 21326-21334 42. Cortés, V., Busso, D., Maiz, A., Arteaga, A., Nervi, F., and Rigotti, A. (2014) Physiological and pathological implications of cholesterol. Front. Biosci. 19, 416-428 43. Maulik, M., Westaway, D., Jhamandas, J. H., and Kar, S. (2013) Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 47, 37-63 44. Fu, Z., Aucoin, D., Davis, J., Van Nostrand, W. E., and Smith, S. O. (2015) Mechanism of Nucleated Conformational Conversion of Abeta42. Biochemistry 54, 4197-4207 45. Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E., and Smith, S. O. (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17, 561-567 46. Serpell, L. C. (2000) Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502, 16-30 47. Greenfield, N. J. (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1, 2527-2535 48. Bulheller, B. M., Rodger, A., and Hirst, J. D. (2007) Circular and linear dichroism of proteins. Phys Chem Chem Phys 9, 2020-2035 49. Holzwarth, G., and Doty, P. (1965) The ultraviolet circular dichroism of polypeptides. J Am Chem Soc 87, 218-228 50. Burck, J., Wadhwani, P., Fanghanel, S., and Ulrich, A. S. (2016) Oriented circular dichroism: A method to characterize membrane-active peptides in oriented lipid bilayers. Acc Chem Res 49, 184-192 51. Altenbach, C., Oh, K. J., Trabanino, R. J., Hideg, K., and Hubbell, W. L. (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40, 15471-15482 52. Chien, C. H., Helfinger, L. R., Bostock, M. J., Solt, A., Tan, Y. L., and Nietlispach, D. (2017) An adaptable phospholipid membrane mimetic system for solution NMR studies of membrane proteins. J Am Chem Soc 139, 14829-14832 53. Bruhn, H. (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389, 249-257 54. Frauenfeld, J., Löving, R., Armache, J. P., Sonnen, A. F., Guettou, F., Moberg, P., Zhu, L., Jegerschöld, C., Flayhan, A., Briggs, J. A., Garoff, H., Löw, C., Cheng, Y., and Nordlund, P. (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13, 345-351 55. Hill, C. H., Read, R. J., and Deane, J. E. (2015) Structure of human saposin A at lysosomal pH. Acta Crystallogr F Struct Biol Commun 71, 895-900 56. 尤韻婷(Y.-T. Y.) (2018) Studying the effect of lipid composition on the membrane spanning region of amyloid precursor protein. Master Thesis, National Taiwan University 57. Bottorf, L., Rafferty, S., Sahu, I. D., McCarrick, R. M., and Lorigan, G. A. (2017) Utilizing electron spin echo envelope modulation to distinguish between the local secondary structures of an α-helix and an amphipathic 3(10)-helical peptide. J Phys Chem B 121, 2961-2967 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55784 | - |
| dc.description.abstract | 阿茲海默症是最常見的一種失智症。根據類澱粉連鎖假說,過多乙型類澱粉胜肽的累積會形成寡聚體或纖維,而這些胜肽的凝集會進一步地對腦部的神經細胞造成傷害。乙型類澱粉胜肽是由兩個坐落在細胞膜上的蛋白酶β-secretase與γ-secretase依序裁切類澱粉前驅蛋白而得到的代謝產物。此外,脂質組成一直都被認為是造成阿茲海默症的危險因子之一,例如膽固醇。而細胞膜脂質組成是否會影響類澱粉前驅蛋白在跨膜區的結構,並進而影響到γ-secretase對其的裁切位點的選擇尚待釐清,所以我們合成了含有類澱粉前驅蛋白跨膜區序列的胜肽,並在其中特定位點標記上含有自由基的化合物:MTSSL。將帶有標記的胜肽與DOPC這種脂質混合形成脂質體。利用圓二色儀觀察標記胜肽位於膜上的二級結構。最後,透過電子自旋共振光譜儀觀察標記胜肽的兩個標記位點之間的距離。本研究發現降低胜肽對脂質的比例以及搭配適當的緩衝溶液可以得到較好電子自旋共振訊號。無論是何種脂質組成(DOPC以及有或無添加膽固醇的混合脂質(POPC、POPE和POPS))中,我們合成的穿膜蛋白G29R1和V36R1之間以及G29R1和V40R1之間的距離相近,大約是12至13 Å。而第32和第46個位點之間在DOPC中的距離約為26 Å。另外,本實驗也嘗試製作nanodisc當作另一個脂質的系統,目前已能成功組裝由DPPC所組成的nanodisc。我們的結果顯示穿膜蛋白在29至40之間的結果不會受到脂質組成的改變,但我們得到的距離資訊與現有文獻的結構模型仍有一些出入。因此,我們需要做更多的結構研究去驗證我們提出的假說。 | zh_TW |
| dc.description.abstract | Alzheimer’s disease (AD) is the most common form of dementia. According to the Amyloid cascade hypothesis, accumulation of Amyloid β (Aβ) peptide leads to the fibril formation or oligomerization further damages the neuron cell in the brain. Aβ peptide is a catabolic metabolite from the processing of amyloid precursor protein (APP) by two integral membrane proteins, β-secretase, and γ-secretase. It is known that lipid composition, such as cholesterol, is a risk factor of AD. Whether lipid composition alters the structure of APP’s transmembrane region, and further influences the cutting site of γ-secretase remains elusive. We synthesized a peptide containing the transmembrane domain (TMD) of APP and label it with MTSSL, a radical carrier, at different positions of the peptide. The spin-labeled peptide was mixed with lipids to form liposomes. Circular dichroism spectroscopy was used to measure the secondary structure of the spin-labeled peptide in the liposome. The spin-spin distance of the peptide in the liposomes with different lipid compositions was measured by electron spin resonance spectroscopy. I found that decreasing the ratio of peptide to lipid and using PBS to prepare liposomes can obtain better electron spin resonance signals. In our transmembrane peptide, the distances between G29R1 and V36R1 and that between G29R1 and V40R1 are approximately 12-13 Å regardless of lipid composition (in DOPC or mix lipid (POPC, POPE, and POPS) with or without cholesterol). The distance between I32R1 and V46R1 is approximately 26 Å in DOPC liposome. Moreover, we have successfully made a nanodisc with DPPC. Our data suggested that the structure of our peptide is not affected by lipid composition in the regions of 29 to 40. The distance we obtained does not match the structural models proposed in the literature. More structural studies should be done to prove our hypothesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T05:08:26Z (GMT). No. of bitstreams: 1 U0001-2807202021521200.pdf: 9416183 bytes, checksum: 7b367c0b67cd0c0854e6058fa06cb005 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract ii Abbreviations iii Content viii Figure content xiii Table content xviii Chapter 1. Introduction 1 1.1 Alzheimer’s disease 1 1.1.1 History of Alzheimer’s disease 1 1.1.2 Current treatment of Alzheimer’s disease 1 1.1.3 Hallmarks of Alzheimer’s disease 2 1.1.4 Familial Alzheimer’s disease and Sporadic Alzheimer’s disease 3 1.2 Amyloid Cascade Hypothesis 5 1.2.1 Hypothesis 5 1.2.2 Accumulation of Aβ 6 1.2.3 Toxicity of Aβ aggregation 6 1.2.4 Microglia and neuroinflammation 6 1.2.5 Toxicity of hyperphosphorylated tau 7 1.2.6 Controversy in the hypothesis 7 1.3 Aβ and lipid composition 8 1.3.1 Transmembrane domain of amyloid precursor protein 8 1.3.2 γ-Secretase and lipid composition 10 1.3.3 Cholesterol 11 1.4 Structure study of Aβ aggregation 14 1.5 Method to study protein structure in lipid 15 1.5.1 Circular dichroism 15 1.5.2 Electron spin resonance (ESR) 17 1.5.3 Dynamic light scattering (DLS) 18 1.5.4 Nanodisc 18 1.6 Aim and experimental design 20 Chapter 2. Materials and Methods 22 2.1 Materials 22 2.1.1 Chemicals 22 2.1.2 Consumable materials 25 2.1.3 Instruments 25 2.2 Methods 26 2.2.1 Peptide synthesis (solid-phase peptide synthesis, SPPS) 26 2.2.2 Peptide Cleavage 29 2.2.3 Peptide labeling 29 2.2.4 peptide purification 30 2.2.5 liposome preparation 31 2.2.6 Dynamic light scattering (DLS) 32 2.2.7 Circular dichroism (CD) 32 2.2.8 Electron Spin Resonance 33 2.2.9 Human saposin A protein preparation 33 2.2.10 Nanodisc preparation 35 Chapter 3. Improvement of sample preparation 37 3.1 Peptide preparation 37 3.1.1 KKWK-Aβ22-55 peptide design 37 3.1.2 Peptide synthesis optimization 38 3.2 Labeled yield optimization 41 3.3 ESR condition optimization 45 3.3.1 Double-labeled peptide without spin dilution yields an atypical ESR result 45 3.3.2 ESR of double-labeled peptide with peptide dilution seems no peak broadening 47 3.3.3 Problem in peptide spin dilution 50 3.3.4 Lipid spin dilution is better than peptide spin dilution 53 3.3.5 An improvement of sample preparation in lipid spin dilution 57 Chapter 4. Structural study of pepD in liposome 61 4.1 Introduction to antimicrobial peptides (AMPs) 61 4.2 Model peptide to study structure in membrane system 61 4.3 Synthesis, purification, and labeling of mutant pepD peptides 62 4.4 Characteristics of mutant pepD peptides 66 4.5 Distance information of pepD peptide in DOPC in DI water 68 Chapter 5. Structural study of mutant Aβ peptide in liposome 71 5.1 Crude peptide synthesis 71 5.2 Peptide purification 73 5.3 Peptide labeling 74 5.4 Distance between G29 and V36 as well as G29 and V40 in APP’s transmembrane region 77 5.4.1 Oriented circular dichroism (OCD) 77 5.4.2 Circular dichroism (CD) 81 5.4.3 CW-ESR and distance 85 5.5 Distance between I32 and V46 in APP’s transmembrane region 95 5.5.1 Oriented circular dichroism (OCD) 95 5.5.2 Circular dichroism (CD) 96 5.5.3 Double electron-electron resonance (DEER) and the fitting distance 96 Chapter 6. An alternative way to study membrane protein 99 6.1 hSapA purification 99 6.2 Nanodisc preparation 102 6.3 Problem in incorporation of peptide into nanodisc 105 Chapter 7. Discussion, conclusion, and future work 106 7.1 Synthesis, purification and labeling optimization of mutant Aβ peptides 106 7.2 Improvement of mutant Aβ peptides liposome preparation 106 7.3 OCD result of the mutant Aβ peptide and pepD peptide 108 7.4 Distance information of mutant Aβ peptides in different lipid compositions 109 7.5 Nanodisc preparation 112 Chapter 8. Future work 113 Reference 115 | |
| dc.language.iso | en | |
| dc.subject | 乙型類澱粉胜肽 | zh_TW |
| dc.subject | 類澱粉前驅蛋白 | zh_TW |
| dc.subject | 脂質體 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 電子自旋共振 | zh_TW |
| dc.subject | Amyloid β | en |
| dc.subject | Amyloid precursor protein | en |
| dc.subject | Alzheimer’s disease | en |
| dc.subject | Liposome | en |
| dc.subject | Electron spin resonance | en |
| dc.title | 以電子自旋共振光譜儀探索類澱粉前驅蛋白於跨膜區之結構 | zh_TW |
| dc.title | Exploring the Structure of Membrane-spanning Region of Amyloid Precursor Protein by Electron Spin Resonance Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江昀緯(Yun-Wei Chiang),廖永豐(Yung-Feng Liao),李明道(Ming-Tao Lee) | |
| dc.subject.keyword | 乙型類澱粉胜肽,類澱粉前驅蛋白,阿茲海默症,脂質體,電子自旋共振, | zh_TW |
| dc.subject.keyword | Amyloid β,Amyloid precursor protein,Alzheimer’s disease,Liposome,Electron spin resonance, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU202002001 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2807202021521200.pdf 未授權公開取用 | 9.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
