Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55773
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾泰琳(Tai-Lin Tseng)
dc.contributor.authorYu-Jhen Linen
dc.contributor.author林鈺真zh_TW
dc.date.accessioned2021-06-16T05:08:17Z-
dc.date.available2020-08-06
dc.date.copyright2020-08-06
dc.date.issued2020
dc.date.submitted2020-07-30
dc.identifier.citationAbers, G. A. (2000). Hydrated subducted crust at 100-250 km depth. Earth and Planetary Science Letters, 176(3), 323-330. doi:10.1016/S0012-821X(00)00007-8
Abers, G. A. (2005). Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Physics of the Earth and Planetary Interiors, 149(1-2), 7-29. doi:10.1016/j.pepi.2004.10.002
Abers, G. A., Plank, T., and Hacker, B. R. (2003). The wet Nicaraguan slab. Geophysical Research Letters, 30(2). doi:10.1029/2002gl015649
Abers, G. A., and Sarker, G. (1996). Dispersion of regional body waves at 100-150 km depth beneath Alaska: In situ constraints on metamorphism of subducted crust. Geophysical Research Letters, 23(10), 1171-1174. doi:10.1029/96gl00974
Ansell, J. H., and Gubbins, D. (1986). Anomalous high-frequency wave propagation from the Tonga--Kermadec seismic zone to New Zealand. Geophysical Journal International, 85(1), 93-106. doi:10.1111/j.1365-246X.1986.tb05173.x
Barazangi, M., Isacks, B., and Oliver, J. (1972). Propagation of seismic waves through and beneath the lithosphere that descends under the Tonga Island Arc. Journal of Geophysical Research, 77(5), 952-958. doi:10.1029/JB077i005p00952
Bock, G., Schurr, B., and Asch, G. (2000). High-resolution image of the oceanic moho in the subducting Nazca Plate fromP-Sconverted waves. Geophysical Research Letters, 27(23), 3929-3932. doi:10.1029/2000gl011881
Bokelmann, G., and Maufroy, E. (2007). Mantle structure under Gibraltar constrained by dispersion of body waves. Geophysical Research Letters, 34(22). doi:10.1029/2007gl030964
Bokelmann, G., and Rodler, F.-A. (2014). Nature of the Vrancea seismic zone (Eastern Carpathians) – New constraints from dispersion of first-arriving P-waves. Earth and Planetary Science Letters, 390, 59-68. doi:10.1016/j.epsl.2013.12.034
Buurman, H., and West, M. E. (2010). Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano, in Power, J.A., Coombs, M.L., and Freymueller, J.T., eds., The 2006 eruption of Augustine Volcano, Alaska, U.S. Geol Surv Prof Pap 1769, 41–57, https://doi.org/10.3133/pp17692
Catchings, R. D., Goldman, M. R., Li, Y. G., and Chan, J. H. (2016). Continuity of the West Napa–Franklin Fault Zone Inferred from Guided Waves Generated by Earthquakes Following the 24 August 2014Mw 6.0 South Napa Earthquake. Bulletin of the Seismological Society of America, 106(6), 2721-2746. doi:10.1785/0120160154
Chen, K. H., Kennett, B. L. N., and Furumura, T. (2013). High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. Journal of Geophysical Research: Solid Earth, 118(2), 665-680. doi:10.1002/jgrb.50071
Chen, K. H., Tseng, Y. L., Furumura, T., and Kennett, B. L. N. (2015). Anisotropy in the subducting slab: Observations from Philippine Sea plate events in Taiwan. Geophysical Research Letters, 42(23). doi:10.1002/2015gl066227
Chiu, J.-M., Isacks, B. L., and Cardwell, R. K. (1985). Propagation of high-frequency seismic waves inside the subducted lithosphere from intermediate-depth earthquakes recorded in the Vanuatu Arc. Journal of Geophysical Research, 90(B14). doi:10.1029/JB090iB14p12741
Coulson, S., Garth, T., and Rietbrock, A. (2018). Velocity Structure of the Subducted Yakutat Terrane, Alaska: Insights From Guided Waves. Geophysical Research Letters, 45(8), 3420-3428. doi:10.1002/2017gl076583
Ellsworth, W. L., and Malin, P. E. (2011). Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves. Geological Society, London, Special Publications, 359(1), 39-53. doi:10.1144/sp359.3
Essen, K., Braatz, M., Ceranna, L., Friederich, W., and Meier, T. (2009). Numerical modelling of seismic wave propagation along the plate contact of the Hellenic Subduction Zone—the influence of a deep subduction channel. Geophysical Journal International, 179(3), 1737-1756. doi:10.1111/j.1365-246X.2009.04369.x
Fukao, Y., Hori, S., and Ukawa, M. (1983). A seismological constraint on the depth of basalt-eclogite transition in the subducting oceanic crust. Nature, 303, 413-415.
Fukao, Y., Kanjo, K., and Nakamura, I. (1978). Deep Seismic Zone as an Upper Mantle Reflector of Body Waves. Nature, 272(5654), 606-608. doi:DOI 10.1038/272606a0
Furumura, T., and Kennett, B. L. N. (2005). Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. Journal of Geophysical Research, 110(B10). doi:10.1029/2004jb003486
Furumura, T., and Kennett, B. L. N. (2008). A Scattering Waveguide in the Heterogeneous Subducting Plate. In Earth Heterogeneity and Scattering Effects on Seismic Waves (pp. 195-217).
Garth, T., Rietbrock, A., 2014a. Downdip velocity changes in subducted oceanic crust beneath Northern Japan—insights from guided waves. Geophys. J. Int.198 (3), 1342–1358, doi: 10.1093/gji/ggu206
Garth, T., Rietbrock, A., 2014b. Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati–Benioff zone. Geology42 (3), 207–210, doi: 10.1130/G34730.1
Garth, T., and Rietbrock, A. (2017). Constraining the hydration of the subducting Nazca plate beneath Northern Chile using subduction zone guided waves. Earth and Planetary Science Letters, 474, 237-247. doi:10.1016/j.epsl.2017.06.041
Gubbins, D., and Snieder, R. (1991). Dispersion ofPwaves in subducted lithosphere: Evidence for an eclogite layer. Journal of Geophysical Research: Solid Earth, 96(B4), 6321-6333. doi:10.1029/90jb02741
Hacker, B. R., Abers, G. A., and Peacock, S. M. (2003). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research: Solid Earth, 108(B1). doi:10.1029/2001jb001127
Helffrich, G., and Stein, S. (1993). Study of the structure of the slab-mantle interface using reflected and converted seismic waves. Geophysical Journal International, 115(1), 14-40. doi:10.1111/j.1365-246X.1993.tb05586.x
Hori, S. (1990). Seismic waves guided by untransformed oceanic crust subducting into the mantle: the case of the Kanto district, central Japan. Tectonophysics, 176(3-4), 355-376. doi:10.1016/0040-1951(90)90078-m
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., and Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191. doi:10.1016/j.epsl.2014.02.026
Huppert, L. N., and Frohlich, C. (1981). ThePvelocity within the Tonga Benioff Zone determined from traced rays and observations. Journal of Geophysical Research, 86(B5). doi:10.1029/JB086iB05p03771
Isacks, B. L., and Barazangi, M. (1973). High Frequency Shear Waves Guided by a Continuous Lithosphere Descending beneath western South America. Geophysical Journal International, 33(2), 129-139. doi:10.1111/j.1365-246X.1973.tb01854.x
Jian, P. R., Tseng, T. L., Liang, W. T., and Huang, P. H. (2018). A New Automatic Full‐Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan Area. Bulletin of the Seismological Society of America, 108(2), 573-587. doi:10.1785/0120170231
Kao, H., and Rau, R.-J. (1999). Detailed structures of the subducted Philippine Sea Plate beneath northeast Taiwan: A new type of double seismic zone. Journal of Geophysical Research: Solid Earth, 104(B1), 1015-1033. doi:10.1029/1998jb900010
Kao, H., Shen, S.-s. J., and Ma, K.-F. (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. Journal of Geophysical Research: Solid Earth, 103(B4), 7211-7229. doi:10.1029/97jb03510
Kennett, B. L. N., and Furumura, T. (2008). Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. Geophysical Journal International, 172(1), 363-382. doi:10.1111/j.1365-246X.2007.03647.x
Konstantinou, K. I., and Melis, N. S. (2008). High-Frequency Shear-Wave Propagation across the Hellenic Subduction Zone. Bulletin of the Seismological Society of America, 98(2), 797-803. doi:10.1785/0120060238
Lance, G. N., and Williams, W. T. (1967). A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems. The Computer Journal, 9(4), 373-380. doi:10.1093/comjnl/9.4.373
Li, Y.-G., and Malin, P. E. (2008). San Andreas Fault damage at SAFOD viewed with fault-guided waves. Geophysical Research Letters, 35(8). doi:10.1029/2007gl032924
Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., Tsai, C.-H., Shin, T.-C., and Huang, M.-H. (2010). GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi-Chi earthquake in Taiwan. Journal of Geophysical Research, 115(B7). doi:10.1029/2009jb006417
Luo, C.-R., and Liu, C.-W. (2015). Scale effects on discharge and sediment transport rates of Taiwan within 1994 and 2014. International Journal of Engineering and Advanced Technology Studies, 5, 8-47.
Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America 66(3), 639-666.
Martin, S., Haberland, C., and Rietbrock, A. (2005). Forearc decoupling of guided waves in the Chile-Peru subduction zone. Geophysical Research Letters, 32(23). doi:10.1029/2005gl024183
Martin, S., and Rietbrock, A. (2003). Guided waves propagating in subducted oceanic crust. Journal of Geophysical Research, 108(B11). doi:10.1029/2003jb002450
Martin, S., and Rietbrock, A. (2006). Guided waves at subduction zones: dependencies on slab geometry, receiver locations and earthquake sources. Geophysical Journal International, 167(2), 693-704. doi:10.1111/j.1365-246X.2006.02963.x
Mechie, J., Schurr, B., Yuan, X., Schneider, F., Sippl, C., Minaev, V., Gadoev, M., Oimahmadov, I., Abdybachaev, U., Moldobekov, B., and Orunbaev, S. (2019). Observations of guided waves from the Pamir seismic zone provide additional evidence for the existence of subducted continental lower crust. Tectonophysics, 762, 1-16. doi:10.1016/j.tecto.2019.04.007
Mitronovas, W., and Isacks, B. L. (1971). Seismic velocity anomalies in the upper mantle beneath the Tonga-Kermadec Island Arc. Journal of Geophysical Research, 76(29), 7154-7180. doi:10.1029/JB076i029p07154
Oda, H., Tanaka, T., and Seya, K. (1990). Subducting oceanic crust on the Philippine Sea plate in Southwest Japan. Tectonophysics, 172(1-2), 175-189. doi:10.1016/0040-1951(90)90068-j
Prieto, G. A., Parker, R. L., and Vernon Iii, F. L. (2009). A Fortran 90 library for multitaper spectrum analysis. Computers Geosciences, 35(8), 1701-1710. doi:10.1016/j.cageo.2008.06.007
Scrivner, C. W., and Helmberger, D. V. (1994). Seismic waveform modeling in the Los Angeles Basin. Bulletin of the Seismological Society of America, 84, 1310-1326.
Seno, T. (1993). A Model for the Motion of the Philippine Sea Plate Consistent With NUVEL-1 and Geological Data. Journal of Geophysical Research, 98(B10), 17,941-917,948.
Snoke, J. A., I. S. Sacks, and Okada, H. (1974). A model not requiring continuous lithosphere for anomalous high-frequency arrivals from deepfocus South American earthquakes. Physics of the Earth and Planetary Interiors, 9, 199-206.
Sun, D., Miller, M. S., Piana Agostinetti, N., Asimow, P. D., and Li, D. (2014). High frequency seismic waves and slab structures beneath Italy. Earth and Planetary Science Letters, 391, 212-223. doi:10.1016/j.epsl.2014.01.034
Tepp, G., Ebinger, C. J., and Yun, S.-H. (2016). Spectral analysis of dike-induced earthquakes in Afar, Ethiopia. Journal of Geophysical Research: Solid Earth, 121(4), 2560-2574. doi:10.1002/2015jb012658
Ustaszewski, K., Wu, Y.-M., Suppe, J., Huang, H.-H., Chang, C.-H., and Carena, S. (2012). Crust–mantle boundaries in the Taiwan–Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal. Tectonophysics, 578, 31-49. doi:10.1016/j.tecto.2011.12.029
van der Hilst, R., and Snieder, R. (1996). High-frequency precursors toPwave arrivals in New Zealand: Implications for slab structure. Journal of Geophysical Research: Solid Earth, 101(B4), 8473-8488. doi:10.1029/95jb03113
Wu, F. T., Kuo-Chen, H., and McIntosh, K. D. (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 90, 173-208. doi:10.1016/j.jseaes.2014.03.024
Wu, F. T., Liang, W.-T., Lee, J.-C., Benz, H., and Villasenor, A. (2009). A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. Journal of Geophysical Research, 114(B7). doi:10.1029/2008jb005950
Wu, W., and Irving, J. C. E. (2018). Evidence from high frequency seismic waves for the basalt–eclogite transition in the Pacific slab under northeastern Japan. Earth and Planetary Science Letters, 496, 68-79. doi:10.1016/j.epsl.2018.05.034
Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., and Nakamura, M. (2008). A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481. doi:10.1785/0120070166
Yang, H., Zhu, L., and Chu, R. (2009). Fault-Plane Determination of the 18 April 2008 Mount Carmel, Illinois, Earthquake by Detecting and Relocating Aftershocks. Bulletin of the Seismological Society of America, 99(6), 3413-3420. doi:10.1785/0120090038
Yuan, X., Sobolev, S. V., Kind, R., Oncken, O., Bock, G., Asch, G., Schurr, B., Graeber, F., Rudloff, A., Hanka, W., Wylegalla, K., Tibi, R., Haberland, C., Rietbrock, A., Giese, P., Wigger, P., Röwer, P., Zandt, G., Beck, S., Wallace, T., Pardo, M., and Comte, D. (2000). Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature, 408(6815), 958-961. doi:10.1038/35050073
Zhu, L., and Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619-627. doi:10.1046/j.1365-246X.2002.01610.x
曾羽龍(2014),利用琉球隱沒帶導波求取隱沒板塊非均向性,國立台灣大學理學院地質科學研究所碩士論文,共186頁
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55773-
dc.description.abstract具導波特徵的訊號已在南琉球隱沒帶深度小於150公里的中深層地震被前人觀測到,其P波呈現低頻(<2 Hz)初達波並接著持續時間長的高頻(3-10 Hz)尾波。由於近期發生許多介於150至300公里之間的地震,讓我們有機會針對1997至2016年間、規模大於4的中深層地震做系統性地分析,並根據其波形和頻率特徵進行分類,更好地量化行經於隱沒帶板塊的各種震波特性。
首先本研究使用三分量的P波資料計算移動視窗相關係數,以偵測具有相似波形特性的地震事件,接著採用階層式分群法進行分類,被歸為同一家族的地震可能具有相同的震源破裂區域或相似的傳播路徑,結果顯示在0.5-10 Hz範圍些許地震存在著相似特徵(cc≥0.6),但大部分地震的波形相似度偏低,並沒有找到極相似(cc≥0.9)的地震,暗示此區域的中深層地震尚未發生重複破裂的行為。
接著利用時頻圖分析高頻信號的延遲時間,不同頻率之震波的到時特徵可用以推得震波行經的速度構造。本研究發現穿越特定路徑範圍內的一組地震具有清楚的P波連續頻散現象,延遲時間在頻率0.5 Hz到6 Hz間逐漸地隨頻率增加而拉長,差距達2秒。還有另一種P波頻散則呈現兩個先後分開抵達的波至,通常高頻信號相較於低頻信號晚到將近1秒的時間。第二種頻散與前人研究在隱沒帶較淺地震的觀察相符,此現象可能是由隱沒板塊中的低速層或小尺度非均質體所造成,而第一種連續的頻散特徵則是本研究在台灣的新發現,由波形模擬結果推論,欲產生此現象,震波所通過的低速層波導構造(約5-7 %之P波異常)需具有較薄的厚度(<10公里)或較長的傳遞距離(≥100公里)。
zh_TW
dc.description.abstractUsing intraslab earthquakes shallower than 150 km in the southernmost Ryukyu subduction zone, previous studies in Taiwan found the waveguide effect that typically shows a low-frequency (<2Hz) first P arrival followed by sustained high-frequency (3–10 Hz) wave trains. Recently occurred deeper events at depth 150-300 km allow us to better quantify the properties of those seismic waves traveling in the subduction zone. In this study, we aim to systematically scan through the local broadband waveforms of the intermediate depth earthquakes with M>4 between 1997 and 2016. Events are classified based on the waveform characteristics and their frequency contents.

To detect events with similar properties, we applied sliding-window cross-correlation (SCC) using three components of P waveform data simultaneously for a set of stations. We then sorted the events into families based on correlation coefficients (cc) and inter-distances between waveform pairs. The events within a family likely came from the same source region with similar rupture, as such their paths to a particular receiver should produce similar waveforms. In our results, although several events present enough similarities (cc≥0.6 threshold) and can be grouped as a family, we did not observe closely resembled pairs (cc≥0.9), implying no “repeating” behavior for those intermediate intraslab events.
One important property is the frequency content of the arrivals that may be related to the speed of structure traveled. We have developed a work scheme to determine the delayed time of higher-frequency energy using spectrogram and spectral ratios. A set of 6 events show clear continuous dispersion at frequency range between 0.5 and 6 Hz where arrival time smoothly increases by about 2 s in total. Another type of dispersive waveforms appeared as two distinct arrivals: low frequency and then high-frequency energy, separated by around 1 s. The latter case has been reported in the previous study for shallower event and it was interpreted as effect from low-velocity layer or heterogeneity of the subducted slab. On the other hand, the continuous dispersion is a new feature observed by our study, which may infer a thinner layer and/or longer propagation for some kind of reflecting waves to develop such interference. The simulation indicates that the low-velocity waveguide should be thinner than 10 km and the propagation distances within the layer should be longer than 100 km, assuming a P-wave drop of about 5-7%.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:08:17Z (GMT). No. of bitstreams: 1
U0001-2807202022351800.pdf: 10856968 bytes, checksum: fb70ec1df66a5efd0d271facf7b928a5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
圖目錄 ix
表目錄 xii
第1章 緒論 1
1.1 以地震波解析隱沒帶構造 1
1.2 導波的前人研究 1
1.2.1 導波的特徵與分布 1
1.2.2 全球隱沒帶導波研究之演變 2
1.2.3 台灣的導波研究 12
1.3 琉球隱沒帶之地體構造與地震特性 13
1.4 研究動機與目的 16
1.5 論文內容 16
第2章 研究原理與方法 17
2.1 波形相似度的計算 17
2.2 聚合式階層分群法 17
2.3 高斯時頻圖 19
2.4 FI (Frequency Index) 20
第3章 資料與分析 22
3.1 資料來源與測站分布 22
3.2 資料篩選與前置處理 23
3.3 相關係數的參數設定與分析 25
3.3.1 時窗長度的取決 26
3.3.2 濾波頻段的選擇 28
3.3.3 相關係數門檻值的決定 28
3.3.4 相似地震對的震源距離 30
3.4 聚合式階層分群法的距離計算方式 30
3.5 相似地震目錄的建立 33
3.6 高斯時頻圖之參數設置 35
3.6.1 時窗長度 35
3.6.2 取樣頻率 35
3.6.3 高斯濾波寬度 36
3.7 FI的參數設置 36
第4章 結果與討論 38
4.1 相似地震的搜尋結果 38
4.2 導波的觀察結果 41
4.2.1 導波頻散特徵在三分量的呈現 41
4.2.2 高頻導波之延遲時間隨深度的變化 42
4.2.3 弧前高頻導波之延遲時間隨震央距的變化 44
4.3 頻率特徵的量化結果 46
4.3.1 FI的分析與討論 46
4.3.2 高頻導波的空間分布 51
4.4 頻散現象的量化結果 53
4.5 利用WFSB測站探討頻散特徵隨路徑的變化 58
4.6 WFSB測站和鄰近站SXI1的頻散特徵比較 59
4.7 台灣-琉球隱沒帶的導波構造 61
4.7.1 低速層與導波的關係(假設Type I) 61
4.7.2 低速層作為波導的數值模擬 61
4.7.3 板塊內小尺度非均質體與導波的關係 (假設Type III) 67
4.8 導波觀測的限制 68
參考文獻 70
附錄A 測站資訊 77
附錄B 地震目錄 78
附錄C 不同濾波頻段的地震分類 81
附錄D 多重視窗頻譜法 82
附錄E 連續頻散特徵的高斯時頻圖 83
dc.language.isozh-TW
dc.subject導波zh_TW
dc.subject琉球隱沒帶zh_TW
dc.subject波形分類zh_TW
dc.subject中深層地震zh_TW
dc.subjectRyukyu subduction zoneen
dc.subjectintermediate-depth earthquakesen
dc.subjectwaveform classificationen
dc.subjectguided waveen
dc.title南琉球隱沒帶中深層地震的波形特徵和分類zh_TW
dc.titleThe Waveform Characteristics and Classification of Intermediate-depth Earthquakes in Southern Ryukyu Subduction Zoneen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee梁文宗(Wen-Tzong Liang),陳伯飛(Po-Fei Chen),林佩瑩(Pei-Ying Lin),簡珮如(Pei-Ru Jian)
dc.subject.keyword琉球隱沒帶,導波,波形分類,中深層地震,zh_TW
dc.subject.keywordRyukyu subduction zone,guided wave,waveform classification,intermediate-depth earthquakes,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202002003
dc.rights.note有償授權
dc.date.accepted2020-07-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-2807202022351800.pdf
  未授權公開取用
10.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved