Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55758
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor余忠仁
dc.contributor.authorKuang-Hua Chengen
dc.contributor.author鄭廣華zh_TW
dc.date.accessioned2021-06-16T05:08:05Z-
dc.date.available2014-10-15
dc.date.copyright2014-10-15
dc.date.issued2014
dc.date.submitted2014-08-19
dc.identifier.citationAgache, I., Ciobanu, C., Agache, C., & Anghel, M. (2010). Increased serum IL-17 is an independent risk factor for severe asthma. Respir Med, 104(8), 1131-1137. doi: 10.1016/j.rmed.2010.02.018
Ariza, M. E., Williams, M. V., & Wong, H. K. (2013). Targeting IL-17 in psoriasis: from cutaneous immunobiology to clinical application. Clin Immunol, 146(2), 131-139. doi: 10.1016/j.clim.2012.12.004
Aujla, S. J., Chan, Y. R., Zheng, M., Fei, M., Askew, D. J., Pociask, D. A., . . . Kolls, J. K. (2008). IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med, 14(3), 275-281. doi: 10.1038/nm1710
Biffl, W. L., Moore, E. E., Moore, F. A., & Peterson, V. M. (1996). Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg, 224(5), 647-664.
Brown, G., Malakouti, M., Wang, E., Koo, J. Y., & Levin, E. (2014). Anti-IL-17 phase II data for psoriasis: A review. J Dermatolog Treat. doi: 10.3109/09546634.2013.878448
Bruce, J., Krukowski, Z. H., Al-Khairy, G., Russell, E. M., & Park, K. G. (2001). Systematic review of the definition and measurement of anastomotic leak after gastrointestinal surgery. Br J Surg, 88(9), 1157-1168. doi: 10.1046/j.0007-1323.2001.01829.x
Buonocore, S., Ahern, P. P., Uhlig, H. H., Ivanov, II, Littman, D. R., Maloy, K. J., & Powrie, F. (2010). Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature, 464(7293), 1371-1375. doi: 10.1038/nature08949
Busse, W. W., Holgate, S., Kerwin, E., Chon, Y., Feng, J., Lin, J., & Lin, S. L. (2013). Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med, 188(11), 1294-1302. doi: 10.1164/rccm.201212-2318OC
Castelli, G. P., Pognani, C., Meisner, M., Stuani, A., Bellomi, D., & Sgarbi, L. (2004). Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care, 8(4), R234-242. doi: 10.1186/cc2877
Claridge, J. A., Golob, J. F., Jr., Fadlalla, A. M., Malangoni, M. A., Blatnik, J., & Yowler, C. J. (2009). Fever and leukocytosis in critically ill trauma patients: it is not the blood. Am Surg, 75(5), 405-410.
Cook, D., & Mandell, L. (2000). Endotracheal aspiration in the diagnosis of ventilator-associated pneumonia. Chest, 117(4 Suppl 2), 195S-197S.
Cua, D. J., & Tato, C. M. (2010). Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol, 10(7), 479-489. doi: 10.1038/nri2800
de Menezes Neves, P. D., Machado, J. R., dos Reis, M. A., Faleiros, A. C., de Lima Pereira, S. A., & Rodrigues, D. B. (2013). Distinct expression of interleukin 17, tumor necrosis factor alpha, transforming growth factor beta, and forkhead box P3 in acute rejection after kidney transplantation. Ann Diagn Pathol, 17(1), 75-79. doi: 10.1016/j.anndiagpath.2012.08.002
Drago, L., Vassena, C., Dozio, E., Corsi, M. M., De Vecchi, E., Mattina, R., & Romano, C. (2011). Procalcitonin, C-reactive protein, interleukin-6, and soluble intercellular adhesion molecule-1 as markers of postoperative orthopaedic joint prosthesis infections. Int J Immunopathol Pharmacol, 24(2), 433-440.
Fabregas, N., Ewig, S., Torres, A., El-Ebiary, M., Ramirez, J., de La Bellacasa, J. P., . . . Cabello, H. (1999). Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax, 54(10), 867-873.
Fan, H., Li, L. X., Han, D. D., Kou, J. T., Li, P., & He, Q. (2012). Increase of peripheral Th17 lymphocytes during acute cellular rejection in liver transplant recipients. Hepatobiliary Pancreat Dis Int, 11(6), 606-611.
Ferretti, S., Bonneau, O., Dubois, G. R., Jones, C. E., & Trifilieff, A. (2003). IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol, 170(4), 2106-2112.
Frisullo, G., Nociti, V., Iorio, R., Patanella, A. K., Marti, A., Caggiula, M., . . . Batocchi, A. P. (2008). IL17 and IFNgamma production by peripheral blood mononuclear cells from clinically isolated syndrome to secondary progressive multiple sclerosis. Cytokine, 44(1), 22-25. doi: 10.1016/j.cyto.2008.08.007
Gamez-Diaz, L. Y., Enriquez, L. E., Matute, J. D., Velasquez, S., Gomez, I. D., Toro, F., . . . Jaimes, F. A. (2011). Diagnostic accuracy of HMGB-1, sTREM-1, and CD64 as markers of sepsis in patients recently admitted to the emergency department. Acad Emerg Med, 18(8), 807-815. doi: 10.1111/j.1553-2712.2011.01113.x
Genovese, M. C., Greenwald, M., Cho, C. S., Berman, A., Jin, L., Cameron, G. S., . . . Banerjee, S. (2014). Phase 2 randomized study of subcutaneous ixekizumab, an Anti-IL-17 monoclonal antibody, in biologic-naive or TNF-IR patients with rheumatoid arthritis. Arthritis Rheumatol. doi: 10.1002/art.38617
Giannoudis, P. V., Smith, M. R., Evans, R. T., Bellamy, M. C., & Guillou, P. J. (1998). Serum CRP and IL-6 levels after trauma. Not predictive of septic complications in 31 patients. Acta Orthop Scand, 69(2), 184-188.
Gibot, S., Kolopp-Sarda, M. N., Bene, M. C., Cravoisy, A., Levy, B., Faure, G. C., & Bollaert, P. E. (2004). Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med, 141(1), 9-15.
Golob, J. F., Jr., Claridge, J. A., Sando, M. J., Phipps, W. R., Yowler, C. J., Fadlalla, A. M., & Malangoni, M. A. (2008). Fever and leukocytosis in critically ill trauma patients: it's not the urine. Surg Infect (Larchmt), 9(1), 49-56. doi: 10.1089/sur.2007.023
Hasegawa, E., Sonoda, K. H., Shichita, T., Morita, R., Sekiya, T., Kimura, A., . . . Yoshimura, A. (2013). IL-23-independent induction of IL-17 from gammadeltaT cells and innate lymphoid cells promotes experimental intraocular neovascularization. J Immunol, 190(4), 1778-1787. doi: 10.4049/jimmunol.1202495
Ishigame, H., Kakuta, S., Nagai, T., Kadoki, M., Nambu, A., Komiyama, Y., . . . Iwakura, Y. (2009). Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity, 30(1), 108-119. doi: 10.1016/j.immuni.2008.11.009
Iwakura, Y., Ishigame, H., Saijo, S., & Nakae, S. (2011). Functional specialization of interleukin-17 family members. Immunity, 34(2), 149-162. doi: 10.1016/j.immuni.2011.02.012
Keyel, P. A. (2014). How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine. doi: 10.1016/j.cyto.2014.03.007
Kleinschek, M. A., Boniface, K., Sadekova, S., Grein, J., Murphy, E. E., Turner, S. P., . . . Kastelein, R. A. (2009). Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation. J Exp Med, 206(3), 525-534. doi: 10.1084/jem.20081712
Kragsbjerg, P., Holmberg, H., & Vikerfors, T. (1995). Serum concentrations of interleukin-6, tumour necrosis factor-alpha, and C-reactive protein in patients undergoing major operations. Eur J Surg, 161(1), 17-22.
Krehmeier, U., Bardenheuer, M., Voggenreiter, G., Obertacke, U., Schade, F. U., & Majetschak, M. (2002). Effects of antimicrobial agents on spontaneous and endotoxin-induced cytokine release of human peripheral blood mononuclear cells. J Infect Chemother, 8(2), 194-197. doi: 10.1007/s101560200036
Labro, M. T. (1992). Immunological evaluation of cefodizime: a unique molecule among cephalosporins. Infection, 20 Suppl 1, S45-47.
Lalor, S. J., Dungan, L. S., Sutton, C. E., Basdeo, S. A., Fletcher, J. M., & Mills, K. H. (2011). Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol, 186(10), 5738-5748. doi: 10.4049/jimmunol.1003597
Li, J., Zhang, Y., Lou, J., Zhu, J., He, M., Deng, X., & Cai, Z. (2012). Neutralisation of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One, 7(10), e46506. doi: 10.1371/journal.pone.0046506
Li, Q., Han, Y., Fei, G., Guo, Z., Ren, T., & Liu, Z. (2012). IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett, 148(2), 144-150. doi: 10.1016/j.imlet.2012.10.011
Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., . . . Eberl, G. (2008). In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med, 205(6), 1381-1393. doi: 10.1084/jem.20080034
Luzzani, A., Polati, E., Dorizzi, R., Rungatscher, A., Pavan, R., & Merlini, A. (2003). Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med, 31(6), 1737-1741. doi: 10.1097/01.CCM.0000063440.19188.ED
Martin-Orozco, N., & Dong, C. (2009). The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr Opin Investig Drugs, 10(6), 543-549.
Martin, C., Boisson, C., Haccoun, M., Thomachot, L., & Mege, J. L. (1997). Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med, 25(11), 1813-1819.
Mokart, D., Merlin, M., Sannini, A., Brun, J. P., Delpero, J. R., Houvenaeghel, G., . . . Blache, J. L. (2005). Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery. Br J Anaesth, 94(6), 767-773. doi: 10.1093/bja/aei143
Moller, A. S., Ovstebo, R., Haug, K. B., Joo, G. B., Westvik, A. B., & Kierulf, P. (2005). Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs). Cytokine, 32(6), 304-315. doi: 10.1016/j.cyto.2005.11.008
Muller, B., Gencay, M. M., Gibot, S., Stolz, D., Hunziker, L., Tamm, M., & Christ-Crain, M. (2007). Circulating levels of soluble triggering receptor expressed on myeloid cells (sTREM)-1 in community-acquired pneumonia. Crit Care Med, 35(3), 990-991.
Murugaiyan, G., & Saha, B. (2009). Protumor vs antitumor functions of IL-17. J Immunol, 183(7), 4169-4175. doi: 10.4049/jimmunol.0901017
Papp, K. A., Reid, C., Foley, P., Sinclair, R., Salinger, D. H., Williams, G., . . . Martin, D. A. (2012). Anti-IL-17 receptor antibody AMG 827 leads to rapid clinical response in subjects with moderate to severe psoriasis: results from a phase I, randomized, placebo-controlled trial. J Invest Dermatol, 132(10), 2466-2469. doi: 10.1038/jid.2012.163
Park, S. W., Kim, M., Brown, K. M., D'Agati, V. D., & Lee, H. T. (2011). Paneth cell-derived interleukin-17A causes multiorgan dysfunction after hepatic ischemia and reperfusion injury. Hepatology, 53(5), 1662-1675. doi: 10.1002/hep.24253
Pittman, K., & Kubes, P. (2013). Damage-associated molecular patterns control neutrophil recruitment. J Innate Immun, 5(4), 315-323. doi: 10.1159/000347132
Pugin, J., Auckenthaler, R., Mili, N., Janssens, J. P., Lew, P. D., & Suter, P. M. (1991). Diagnosis of ventilator-associated pneumonia by bacteriologic analysis of bronchoscopic and nonbronchoscopic 'blind' bronchoalveolar lavage fluid. Am Rev Respir Dis, 143(5 Pt 1), 1121-1129. doi: 10.1164/ajrccm/143.5_Pt_1.1121
Reato, G., Cuffini, A. M., Tullio, V., Mandras, N., Roana, J., Banche, G., . . . Carlone, N. A. (2004). Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils. Int J Antimicrob Agents, 23(2), 150-154. doi: 10.1016/j.ijantimicag.2003.07.006
Roark, C. L., French, J. D., Taylor, M. A., Bendele, A. M., Born, W. K., & O'Brien, R. L. (2007). Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing gamma delta T cells. J Immunol, 179(8), 5576-5583.
Rouvier, E., Luciani, M. F., Mattei, M. G., Denizot, F., & Golstein, P. (1993). CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol, 150(12), 5445-5456.
Rumio, C., Sommariva, M., Sfondrini, L., Palazzo, M., Morelli, D., Vigano, L., . . . Balsari, A. (2012). Induction of Paneth cell degranulation by orally administered Toll-like receptor ligands. J Cell Physiol, 227(3), 1107-1113. doi: 10.1002/jcp.22830
Shen, F., & Gaffen, S. L. (2008). Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine, 41(2), 92-104. doi: 10.1016/j.cyto.2007.11.013
Steinman, L. (2007). A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med, 13(2), 139-145. doi: 10.1038/nm1551
Sutton, C. E., Lalor, S. J., Sweeney, C. M., Brereton, C. F., Lavelle, E. C., & Mills, K. H. (2009). Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity, 31(2), 331-341. doi: 10.1016/j.immuni.2009.08.001
Sutton, C. E., Mielke, L. A., & Mills, K. H. (2012). IL-17-producing gammadelta T cells and innate lymphoid cells. Eur J Immunol, 42(9), 2221-2231. doi: 10.1002/eji.201242569
Tan, H. L., & Rosenthal, M. (2013). IL-17 in lung disease: friend or foe? Thorax, 68(8), 788-790. doi: 10.1136/thoraxjnl-2013-203307
Torres, A., & El-Ebiary, M. (2000). Bronchoscopic BAL in the diagnosis of ventilator-associated pneumonia. Chest, 117(4 Suppl 2), 198S-202S.
Uzzan, B., Cohen, R., Nicolas, P., Cucherat, M., & Perret, G. Y. (2006). Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med, 34(7), 1996-2003. doi: 10.1097/01.CCM.0000226413.54364.36
Vanaudenaerde, B. M., Dupont, L. J., Wuyts, W. A., Verbeken, E. K., Meyts, I., Bullens, D. M., . . . Verleden, G. M. (2006). The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J, 27(4), 779-787. doi: 10.1183/09031936.06.00019405
Ventetuolo, C. E., & Levy, M. M. (2008). Biomarkers: diagnosis and risk assessment in sepsis. Clin Chest Med, 29(4), 591-603, vii. doi: 10.1016/j.ccm.2008.07.001
Wang, G., Wu, K., Li, W., Zhao, E., Shi, L., Wang, J., . . . Wang, G. (2014). Role of IL-17 and TGF-beta in peritoneal adhesion formation after surgical trauma. Wound Repair Regen. doi: 10.1111/wrr.12203
Willcocks, S., Offord, V., Seyfert, H. M., Coffey, T. J., & Werling, D. (2013). Species-specific PAMP recognition by TLR2 and evidence for species-restricted interaction with Dectin-1. J Leukoc Biol, 94(3), 449-458. doi: 10.1189/jlb.0812390
Wu, J., Du, J., Liu, L., Li, Q., Rong, W., Wang, L., . . . Qu, C. (2012). Elevated pretherapy serum IL17 in primary hepatocellular carcinoma patients correlate to increased risk of early recurrence after curative hepatectomy. PLoS One, 7(12), e50035. doi: 10.1371/journal.pone.0050035
Yeremenko, N., Paramarta, J. E., & Baeten, D. (2014). The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr Opin Rheumatol, 26(4), 361-370. doi: 10.1097/BOR.0000000000000069
Zhang, G. Q., Han, F., Fang, X. Z., & Ma, X. M. (2012). CD4+, IL17 and Foxp3 expression in different pTNM stages of operable non-small cell lung cancer and effects on disease prognosis. Asian Pac J Cancer Prev, 13(8), 3955-3960.
Zhu, H., Li, J., Wang, S., Liu, K., Wang, L., & Huang, L. (2013). Hmgb1-TLR4-IL-23-IL-17A axis promote ischemia-reperfusion injury in a cardiac transplantation model. Transplantation, 95(12), 1448-1454. doi: 10.1097/TP.0b013e318293b7e1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55758-
dc.description.abstract研究背景:
外科手術後併發細菌感染的情況,必須及時診斷並給予適當抗生素的治療。但是因外科手術本身造成組織器官的損傷,可以引起人體發炎反應而出現發燒以及白血球增加的情況。這些症狀同時也是病菌感染的最常見臨床表徵,臨床醫師變得難以決定何時進行抽血檢驗、細菌培養或抗生素治療。手術後感染及敗血症的診斷變得令人混淆與困難。本研究嘗試探討發炎性感染指標:介白素17A (Interleukin-17A, IL-17A)在重大手術後的變化,以及能否運用於診斷手術後感染併發症。
研究方法:
本研究為前瞻性觀察研究,研究地點是台北馬偕紀念醫院外科加護病房。目標是接受胸部、腹部以及腦部手術的成年病人。收集手術前後的血液檢體以及手術後第一天每四個小時從引流管中收集胸水、腹水或腦脊髓液引流檢體。以Bio-RadR bead-based Multiplex assay測量IL-17A與相關介白素(IL-17A偵測界限0.1-24512pg/ml)。同時記錄臨床資料包括血液白血球、發燒天數、手術出血量、感染併發症等。如果手術後48小時再次發燒,再次留取檢體進行血液以及引流液體的介白質濃度分析。
研究結果:
資料收集從2013年6月至2014年4月間,總共收集90位病人檢體。其中48位接受胸腔手術;1位接受腦室引流手術和41位接受腹部手術。平均年齡61.8±12.5歲(範圍27-89歲)。
手術前沒有感染的病人,手術前血液中肺癌、肝癌或食道癌病人可在血液測得微量IL-17A(範圍:0-7.06 pg/ml)。手術後回到加護病房12小時內追蹤血液IL-17A濃度皆下降(p=0.0487)。手術後一天內引流體液中表現少量IL-17A(範圍:0-21.33pg/ml)多在8-12小時達到濃度高峰之後下降。但是發生感染併發症的病人其第24小時的IL-17A濃度多高於第12小時。48小時之後發生腹內吻合處滲漏感染而發燒的病人,則其腹水的IL-17A在發燒之際明顯高於因其他原因發燒的病人(中位數23.45 (n=7) vs. 10.41pg/ml(n=6), p=0.0066)。體液中IL-17A濃度與開刀時間長短、出血量、血液中IL-17A以及手術後白血球數目並無顯著相關。手術後48小時發燒時病人手術引流液體IL-17A濃度與IL-1s顯著正相關(rho=0.686, p=0.0004),也與IL-22呈顯著正相關(rho=0.739, p=0.0003)。以腹腔引流液IL-17A高於14.4pg/ml為標準則可以幫助診斷腹腔內感染(敏感性100%;特異性83.33%)。
結論:
外科手術後在引流液中可測到少量IL-17A,若是24小時之際腹水IL-17A增加則暗示發生手術後併發症。以腹腔引流液IL-17A高於14.4pg/ml為標準則可以幫助診斷腹腔內感染,及早發現腸道或膽道吻合處滲漏感染。IL-17A的表現與IL-1s和IL-22有關。癌症病人血液中可以檢測出IL-17A,且在手術腫瘤切除後IL-17A呈現下降趨勢
zh_TW
dc.description.abstractPurpose:
Timely identification of septic complication is important for post-surgery patients. However, systemic inflammatory response syndrome secondary to surgical tissue damage can induce fever and leukocytosis. Thus trigger of infection workup and diagnosis of post-operation sepsis are difficult and confusing. In this study, we investigated the change and diagnostic value of pro-inflammatory interleukin-17A (IL-17A) in patients with major operations.
Methods:
This is a prospective observatory study in surgical intensive care unit. Patients’ plasmas were collected before and after the major operations. Body fluids from drainage tube, including pleural, peritoneal or cerebral-spinal fluid were collected every 4 hours on the first day after the operation. The IL-17A and relative interleukin were measured by Bio-RadR bead-based Multiplex assay (detection limit of IL-17A:0.1-24512pg/ml). Clinical data such as white blood cell count、fever days、and infectious complication were recorded. Plasma and drainage fluid were checked again when fever was noted 48 hours after the surgery.
Results:
Ninety patients with informed consent were enrolled, and their mean age was 61.8±12.5 years-old(range:27-89). 48 patients underwent video-assisted thoracoscopic surgery, 1 had external ventricular drain after intracranial hemorrhage, and 41 patients had abdominal operations.
For patients with malignancy of lung, liver or esophagus, IL-17A was detected in plasma before the operation (range: 0-7.06 pg/ml), and the concentration decreased after the cancer resection (p=0.0487). IL-17A in the drainage fluid (range: 0-21.33pg/ml) was noted on the first day after the major operation, and reached peak concentration at 8-12 hours. For patients had septic complications, their IL-17A in the drainage fluid tended to increase rather than decrease at 12-24 hours after the operation. After abdominal operations 48 hours, the febrile patients complicated with intra-abdominal infection following bile or intestine leak had significant higher IL-17A in the drainage fluid compared to patients with extra-abdominal infections such as ventilator-associated pneumonia or catheter-related blood stream infection (median 23.45 vs. 10.41pg/ml, p=0.0066). Peritoneal drainage IL-17A >14.4pg/ml helped diagnosis of gastro-intestine leak and sepsis (sensitivity: 100%, specificity: 83.33%).
Concentration of IL-17A in the drainage fluid did not correlate significantly with serum IL-17A、 operation duration、 blood loss or post-operation white cell count. For patients with recurred fever 48 hours after operations, their IL-17A in the drainage fluid correlated significantly with concentration of IL-1s(rho=0.686, p=0.0004) and IL-22(rho=0.739, p=0.0003)。
Conclusion:
Minimal concentration of IL-17A in the drainage fluid was detected in patients with major operation. From 12 to 24 hours after the operation, increasing IL-17A in the drainage fluid inferred septic complications Monitoring IL-17A in drainage fluid is non-invasive and aid early identification of focal infections. IL-17A >14.4 pg/ml in the peritoneal drainage fluid helps diagnosis of intra-abdominal infections. Secretion of IL-17A after operation correlated with IL-1s and IL-22. IL-17A was detectable in serum of patients with malignancy, and the concentration decreased after the resection of cancer.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T05:08:05Z (GMT). No. of bitstreams: 1
ntu-103-P01421004-1.pdf: 637552 bytes, checksum: d348e91458f089c44801809fb178f6f3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書……………………………………………………………… 2
誌謝……………………………………………………………………………… 4
中文摘要………………………………………………………………………… 5-6
英文摘要………………………………………………………………………… 7-9
碩士論文內容
第一章 緒論 ………………………………………………………………… 10
(1) 背景 ……………………………………………………………… 10-14
(2) 研究假說 …………………………………………………………… 15
(3) 研究方法與材料 …………………………………………………… 15-17
(4) 統計方法 …………………………………………………………… 17
第二章 結果 …………………………………………………………… 18-23
第三章 討論 ……………………………………………………………… 24-30
第四章 結論與展望 ……………………………………………………… 31-32
參考文獻……………………………………………………………………… 33-39
表1 …………………………………………………………………………… 40
表2 …………………………………………………………………………… 41
圖 1 …………………………………………………………………………… 42
圖 2 …………………………………………………………………………… 43
圖 3 …………………………………………………………………………… 44
圖 4 …………………………………………………………………………… 45
縮寫對照表…………………………………………………………………… 46
附錄:個人在碩博士班修業期間所發表之相關論文清冊 ………………… 47
dc.language.isozh-TW
dc.subject全身發炎反應zh_TW
dc.subject介白素22zh_TW
dc.subject介白素1szh_TW
dc.subject介白素17Azh_TW
dc.subject敗血症zh_TW
dc.subject外科手術zh_TW
dc.subjectsystemic inflammatory response syndromeen
dc.subjectSurgeryen
dc.subjectsepsisen
dc.subjectInterleukin-22en
dc.subjectInterleukin-1βen
dc.subjectInterleukin-17Aen
dc.title介白素17A在外科手術後的變化與診斷感染的能力zh_TW
dc.titleChange of Interleukin-17A and its diagnostic value of sepsis in patients with major operationsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛博仁,江伯倫
dc.subject.keyword外科手術,敗血症,全身發炎反應,介白素17A,介白素1s,介白素22,zh_TW
dc.subject.keywordSurgery,sepsis,systemic inflammatory response syndrome,Interleukin-17A,Interleukin-1β,Interleukin-22,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
Appears in Collections:臨床醫學研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
622.61 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved