Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor繆希椿(Shi-Chuen Miaw)
dc.contributor.authorYu-Ci Syuen
dc.contributor.author徐鈺棋zh_TW
dc.date.accessioned2021-06-16T04:20:19Z-
dc.date.available2019-10-09
dc.date.copyright2014-10-09
dc.date.issued2014
dc.date.submitted2014-08-20
dc.identifier.citationApetoh, L., Quintana, F.J., Pot, C., Joller, N., Xiao, S., Kumar, D., Burns, E.J., Sherr, D.H., Weiner, H.L., and Kuchroo, V.K. (2010). The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature immunology 11, 854-861.
Aziz, A., Soucie, E., Sarrazin, S., and Sieweke, M.H. (2009). MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 326, 867-871.
Benkhelifa, S., Provot, S., Lecoq, O., Pouponnot, C., Calothy, G., and Felder-Schmittbuhl, M.P. (1998). mafA, a novel member of the maf proto-oncogene family, displays developmental regulation and mitogenic capacity in avian neuroretina cells. Oncogene 17, 247-254.
Cao, S., Liu, J., Song, L., and Ma, X. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. Journal of immunology 174, 3484-3492.
Chesi, M., Bergsagel, P.L., Shonukan, O.O., Martelli, M.L., Brents, L.A., Chen, T., Schrock, E., Ried, T., and Kuehl, W.M. (1998). Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91, 4457-4463.
Civil, A., van Genesen, S.T., and Lubsen, N.H. (2002). c-Maf, the gammaD-crystallin Maf-responsive element and growth factor regulation. Nucleic acids research 30, 975-982.
Crotzer, V.L., and Blum, J.S. (2009). Autophagy and its role in MHC-mediated antigen presentation. Journal of immunology 182, 3335-3341.
Dhiman, R., Bandaru, A., Barnes, P.F., Saha, S., Tvinnereim, A., Nayak, R.C., Paidipally, P., Valluri, V.L., Rao, L.V., and Vankayalapati, R. (2011). c-Maf-dependent growth of Mycobacterium tuberculosis in a CD14(hi) subpopulation of monocyte-derived macrophages. Journal of immunology 186, 1638-1645.
Dlakic, M., Grinberg, A.V., Leonard, D.A., and Kerppola, T.K. (2001). DNA sequence-dependent folding determines the divergence in binding specificities
between Maf and other bZIP proteins. The EMBO journal 20, 828-840.
Eychene, A., Rocques, N., and Pouponnot, C. (2008). A new MAFia in cancer. Nature reviews. Cancer 8, 683-693.
Fujiwara, K.T., Kataoka, K., and Nishizawa, M. (1993). Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8, 2371-2380.
Gilmour, J., Cousins, D.J., Richards, D.F., Sattar, Z., Lee, T.H., and Lavender, P. (2007). Regulation of GM-CSF expression by the transcription factor c-Maf. The Journal of allergy and clinical immunology 120, 56-63.
Gleimer, M., von Boehmer, H., and Kreslavsky, T. (2012). PLZF Controls the Expression of a Limited Number of Genes Essential for NKT Cell Function. Frontiers in immunology 3, 374.
Gordon, S., and Taylor, P.R. (2005). Monocyte and macrophage heterogeneity. Nature reviews. Immunology 5, 953-964.
Gosmain, Y., Avril, I., Mamin, A., and Philippe, J. (2007). Pax-6 and c-Maf functionally interact with the alpha-cell-specific DNA element G1 in vivo to promote glucagon gene expression. The Journal of biological chemistry 282, 35024-35034.
Hale, T.K., Myers, C., Maitra, R., Kolzau, T., Nishizawa, M., and Braithwaite, A.W. (2000). Maf transcriptionally activates the mouse p53 promoter and causes a p53-dependent cell death. The Journal of biological chemistry 275, 17991-17999.
Hegde, S.P., Zhao, J., Ashmun, R.A., and Shapiro, L.H. (1999). c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 94, 1578-1589.
Hiramatsu, Y., Suto, A., Kashiwakuma, D., Kanari, H., Kagami, S., Ikeda, K., Hirose, K., Watanabe, N., Grusby, M.J., Iwamoto, I., and Nakajima, H. (2010). c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. Journal of leukocyte biology 87, 703-712.
Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983.
Hodge, M.R., Chun, H.J., Rengarajan, J., Alt, A., Lieberson, R., and Glimcher, L.H. (1996). NF-AT-Driven interleukin-4 transcription potentiated by NIP45. Science 274, 1903-1905.
Homma, Y., Cao, S., Shi, X., and Ma, X. (2007). The Th2 transcription factor c-Maf inhibits IL-12p35 gene expression in activated macrophages by targeting NF-kappaB nuclear translocation. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 27, 799-808.
Hurt, E.M., Wiestner, A., Rosenwald, A., Shaffer, A.L., Campo, E., Grogan, T., Bergsagel, P.L., Kuehl, W.M., and Staudt, L.M. (2004). Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer cell 5, 191-199.
Igarashi, K., and Sun, J. (2006). The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxidants & redox signaling 8, 107-118.
Kataoka, K., Fujiwara, K.T., Noda, M., and Nishizawa, M. (1994). MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Molecular and cellular biology 14, 7581-7591.
Kataoka, K., Igarashi, K., Itoh, K., Fujiwara, K.T., Noda, M., Yamamoto, M., and Nishizawa, M. (1995). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Molecular and cellular biology 15, 2180-2190.
Kataoka, K., Noda, M., and Nishizawa, M. (1994). Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Molecular and cellular biology 14, 700-712.
Kataoka, K. (2007). Multiple mechanisms and functions of maf transcription factors in the regulation of tissue-specific genes. Journal of biochemistry 141, 775-781.
Kawai, S., Goto, N., Kataoka, K., Saegusa, T., Shinno-Kohno, H., and Nishizawa, M. (1992). Isolation of the avian transforming retrovirus, AS42, carrying the v-maf oncogene and initial characterization of its gene product. Virology 188, 778-784.
Kerppola, T.K., and Curran, T. (1994). A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-3158.
Kim, J.I., Li, T., Ho, I.C., Grusby, M.J., and Glimcher, L.H. (1999). Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proceedings of the National Academy of Sciences of the United States of America 96, 3781-3785.
Kurschner, C., and Morgan, J.I. (1995). The maf proto-oncogene stimulates transcription from multiple sites in a promoter that directs Purkinje neuron-specific gene expression. Molecular and cellular biology 15, 246-254.
Kusakabe, M., Hasegawa, K., Hamada, M., Nakamura, M., Ohsumi, T., Suzuki, H., Tran, M.T., Kudo, T., Uchida, K., Ninomiya, H., et al. (2011). c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 118, 1374-1385.
Lai, C.Y., Lin, S.Y., Wu, C.K., Yeh, L.T., Sytwu, H.K., and Miaw, S.C. (2012). Tyrosine phosphorylation of c-Maf enhances the expression of IL-4 gene. Journal of immunology 189, 1545-1550.
Li, T., Xiao, J., Wu, Z., Qiu, G., and Ding, Y. (2010). Transcriptional activation of human MMP-13 gene expression by c-Maf in osteoarthritic chondrocyte. Connective tissue research 51, 48-54.
Lin, B.S., Tsai, P.Y., Hsieh, W.Y., Tsao, H.W., Liu, M.W., Grenningloh, R., Wang, L.F., Ho, I.C., and Miaw, S.C. (2010). SUMOylation attenuates c-Maf-dependent IL-4 expression. European journal of immunology 40, 1174-1184.
Luo, C., Chen, M., Madden, A., and Xu, H. (2012). Expression of complement components and regulators by different subtypes of bone marrow-derived macrophages. Inflammation 35, 1448-1461.
MacLean, H.E., Kim, J.I., Glimcher, M.J., Wang, J., Kronenberg, H.M., and Glimcher, L.H. (2003). Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Developmental biology 262, 51-63.
Mahoney, K.M., Petrovic, N., Schacke, W., and Shapiro, L.H. (2007). CD13/APN transcription is regulated by the proto-oncogene c-Maf via an atypical response element. Gene 403, 178-187.
Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of immunology 177, 7303-7311.
Matsushima-Hibiya, Y., Nishi, S., and Sakai, M. (1998). Rat maf-related factors: the specificities of DNA binding and heterodimer formation. Biochemical and biophysical research communications 245, 412-418.
Meyre, D., Delplanque, J., Chevre, J.C., Lecoeur, C., Lobbens, S., Gallina, S., Durand, E., Vatin, V., Degraeve, F., Proenca, C., et al. (2009). Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nature genetics 41, 157-159.
Murray, P.J., and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nature reviews. Immunology 11, 723-737.
Monteiro, P., Gilot, D., Le Ferrec, E., Lecureur, V., N'Diaye, M., Le Vee, M., Podechard, N., Pouponnot, C., and Fardel, O. (2007). AhR- and c-maf-dependent induction of beta7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochemical and biophysical research communications 358, 442-448.
Moriguchi, T., Hamada, M., Morito, N., Terunuma, T., Hasegawa, K., Zhang, C., Yokomizo, T., Esaki, R., Kuroda, E., Yoh, K., et al. (2006). MafB is essential for renal development and F4/80 expression in macrophages. Molecular and cellular biology 26, 5715-5727.
Morito, N., Yoh, K., Fujioka, Y., Nakano, T., Shimohata, H., Hashimoto, Y., Yamada, A., Maeda, A., Matsuno, F., Hata, H., et al. (2006). Overexpression of c-Maf contributes to T-cell lymphoma in both mice and human. Cancer research 66, 812-819.
Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nature reviews. Immunology 8, 958-969.
Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D., and Yamamoto, M. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1-12.
Nakamura, M., Hamada, M., Hasegawa, K., Kusakabe, M., Suzuki, H., Greaves, D.R., Moriguchi, T., Kudo, T., and Takahashi, S. (2009). c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene 445, 66-72.
Nishikawa, K., Nakashima, T., Takeda, S., Isogai, M., Hamada, M., Kimura, A., Kodama, T., Yamaguchi, A., Owen, M.J., Takahashi, S., and Takayanagi, H. (2010). Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. The Journal of clinical investigation 120, 3455-3465.
Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K.T., and Kawai, S. (1989). v-maf, a viral oncogene that encodes a 'leucine zipper' motif. Proceedings of the National Academy of Sciences of the United States of America 86, 7711-7715.
Ogawa, K., Funaba, M., Chen, Y., and Tsujimoto, M. (2006). Activin A functions as a Th2 cytokine in the promotion of the alternative activation of macrophages. Journal of immunology 177, 6787-6794.
Ogino, H., and Yasuda, K. (1998). Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280, 115-118.
O'Reilly, D., Addley, M., Quinn, C., MacFarlane, A.J., Gordon, S., McKnight, A.J., and Greaves, D.R. (2004). Functional analysis of the murine Emr1 promoter identifies a novel purine-rich regulatory motif required for high-level gene expression in macrophages. Genomics 84, 1030-1040.
O'Shea, J.J., Gadina, M., and Kanno, Y. (2011). Cytokine signaling: birth of a pathway. Journal of immunology 187, 5475-5478.
Peng, S., Wu, H., Mo, Y.Y., Watabe, K., and Pauza, M.E. (2009). c-Maf increases apoptosis in peripheral CD8 cells by transactivating Caspase 6. Immunology 127, 267-278.
Pot, C., Apetoh, L., and Kuchroo, V.K. (2011). Type 1 regulatory T cells (Tr1) in autoimmunity. Seminars in immunology 23, 202-208.
Pot, C., Jin, H., Awasthi, A., Liu, S.M., Lai, C.Y., Madan, R., Sharpe, A.H., Karp, C.L., Miaw, S.C., Ho, I.C., and Kuchroo, V.K. (2009). Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. Journal of immunology 183, 797-801.
Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995). MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic acids research 23, 4878-4884.
Ring, B.Z., Cordes, S.P., Overbeek, P.A., and Barsh, G.S. (2000). Regulation of mouse lens fiber cell development and differentiation by the Maf gene. Development 127, 307-317.
Rodero, M.P., and Khosrotehrani, K. (2010). Skin wound healing modulation by macrophages. International journal of clinical and experimental pathology 3, 643-653.
Romao, S., Gasser, N., Becker, A.C., Guhl, B., Bajagic, M., Vanoaica, D., Ziegler, U., Roesler, J., Dengjel, J., Reichenbach, J., and Munz, C. (2013). Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. The Journal of cell biology 203, 757-766.
Rutz, S., Noubade, R., Eidenschenk, C., Ota, N., Zeng, W., Zheng, Y., Hackney, J., Ding, J., Singh, H., and Ouyang, W. (2011). Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nature immunology 12, 1238-1245.
Sakai, M., Imaki, J., Yoshida, K., Ogata, A., Matsushima-Hibaya, Y., Kuboki, Y., Nishizawa, M., and Nishi, S. (1997). Rat maf related genes: specific expression in chondrocytes, lens and spinal cord. Oncogene 14, 745-750.
Sun, J., Muto, A., Hoshino, H., Kobayashi, A., Nishimura, S., Yamamoto, M., Hayashi, N., Ito, E., and Igarashi, K. (2001). The promoter of mouse transcription repressor bach1 is regulated by Sp1 and trans-activated by Bach1. Journal of biochemistry 130, 385-392.
Swaroop, A., Xu, J.Z., Pawar, H., Jackson, A., Skolnick, C., and Agarwal, N. (1992). A conserved retina-specific gene encodes a basic motif/leucine zipper domain. Proceedings of the National Academy of Sciences of the United States of America 89, 266-270.
Tanaka, S., Suto, A., Iwamoto, T., Kashiwakuma, D., Kagami, S.I., Suzuki, K., Takatori, H., Tamachi, T., Hirose, K., Onodera, A., et al. (2014). Sox5 and c-Maf cooperatively induce Th17 cell differentiation via RORgammat induction as downstream targets of Stat3. The Journal of experimental medicine.
Van Dyken, S.J., and Locksley, R.M. (2013). Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annual review of immunology 31, 317-343.
Vinson, C., Acharya, A., and Taparowsky, E.J. (2006). Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochimica et biophysica acta 1759, 4-12.
Wu, M.F., Chen, S.T., Yang, A.H., Lin, W.W., Lin, Y.L., Chen, N.J., Tsai, I.S., Li, L., and Hsieh, S.L. (2013). CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages. Blood 121, 95-106.
Xu, J., Yang, Y., Qiu, G., Lal, G., Wu, Z., Levy, D.E., Ochando, J.C., Bromberg, J.S., and Ding, Y. (2009). c-Maf regulates IL-10 expression during Th17 polarization. Journal of immunology 182, 6226-6236.
Yang, Y., Chauhan, B.K., Cveklova, K., and Cvekl, A. (2004). Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors. Journal of molecular biology 344, 351-368.
Yang, Y., and Cvekl, A. (2007). Large Maf Transcription Factors: Cousins of AP-1 Proteins and Important Regulators of Cellular Differentiation. The Einstein journal of biology and medicine : EJBM 23, 2-11.
Yoshida, T., Ohkumo, T., Ishibashi, S., and Yasuda, K. (2005). The 5'-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf. Nucleic acids research 33, 3465-3478.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55733-
dc.description.abstract巨噬細胞是先天性免疫反應的主要元素之一,他們組成了人體抵抗各式各樣病原體的第一道防線。在先前的研究中,c-Maf曾被報導會直接促進IL-10的表現,及藉由干擾c-Rel進入細胞核來抑制IL-12p35的表現。此外,c-Maf會直接促進F4/80的表現,使巨噬細胞呈現一種已分化完成的表型。當遇到環境中的污染物質-多環芳香烴,巨噬細胞中的c-Maf會與AhR結合共同促進intergrin β7的表現。由於c-Maf在巨噬細胞發育和面對細胞激素、環境汙染物及病原體的反應上扮演重要的角色,我的研究目的便是要深入地了解巨噬細胞中的c-Maf在免疫反應中所扮演的角色。
我們在生物體外極化骨髓幹細胞分化來的巨噬細胞為典型活化巨噬細胞(又稱為M1)和非典型活化巨噬細胞(又稱為M2)。我們發現c-Maf信使核醣核酸的表現量在M0最高,而c-Maf蛋白質的表現量在M1最高。
藉由信使核醣核酸微陣列的分析,我們得到了c-Maf野生型和剔除型的典型活化巨噬細胞和非典型活化巨噬細胞的基因表達譜。由比較c-Maf野生型和剔除型的巨噬細胞,我們可以導出哪些基因是受c-Maf的直接或間接調控。
到目前為止,我們已經檢驗了27個在c-Maf野生型和剔除型巨噬細胞中表現量差異超過兩倍的基因,其中的十個基因確實有顯著差異。其中一個基因為Ccr2,它在c-Maf剔除型的非典型活化巨噬細胞的表現量顯著高於c-Maf野生型的非典型活化巨噬細胞;其他的基因則為IL-6、IL-10、Cx3cr1、IL-12p35、IL-12p40、Clec5a、Tlr12、Runx3和Stat1,它們的表現量在c-Maf剔除型的典型活化巨噬細胞及c-Maf野生型的典型活化巨噬細胞間有顯著的差異。在這些基因中,我們藉由染色質免疫沉澱證實了在IL-12p40和Runx3啟動子上預測的保守c-Maf結合位。這顯示了c-Maf可藉由與IL-12p40和Runx3啟動子上的c-Maf結合位結合來直接地負調控IL-12p40和Runx3的表現。
zh_TW
dc.description.abstractMacrophages are major elements in innate immunity, and they comprise the first line of defense against various pathogens. In previous studies, c-Maf has been reported to transactivate IL-10 directly and inhibit IL-12p35 expression by interfering c-Rel nuclear translocalization. Moreover, c-Maf transactivates F4/80 and contributes to the terminally differentiated phenotypes of macrophages. In response to polycyclic aromatic hydrocarbon (PAH), an environmental contaminant, c-Maf cooperates with AhR to activate intergrinen
dc.description.provenanceMade available in DSpace on 2021-06-16T04:20:19Z (GMT). No. of bitstreams: 1
ntu-103-R00449005-1.pdf: 6838429 bytes, checksum: d2d85e605ad7d512daea0337b5349f5a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAbstract………………………………………………………………………………….i
中文摘要 ………………………………………………………………………………iii
Contents………………………………………………………………………………...iv
List of figures…………………………………………………………………………..vi
Chapter 1. Introduction 1
1.1 Overview of the Maf family 1
1.2 Overview of c-Maf transcription factor 3
1.3 c-Maf-targeting genes and its functions 4
1.4 The roles of c-Maf in macrophages 8
1.5 Macrophage subsets 9
1.6 Rationale and experimental designs 10
Chapter 2. Material and methods 12
2.1 Culture of bone marrow-derived macrophages (BM-DMs) 12
2.2 In vitro differentiation of BM-DMs to M1 and M2 subsets 12
2.3 Cell characterization by flow cytometry ……………………………………......13
2.4 Transcriptional profile analysis …………………………………………………13
2.5 Quantitative real-time PCR …………………………………………………......14
2.6 Chromatin immunoprecipitation (ChIP) 15
2.7 Immunoprecipitation and Western blotting …………………………………......17
Chapter 3. Results 19
3.1 c-Maf expression level in macrophages is comparable to T lymphocytes 19
3.2 Among different subsets, mRNA expression level of c-Maf is the highest in M0, whereas protein expression level of c-Maf is the highest in M1……………...19
3.3 The autophagy activity is the highest in M1, which indicates the ability to present antigens is the highest in M1. 21
3.4 Analysis of microarray data of c-Maf+/+ and c-Maf-/- M1 and M2 and confirmation of array results by real-time PCR.. 21
3.4.1 Maf family and other activated protein 1 (AP1) superfamily………………..22
3.4.2 M1 and M2 signature genes………………………………………………….23
3.4.3 Chemokine signaling………………………………………………………...25
3.4.4 Cytokine signaling…………………………………………………………...25
3.4.5 Pattern recognition receptor (PRR) signaling……………………………..…26
3.4.6 Immune defense……………………………………………………………...27
3.4.7 Antigen presentation…………………………………………………………27
3.4.8 Solute carriers or channels…………………………………………………...28
3.4.9 Membrane receptors………………………………………………………….28
3.4.10 Cell adhesion molecules (CAMs)……………………………………………28
3.4.11 Tissue remodeling……………………………………………………………29
3.4.12 Lipid metabolism…………………………………………………………….29
3.4.13 Cell surface receptor-linked signal transduction molecules…………………30
3.4.14 Metabolism…………………………………………………………………..30
3.4.15 Epigenetic and post-translational modification……………………………...31
3.4.16 Coagulation cascades………………………………………………………...31
3.4.17 Regulators of cell cycle………………………………………………………31
3.5 The MARE sites in promoter region of IL-12p40 and Runx3 are confirmed by ChIP assay. 32
Chapter 4. Disscussions……………………………………………………………….34
4.1 Relative expression levels of c-Maf among different macrophage subsets were
different between human and mouse………………………………………...34
4.2 There were no differences of F4/80 expression levels between c-Maf+/+ and c-Maf-/- BM-DMs……………………………………………………………35
4.3 There was higher mRNA expression level of IL-12p40 in c-Maf-/- than in c-Maf+/+ M1 macrophages………………………………………………………..........37
Chapter 5. Figures 38
Chapter 6. Table 70
Supplementary Figure 73
References 74
dc.language.isoen
dc.subject微陣列zh_TW
dc.subjectc-Mafzh_TW
dc.subject巨噬細胞zh_TW
dc.subjectBMDMzh_TW
dc.subject典型活化巨噬細胞zh_TW
dc.subject非典型活化巨噬細胞zh_TW
dc.subjectc-Mafzh_TW
dc.subject巨噬細胞zh_TW
dc.subjectBMDMzh_TW
dc.subject微陣列zh_TW
dc.subject典型活化巨噬細胞zh_TW
dc.subject非典型活化巨噬細胞zh_TW
dc.subjectM2en
dc.subjectc-Mafen
dc.subjectM2en
dc.subjectM1en
dc.subjectmicroarrayen
dc.subjectBMDMen
dc.subjectmacrophageen
dc.subjectc-Mafen
dc.subjectmacrophageen
dc.subjectBMDMen
dc.subjectmicroarrayen
dc.subjectM1en
dc.title探討c-Maf調節巨噬細胞中基因的表現zh_TW
dc.titlec-Maf in regulation of macrophage gene expressionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍安怡(Betty A. Wu Hsieh),劉淦光(Gan-Guang Liou),司徒惠康(Huey-Kang Sytwu)
dc.subject.keywordc-Maf,巨噬細胞,BMDM,微陣列,典型活化巨噬細胞,非典型活化巨噬細胞,zh_TW
dc.subject.keywordc-Maf,macrophage,BMDM,microarray,M1,M2,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2014-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
6.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved