請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55725完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何佳安 | |
| dc.contributor.author | Ting-Yu Ke | en |
| dc.contributor.author | 柯亭宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:19:48Z | - |
| dc.date.available | 2019-09-05 | |
| dc.date.copyright | 2014-09-05 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | 1. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 51,263-273 (1986).
2. Lei Yan, Jie Zhou, Yue Zheng, Adam S. Gamson, Benjamin T. Roembke, Shizuka Nakayamaa and Herman O. Sintim. Isothermal amplified detection of DNA and RNA. Mol.BioSyst. 10, 970 (2014). 3. Compton, J. Nucleic acid sequence-based amplification. Nature 350, 91-92 (1991). 4. Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ,Richman DD, Gingeras TR.Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proceedings of the National Academy of Sciences of the United States of America 87, 1874-1878 (1990). 5. Deiman, B., van Aarle, P. & Sillekens, P.Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Molecular biotechnology 20, 163-179 (2002). 6. Loens K, Ieven M, Ursi D, Foolen H, Sillekens P, Goossens H. Application of NucliSens Basic Kit for the detection of Mycoplasma pneumoniae in respiratory specimens. Journal of microbiological methods 54, 127-130 (2003). 7. Jeantet D, Schwarzmann F, Tromp J, Melchers WJ, van der Wurff AA, Oosterlaken T, Jacobs M, Troesch A. NucliSENS EasyQ HPV v1 test - Testing for oncogenic activity of human papillomaviruses. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 45 Suppl 1, S29-37 (2009). 8. Murphy, D.G., Cote, L., Fauvel, M., Rene, P. & Vincelette, J. Multicenter comparison of Roche COBAS AMPLICOR MONITOR version 1.5, Organon Teknika NucliSens QT with Extractor, and Bayer Quantiplex version 3.0 for quantification of human immunodeficiency virus type 1 RNA in plasma. Journal of clinical microbiology 38, 4034-4041 (2000). 9. Damen, M., Sillekens, P., Cuypers, H.T., Frantzen, I. & Melsert, R. Characterization of the quantitative HCV NASBA assay. Journal of virological methods 82, 45-54 (1999). 10. Fox JD, Han S, Samuelson A, Zhang Y, Neale ML, Westmoreland D. Development and evaluation of nucleic acid sequence based amplification (NASBA) for diagnosis of enterovirus infections using the NucliSens Basic Kit. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 24, 117-130 (2002). 11. van der Vliet GM, Cho SN, Kampirapap K, van Leeuwen J, Schukkink RA, van Gemen B, Das PK, Faber WR, Walsh GP, Klatser PR. Use of NASBA RNA amplification for detection of Mycobacterium leprae in skin biopsies from untreated and treated leprosy patients. International journal of leprosy and other mycobacterial diseases : official organ of the International Leprosy Association 64, 396-403 (1996). 12. Ovyn C, van Strijp D, Ieven M, Ursi D, van Gemen B, Goossens H. Typing of Mycoplasma 48 pneumoniae by nucleic acid sequence-based amplification, NASBA. Molecular and cellular probes 10, 319-324 (1996). 13. Uyttendaele, M., Schukkink, R., van Gemen, B. & Debevere, J. Development of NASBA, a nucleic acid amplification system, for identification of Listeria monocytogenes and comparison to ELISA and a modified FDA method. International journal of food microbiology 27, 77-89 (1995). 14. Song, X., Coombes, B.K. & Mahony, J.B. Quantitation of Chlamydia trachomatis 16S rRNA using NASBA amplification and a bioluminescent microtiter plate assay. Combinatorial chemistry & high throughput screening 3, 303-313 (2000). 15. Walker, G.T., Little, M.C., Nadeau, J.G. & Shank, D.D. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America 89, 392-396 (1992). 16. G T Walker, M S Fraiser, J L Schram, M C Little, J G Nadeau, and D P Malinowski. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20, 1691-1696 (1992). 17. Joneja, A. & Huang, X. Linear nicking endonuclease-mediated strand-displacement DNA amplification. Anal. Biochem. 414, 58-69 (2011). 18. Little MC, Andrews J, Moore R, Bustos S, Jones L, Embres C, Durmowicz G, Harris J, Berger D, Yanson K, Rostkowski C, Yursis D, Price J, Fort T, Walters A, Collis M, Llorin O, Wood J, Failing F, O'Keefe C, Scrivens B, Pope B, Hansen T, Marino K, Williams K. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clinical chemistry 45, 777-784 (1999). 19. Connolly, A.R. & Trau, M. Rapid DNA detection by beacon-assisted detection amplification. Nature protocols 6, 772-778 (2011). 20. Qiuping Guo, Xiaohai Yang, Kemin Wang, Weihong Tan, Wei Li, Hongxing Tang and Huimin Li. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res 37, e20 (2009). 21. Wang HQ, Liu WY, Wu Z, Tang LJ, Xu XM, Yu RQ, Jiang JH. Homogeneous label-free genotyping of single nucleotide polymorphism using ligation-mediated strand displacement amplification with DNAzyme-based chemiluminescence detection. Analytical chemistry 83, 1883-1889 (2011). 22. Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protocols 3, 877-882 (2008). 23. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28, E63 (2000). 24. Mori, Y. & Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, 49 and cost-effective diagnostic method for infectious diseases. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy 15, 62-69 (2009). 25. Yoda T, Suzuki Y, Yamazaki K, Sakon N, Kanki M, Kase T, Takahashi K, Inoue K. Application of a modified loop-mediated isothermal amplification kit for detecting Norovirus genogroups I and II. Journal of medical virology 81, 2072-2078 (2009). 26. Hopkins H, González IJ, Polley SD, Angutoko P, Ategeka J, Asiimwe C, Agaba B, Kyabayinze DJ, Sutherland CJ, Perkins MD, Bell D. Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. The Journal of infectious diseases 208, 645-652 (2013). 27. Mitarai S, Okumura M, Toyota E, Yoshiyama T, Aono A, Sejimo A, Azuma Y, Sugahara K, Nagasawa T, Nagayama N, Yamane A, Yano R, Kokuto H, Morimoto K, Ueyama M, Kubota M, Yi R, Ogata H, Kudoh S, Mori T. Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease 15, 1211-1217, i (2011). 28. Iturriza-Gomara, M., Xerry, J., Gallimore, C.I., Dockery, C. & Gray, J. Evaluation of the Loopamp (loop-mediated isothermal amplification) kit for detecting Norovirus RNA in faecal samples. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 42, 389-393 (2008). 29. Liu, D., Daubendiek, S.L., Zillman, M.A., Ryan, K. & Kool, E.T. Rolling Circle DNA Synthesis: Small Circular Oligonucleotides as Efficient Templates for DNA Polymerases. Journal of the American Chemical Society 118, 1587-1594 (1996). 30. Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature genetics 19, 225-232 (1998). 31. Schopf, E., Fischer, N.O., Chen, Y. & Tok, J.B. Sensitive and selective viral DNA detection assay via microbead-based rolling circle amplification. Bioorganic & medicinal chemistry letters 18, 5871-5874 (2008). 32. Susan D. Wharam, Peter Marsh, John S. Lloyd, Trevor D. Ray, Graham A. Mock, René Assenberg, Julie E. McPhee, Philip Brown, Anthony Weston, and Donald L. N. Cardy. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 29, E54-54 (2001). 33. Breaker, R.R. DNA enzymes. Nature biotechnology 15, 427-431 (1997). 34. Breaker, R.R. & Joyce, G.F. A DNA enzyme that cleaves RNA. Chemistry & biology 1, 223-229 (1994). 35. Carmi, N., Shultz, L.A. & Breaker, R.R. In vitro selection of self-cleaving DNAs. Chemistry 50 & biology 3, 1039-1046 (1996). 36. Breaker, R.R. DNA aptamers and DNA enzymes. Current opinion in chemical biology 1, 26-31 (1997). 37. Li, Y. & Breaker, R.R. Deoxyribozymes: new players in the ancient game of biocatalysis. Current opinion in structural biology 9, 315-323 (1999). 38. Jaschke, A. & Seelig, B. Evolution of DNA and RNA as catalysts for chemical reactions. Current opinion in chemical biology 4, 257-262 (2000). 39. Breaker, R.R. Tech.Sight. Molecular biology. Making catalytic DNAs. Science (New York, N.Y.) 290, 2095-2096 (2000). 40. Breaker, R.R. Catalytic DNA: in training and seeking employment. Nat Biotech 17, 422-423 (1999). 41. Emilsson, G.M. & Breaker, R.R. Deoxyribozymes: new activities and new applications. Cellular and molecular life sciences : CMLS 59, 596-607 (2002). 42. Carmi, N. & Breaker, R.R. Characterization of a DNA-cleaving deoxyribozyme. Bioorganic & medicinal chemistry 9, 2589-2600 (2001). 43. Li, Y. & Breaker, R.R. Phosphorylating DNA with DNA. Proceedings of the National Academy of Sciences of the United States of America 96, 2746-2751 (1999). 44. Wang, W., Billen, L.P. & Li, Y. Sequence diversity, metal specificity, and catalytic proficiency of metal-dependent phosphorylating DNA enzymes. Chemistry & biology 9, 507-517 (2002). 45. Achenbach, J.C., Jeffries, G.A., McManus, S.A., Billen, L.P. & Li, Y. Secondary-structure characterization of two proficient kinase deoxyribozymes. Biochemistry 44, 3765-3774 (2005). 46. McManus, S.A. & Li, Y. Multiple occurrences of an efficient self-phosphorylating deoxyribozyme motif. Biochemistry 46, 2198-2204 (2007). 47. McManus, S.A. & Li, Y. Turning a kinase deoxyribozyme into a sensor. Journal of the American Chemical Society 135, 7181-7186 (2013). 48. Sheppard, T.L., Ordoukhanian, P. & Joyce, G.F. A DNA enzyme with N-glycosylase activity. Proceedings of the National Academy of Sciences of the United States of America 97, 7802-7807 (2000). 49. Kolpashchikov, D.M. Split DNA enzyme for visual single nucleotide polymorphism typing. Journal of the American Chemical Society 130, 2934-2935 (2008). 50. Deng, M., Zhang, D., Zhou, Y. & Zhou, X. Highly effective colorimetric and visual detection of nucleic acids using an asymmetrically split peroxidase DNAzyme. Journal of the American Chemical Society 130, 13095-13102 (2008). 51. Nakayama, S. & Sintim, H.O. Colorimetric split G-quadruplex probes for nucleic acid sensing: improving reconstituted DNAzyme's catalytic efficiency via probe remodeling. Journal of the American Chemical Society 131, 10320-10333 (2009). 51 52. Cuenoud, B. & Szostak, J.W. A DNA metalloenzyme with DNA ligase activity. Nature 375, 611-614 (1995). 53. Li, Y. & Sen, D. A catalytic DNA for porphyrin metallation. Nature structural biology 3, 743-747 (1996). 54. Chinnapen, D.J. & Sen, D. A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proceedings of the National Academy of Sciences of the United States of America 101, 65-69 (2004). 55. Seongchan Kim, Soo-Ryoon Ryoo, Hee-Kyung Na,Young-Kwan Kim, Byong-Seok Choi, Younghoon Lee, Dong-Eun Kimc and Dal-Hee Min. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chemical communications (Cambridge, England) 49, 8241-8243 (2013). 56. Trepanier, J.B., Tanner, J.E. & Alfieri, C. Reduction in intracellular HCV RNA and virus protein expression in human hepatoma cells following treatment with 2'-O-methyl-modified anti-core deoxyribozyme. Virology 377, 339-344 (2008). 57. Gao P, Wei JM, Li PY, Zhang CJ, Jian WC, Zhang YH, Xing AY, Zhou GY. Screening of deoxyribozyme with high reversal efficiency against multidrug resistance in breast carcinoma cells. Journal of cellular and molecular medicine 15, 2130-2138 (2011). 58. Kevin Yehl, Jayashree P. Joshi, Brandon L. Greene, R. Brian Dyer, Rita Nahta, and Khalid Salaita. Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS nano 6, 9150-9157 (2012). 59. Schubert, S. & Kurreck, J. Ribozyme- and deoxyribozyme-strategies for medical applications. Current drug targets 5, 667-681 (2004). 60. Xu J, Sun Y, Sheng Y, Fei Y, Zhang J, Jiang D. Engineering a DNA-cleaving DNAzyme and PCR into a simple sensor for zinc ion detection. Analytical and bioanalytical chemistry 406, 3025-3029 (2014). 61. Li, C., Wei, L., Liu, X., Lei, L. & Li, G. Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Analytica chimica acta 831, 60-64 (2014). 62. Zhang, B., Lu, L., Hu, Q., Huang, F. & Lin, Z. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron 56, 243-249 (2014). 63. Li W, Yang Y, Chen J, Zhang Q, Wang Y, Wang F, Yu C. Detection of lead(II) ions with a DNAzyme and isothermal strand displacement signal amplification. Biosens Bioelectron 53, 245-249 (2014). 64. Hui Li, Xiao-Xi Huang, Yang Cai, Hao-Jie Xiao, Qiu-Fen Zhang, De-Ming Kong. Label-free detection of Cu(2+) and Hg(2+) ions using reconstructed Cu(2+)-specific DNAzyme and G-quadruplex DNAzyme. PloS one 8, e73012 (2013). 65. Wu, P., Hwang, K., Lan, T. & Lu, Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. Journal of the American Chemical Society 135, 5254-5257 (2013). 52 66. Schlosser, K. & Li, Y. A Versatile Endoribonuclease Mimic Made of DNA: Characteristics and Applications of the 8-17 RNA-Cleaving DNAzyme ChemBioChem 11, 866-879 (2010). 67. Santoro, S.W. & Joyce, G.F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330-13342 (1998). 68. Zhang, X.-B., Wang, Z., Xing, H., Xiang, Y. & Lu, Y. Catalytic and Molecular Beacons for Amplified Detection of Metal Ions and Organic Molecules with High Sensitivity. Anal. Chem. 82, 5005-5011 (2010). 69. Lu, L.-M., Zhang, X.-B., Kong, R.-M., Yang, B. & Tan, W. A Ligation-Triggered DNAzyme Cascade for Amplified Fluorescence Detection of Biological Small Molecules with Zero-Background Signal. J. Am. Chem. Soc. 133, 11686-11691 (2011). 70. Panshu Song, Yu Xiang, Hang Xing, Zhaojuan Zhou, Aijun Tong, and Yi Lu. Label-Free Catalytic and Molecular Beacon Containing an Abasic Site for Sensitive Fluorescent Detection of Small Inorganic and Organic Molecules. Anal. Chem. 84, 2916-2922 (2012). 71. Rong-Mei Kong, Ting Fu, Ni-Na Sun, Feng-Li Qu, Shu-Fang Zhang, Xiao-Bing Zhang. Pyrophosphate-gulatedZn2+-dependent DNAzyme activity: An amplified fluorescence sensing strategy for alkaline phosphatase. Biosens Bioelectron 50, 351-355 (2013). 72. Liu S, Ming J, Lin Y, Wang C, Cheng C, Liu T, Wang L. Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification. Biosens Bioelectron 55, 225-230 (2014). 73. Dirks, R.M. & Pierce, N.A. Triggered amplification by hybridization chain reaction. PNAS 101, 15275-15278 (2004). 74. Hybridization chain reaction. Nature Methods 1, 186-187 (2004). 75. Choi HM, Chang JY, Trinh le A, Padilla JE, Fraser SE, Pierce NA. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature biotechnology 28, 1208-1212 (2010). 76. Ruixue Duan, Xiaolei Zuo, Shutao Wang, Xiyun Quan , Dongliang Chen , Zhifei Chen, Lei Jiang, Chunhai Fan, and Fan Xia. Lab in a Tube: Ultrasensitive Detection of MicroRNAs at the Single-Cell Level and in Breast Cancer Patients Using Quadratic Isothermal Amplification. J. Am. Chem. Soc. 135, 4604-4607 (2013). 77. Tumpey, T.M. & Belser, J.A. Resurrected pandemic influenza viruses. Annual review of microbiology 63, 79-98 (2009). 78. Taubenberger, J.K. & Morens, D.M. The pathology of influenza virus infections. Annual review of pathology 3, 499-522 (2008). 79. Medina, R.A. & García-Sastre, A. Influenza A viruses: new research developments. Nature 9, 590-603 (2011). 80. Nelson, M.I. & Holmes, E.C. The evolution of epidemic influenza. Nature 8, 196-205 (2007). 81. Wagner, R., Matrosovich, M. & Klenk, H.D. Functional balance between haemagglutinin 53 and neuraminidase in influenza virus infections. Reviews in medical virology 12, 159-166 (2002). 82. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. Journal of virology 74, 6015-6020 (2000). 83. Yen HL, Liang CH, Wu CY, Forrest HL, Ferguson A, Choy KT, Jones J, Wong DD, Cheung PP, Hsu CH, Li OT, Yuen KM, Chan RW, Poon LL, Chan MC, Nicholls JM, Krauss S, Wong CH, Guan Y, Webster RG, Webby RJ, Peiris M. Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proceedings of the National Academy of Sciences of the United States of America 108, 14264-14269 (2011). 84. Ward, M.J., Lycett, S.J., Avila, D., Bollback, J.P. & Leigh Brown, A.J. Evolutionary interactions between haemagglutinin and neuraminidase in avian influenza. BMC evolutionary biology 13, 222 (2013). 85. Xu R, Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, Wilson IA. Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic. Journal of virology 86, 9221-9232 (2012). 86. Kumar, S. & Henrickson, K.J. Update on Influenza Diagnostics: Lessons from the Novel H1N1 Influenza A Pandemic. Clin Microbiol Rev. 25, 344-361 (2012). 87. Rapid Diagnostic Testing for Influenza: Information for Clinical Laboratory Directors. Centers for Disease Control and Prevention, http://www.cdc.gov/flu/professionals/diagnosis/rapidlab.htm (2013). 88. Guidance for Clinicians on the Use of RT-PCR and Other Molecular Assays for Diagnosis of Influenza Virus Infection. Centers for Disease Control and Prevention, http://www.cdc.gov/flu/professionals/diagnosis/molecular-assays.htm (2013). 89. Nelson, K.M. & Weiss, G.J. MicroRNAs and cancer: past, present, and potential future. Molecular cancer therapeutics 7, 3655-3660 (2008). 90. Hobert, O. Common logic of transcription factor and microRNA action. Trends in biochemical sciences 29, 462-468 (2004). 91. Nachega, J.B. & Chaisson, R.E. Tuberculosis drug resistance: a global threat. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 36, S24-30 (2003). 92. Cornett EM, Campbell EA, Gulenay G, Peterson E, Bhaskar N, Kolpashchikov DM. Molecular logic gates for DNA analysis: detection of rifampin resistance in M. tuberculosis DNA. Angewandte Chemie (International ed. in English) 51, 9075-9077 (2012). 93. Liu, X., Aizen, R., Freeman, R., Yehezkeli, O. & Willner, I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS nano 6, 3553-3563 (2012). 94. Xiang Y, Qian X, Chen Y, Zhang Y, Chai Y, Yuan R. A reagentless and disposable electronic genosensor: from multiplexed analysis to molecular logic gates. Chemical communications (Cambridge, England) 47, 2080-2082 (2011). 95. Murakami, T., Sumaoka, J. & Komiyama, M. Sensitive RNA detection by combining three-way junction formation and primer generation-rolling circle amplification. Nucleic Acids Res. 40, 1-10 (2012). 96. Zhao, Y., Qi, L., Chen, F., Zhao, Y. & Fan, C. Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. Biosens Bioelectron 41, 764-770 (2013). 97. Zhao XH, Gong L, Zhang XB, Yang B, Fu T, Hu R, Tan W, Yu R. Versatile DNAzyme-Based Amplified Biosensing Platforms for Nucleic Acid, Protein, and Enzyme Activity Detection. Anal. Chem. 85, 3614-3620 (2013). 98. Zhou H, Xie SJ, Zhang SB, Shen GL, Yu RQ, Wu ZS. Isothermal amplification system based on template-dependent extension. Chemical communications (Cambridge, England) 49, 2448-2450 (2013). 99. Tan E, Erwin B, Dames S, Ferguson T, Buechel M, Irvine B, Voelkerding K, Niemz A. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry 47, 9987-9999 (2008). 100. Hellyer, T.J. & Nadeau, J.G. Strand displacement amplification: a versatile tool for molecular diagnostics. Expert review of molecular diagnostics 4, 251-261 (2004). 101. B.Leontis, N., Kwok, W. & S.Newman, J. Stability and structure of three-way DNA junctions containing unpaired nucleotides. Nucleic Acids Res. 19, 759-766 (1991). 102. B.Welch, J., R.Duckett, D. & M.J.Lilley, D. Structures of bulged three-way DNA junctions. Nucleic Acids Res. 21, 4548-4555 (1993). 103. Yang, M. & Millar, D.P. Conformational Flexibility of Three-Way DNA Junctions Containing Unpaired Nucleotides. Biochemistry 35, 7959-7967 (1996). 104. F, S., JB, W., AI, M., DM, L. & RM, C. Global structure of three-way DNA junctions with and without additional unpaired bases: a fluorescence resonance energy transfer analysis. Biochemistry 36, 13530-13538 (1997). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55725 | - |
| dc.description.abstract | 有鑑於流感病毒的亞型鑑定對於臨床診斷及病毒傳播監控之重要性,本論文的研究目的在發展一流感病毒亞型鑑定的平台,結合叉狀DNA 的應用與去氧核醣核酸酶(DNAzyme)截切反應,以同時偵測流感病毒兩種重要抗原[血球凝集素Hemagglutinin (HA)與神經胺酸酶
Neuraminidase (NA)]基因片段。 本研究利用簡單邏輯閘(logic gate)的概念,在H5 與N2 基因同時存在下才會產生單一螢光訊號,可快速提供檢驗結論與降低人為誤判的機會。在針對流感病毒的H5 基因做偵測時,首先將兩段DNA 引子加入病毒cDNA 中,使之形成叉狀DNA,再加入酵素在叉狀DNA 上進行鏈置換擴增反應(strand displacement amplification),進而產生多段去氧核醣核酸酶(DNAzyme)。DNAzyme 可將核酸基質由莖環結構水解為兩段單股核酸,而此產物其中一股帶有螢光染劑;同時,針對病毒的N2 基因亦進行同樣的反應。最後藉由H5 與N2 基因所誘發的反應分別產生之帶有螢光染劑的單股核酸進行雜合反應,最後產生螢光共振能量轉移(FRET)訊號。為了瞭解鏈置換擴增反應中兩種酵素作用的最佳條件,我們探討了兩種酵素間的比例與濃度對DNAzyme 產物生成的影響;為了減少在DNA 聚合酶反應過程中常見的非特異性產物的產生,我們也探討了DNA 引子的修飾及結構對於非特異性擴增現象的影響。實驗結果顯示,病毒cDNA 與引子所形成的叉狀DNA 確實可與酵素進行鏈置換擴增反應,並產出有功能的DNAzyme,且此反應有部分訊號放大的效果;而所產出的DNAzyme 亦可再進行接下來的基質截切反應,在此步驟中,因為DNAzyme 可循環利用故也有訊號放大的功能;最後由H5 與N2 基因誘發的反應所分別產生帶有螢光染劑的基質截切後產物也能順利的進行雜合,並得到FRET 訊號。本系統有良好的選擇性,在H5 與N2 基因序列同時存在下的FRET訊號能夠明顯的與其他三種陰性組合(無H5 與N2 基因、只有H5 基因、只有N2 基因)區別。在靈敏度方面,本系統對於H5 與N2 基因同時存在時的偵測極限約為3 nM。本設計的優點在於:(1) 整體反應可在恆溫環境下進行而不需昂貴的溫控裝置;(2) 整體反應時間只需一小時,大幅提升了目標偵測的便利性;(3) 相較於一般蛋白質酵素,DNAzyme 的活性穩定且易於保存;(4) 在鏈置換擴增反應及訊號輸出部分的序列設計彈性較大,不需受限於偵測目標的序列。鑒於此項篩檢技術的高應用性與功能性,可望有效應用於多種的流感病毒亞型鑑定。 | zh_TW |
| dc.description.abstract | Subtyping of influenza virus is essential for its treatment, diagnosis and surveillance. We herein report a sensor design that integrates DNA three-way junction and DNAzyme catalytic activities to sensitively and specifically identify dual influenza viral nucleic acid sequences, hemagglutinin (HA) and neuraminidase (NA) genes, simultaneously.
Employing a simple concept of logic gate, output signal can only be obtained when both H5 and N2 gene exist. This design is able to derive a rapid result exclusive of potential personal error made in data interpretation. To detect viral H5 gene, we first mixed two synthetic DNA primers with viral cDNA to form DNA three-way junction. Subsequently, two enzymes, DNA polymerase and Nicking enzyme were added to initiate strand displacement amplification reaction, leading to the production of deoxyribozyme (DNAzyme). As a consequence, the functional DNAzyme could hydrolyze stem-loop substrates, resulting in two separated single-stranded DNA, one of which was modified with a fluorophore. Parallelly another set of this isothermal amplification could also be induced by N2 gene. Consequently the Cy3- and Cy5-labled single-stranded DNA, generated from the reactions initiated by H5 and N2 gene, respectively, hybridized to form duplexes. Due to the proximity of the two dyes, fluorescence signal could be detected as a result of Förster resonance energy transfer (FRET). To verify the optimal condition for two enzymes which participated in strand displacement amplification, we studied the influence of the concentrations and ratio between DNA polymerase and Nicking enzyme on production of DNAzyme. To reduce the generation of non-specific products, which often appear in DNA polymerase-related reaction, we also investigated the effects of phosphate group-modified 3-way junction template and primer conformation (linear vs. hairpin) on non-specific signal amplification. The results revealed that the DNA three-way junction composed of viral cDNA and synthesized DNA primers can be successfully extended by DNA polymerase and specifically nicked by nicking enzyme to produce functional DNAzyme. In addition, the as-generated DNAzyme products could effectively catalyze the hydrolysis of nucleic acids substrates. By taking advantage of the enzymatic property of DNAzyme, an excess amount of desired products could be acquired, which could further amplify the signal. Finally the two fluorophore-labeled products of DNAzyme catalyzed reactions, each generated from the reactions initiated by H5 and N2 gene, can hybridize successfully and produce FRET signal. This system has remarkable selectivity, the FRET signal acquired in the simultaneous presence of both target segments is differentiated from the other three negative combinations (i.e., without H5 and N2 gene sequences, only with either H5 or N2 sequences). The limit of detection (LOD) of this system was calculated as 3 nM when both H5 and N2 segments exist. Our newly designed sensor features (i) the reaction could proceed isothermally, without need of expensive temperature-controlling equipment, (ii) the entire time needed for our detection platform is 1 hour, which dramatically enhance the convenience of target detection, (iii) the chemical and thermal stability of DNAzyme is superior than conventional protein-based enzymes, and (iv) the whole design for signal amplification and outputting are universal, that can be readily extended to other potential target sequences. On account of the elegant signal amplification scheme and broad bio-applicability, this screening platform technology is expected to be a promising subtyping tool for variable influenza viruses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:19:48Z (GMT). No. of bitstreams: 1 ntu-103-R01b22033-1.pdf: 1853691 bytes, checksum: d60e91ccf8898870722e2b766ce62fba (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
1. 緒論………………………………………………………………....1 1.1 恆溫核酸偵測技術………………………………………………...1 1.1.1 恆溫核酸放大技術……………………………………………….2 1.1.2 恆溫訊號放大技術……………………………………………...6 1.1.3 結合核酸與訊號之恆溫放大技術…………………………....10 1.2 流行性感冒與流行性感冒病毒……………………………………11 1.3 流行性感冒病毒的診斷方法………………………………………12 1.4 研究動機……………………………………………………………14 2. 材料與方法………………………………………………………….15 2.1 材料…………………………………………………………………15 2.1.1 DNA 序列………………………………………………………..15 2.1.2 酵素………………………………………………………………16 2.1.3 緩衝溶液…………………………………………………………16 2.1.4 儀器………………………………………………………………16 2.2 利用核酸與訊號之恆溫放大技術進行流感病毒H5N2亞型偵測…17 2.3 聚丙烯醯胺凝膠電泳(polyacrylamide gel electrophoresis, PAGE)…………………………………………………………………….17 3. 實驗結果…………………………………………………………….18 3.1 實驗設計……………………………………………………………18 3.2 叉狀DNA(Three-way junction)的形成………………………….20 3.3 鏈置換擴增法(Strand displacement amplification)……….21 3.3.1 酵素比例與濃度最佳化………………………………………..21 3.3.2 減少非特異性產物之生成………………………………………25 3.4 DNAzyme 截切莖環結構基質……………………………………..30 3.5 模擬截切前後產物的雜合反應.………………………………….34 3.6 FRET 訊號偵測…………………………………………………….41 3.6.1 靈敏度(Sensitivity)………………………………………….42 3.6.2 選擇性(Selectivity)………………………………………….43 4. 討論與結論………………………………………………………….45 5. 參考文獻…………………………………………………………….47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 流感病毒亞型鑑定 | zh_TW |
| dc.subject | 叉狀 DNA | zh_TW |
| dc.subject | 去氧核醣核酸? | zh_TW |
| dc.subject | 雙基因檢測 | zh_TW |
| dc.subject | 酵素訊號放大 | zh_TW |
| dc.subject | enzymatic amplification | en |
| dc.subject | three-way junction DNA | en |
| dc.subject | DNAzyme | en |
| dc.subject | influenza virus subtyping | en |
| dc.subject | dual-gene detection | en |
| dc.title | 利用叉狀DNA 與去氧核醣核酸酶恆溫訊號放大機制進行流感病毒亞型鑑定 | zh_TW |
| dc.title | Subtyping of influenza virus by cascade isothermal amplification based on three-way junction and DNAzyme | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李君男,邢怡銘,吳立真,朱立岡 | |
| dc.subject.keyword | 流感病毒亞型鑑定,叉狀 DNA,去氧核醣核酸?,雙基因檢測,酵素訊號放大, | zh_TW |
| dc.subject.keyword | influenza virus subtyping,three-way junction DNA,DNAzyme,dual-gene detection,enzymatic amplification, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
