請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55724完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林頌然(Sung-Jan Lin) | |
| dc.contributor.author | Yi-Ching Huang | en |
| dc.contributor.author | 黃怡晴 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:19:44Z | - |
| dc.date.available | 2017-08-25 | |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-19 | |
| dc.identifier.citation | [1] Millar SE. Molecular mechanisms regulating hair follicle development. The Journal of investigative dermatology. 2002;118:216-25.
[2] Oliver RF. Regeneration of dermal papillae in rat vibrissae. J Invest Dermatol. 1966;47:496-7. [3] Oliver RF. Histological studies of whisker regeneration in the hooded rat. J Embryol Exp Morphol. 1966;16:231-44. [4] Oliver RF. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol. 1966;15:331-47. [5] Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol. 1967;18:43-51. [6] Oliver RF. The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J Embryol Exp Morphol. 1970;23:219-36. [7] Yu D, Cao Q, He Z, Sun TT. Expression profiles of tyrosine kinases in cultured follicular papilla cells versus dermal fibroblasts. J Invest Dermatol. 2004;123:283-90. [8] Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311:560-2. [9] Horne KA, Jahoda CA, Oliver RF. Whisker growth induced by implantation of cultured vibrissa dermal papilla cells in the adult rat. J Embryol Exp Morphol. 1986;97:111-24. [10] Young TH, Lee CY, Chiu HC, Hsu CJ, Lin SJ. Self-assembly of dermal papilla cells into inductive spheroidal microtissues on poly(ethylene-co-vinyl alcohol) membranes for hair follicle regeneration. Biomaterials. 2008;29:3521-30. [11] Young TH, Tu HR, Chan CC, Huang YC, Yen MH, Cheng NC, et al. The enhancement of dermal papilla cell aggregation by extracellular matrix proteins through effects on cell-substratum adhesivity and cell motility. Biomaterials. 2009;30:5031-40. [12] Jahoda CA, Oliver RF, Reynolds AJ, Forrester JC, Horne KA. Human hair follicle regeneration following amputation and grafting into the nude mouse. J Invest Dermatol. 1996;107:804-7. [13] McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol. 2003;121:1267-75. [14] Inamatsu M, Matsuzaki T, Iwanari H, Yoshizato K. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin. J Invest Dermatol. 1998;111:767-75. [15] O'Shaughnessy RF, Yeo W, Gautier J, Jahoda CA, Christiano AM. The WNT signalling modulator, Wise, is expressed in an interaction-dependent manner during hair-follicle cycling. J Invest Dermatol. 2004;123:613-21. [16] Iida M, Ihara S, Matsuzaki T. Hair cycle-dependent changes of alkaline phosphatase activity in the mesenchyme and epithelium in mouse vibrissal follicles. Dev Growth Differ. 2007;49:185-95. [17] Chi W, Wu E, Morgan BA. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development. 2013;140:1676-83. [18] Oliver RF. Dermal-epidermal interactions and hair growth. J Invest Dermatol. 1991;96:76S. [19] Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005;3:e331. [20] Jahoda CA, Reynolds AJ. Dermal-epidermal interactions--follicle-derived cell populations in the study of hair-growth mechanisms. J Invest Dermatol. 1993;101:33S-8S. [21] Bahta AW, Farjo N, Farjo B, Philpott MP. Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. The Journal of investigative dermatology. 2008;128:1088-94. [22] Yang YC, Fu HC, Wu CY, Wei KT, Huang KE, Kang HY. Androgen receptor accelerates premature senescence of human dermal papilla cells in association with DNA damage. PLoS One. 2013;8:e79434. [23] Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621. [24] Lei M, Guo H, Qiu W, Lai X, Yang T, Widelitz RB, et al. Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol. 2014;23:407-13. [25] Kadekaro AL, Kanto H, Kavanagh R, Abdel-Malek Z. Significance of the melanocortin 1 receptor in regulating human melanocyte pigmentation, proliferation, and survival. Ann N Y Acad Sci. 2003;994:359-65. [26] Plotka J, Narkowicz S, Polkowska Z, Biziuk M, Namiesnik J. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials. Reviews of environmental contamination and toxicology. 2014;227:55-77. [27] Poeggeler B, Bodo E, Nadrowitz R, Dunst J, Paus R. A simple assay for the study of human hair follicle damage induced by ionizing irradiation. Experimental dermatology. 2010;19:e306-9. [28] Hendrix S, Handjiski B, Peters EM, Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. The Journal of investigative dermatology. 2005;125:42-51. [29] Ibrahim L, Wright EA. Inductive capacity of irradiated dermal papillae. Nature. 1977;265:733-4. [30] Potten CS. Cell death (apoptosis) in hair follicles and consequent changes in the width of hairs after irradiation of growing follicles. International journal of radiation biology and related studies in physics, chemistry, and medicine. 1985;48:349-60. [31] Yen CM, Chan CC, Lin SJ. High-throughput reconstitution of epithelial-mesenchymal interaction in folliculoid microtissues by biomaterial-facilitated self-assembly of dissociated heterotypic adult cells. Biomaterials. 2010;31:4341-52. [32] Ellis JA, Sinclair R, Harrap SB. Androgenetic alopecia: pathogenesis and potential for therapy. Expert Rev Mol Med. 2002;4:1-11. [33] Itami S, Kurata S, Takayasu S. Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-I from dermal papilla cells. Biochem Biophys Res Commun. 1995;212:988-94. [34] Jahoda CA, Reynolds AJ. Dermal-epidermal interactions--follicle-derived cell populations in the study of hair-growth mechanisms. J Invest Dermatol. 1993;101:33S-8S. [35] Kollar EJ. The induction of hair follicles by embryonic dermal papillae. Journal of Investigative Dermatology. 1970;55:374-8. [36] Han JH, Kwon OS, Chung JH, Cho KH, Eun HC, Kim KH. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J Dermatol Sci. 2004;34:91-8. [37] Ji JH, Park TS, Lee HJ, Kim YD, Pi LQ, Jin XH, et al. The ethnic differences of the damage of hair and integral hair lipid after ultra violet radiation. Annals of dermatology. 2013;25:54-60. [38] Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329-37. [39] Cotsarelis G, Kaur P, Dhouailly D, Hengge U, Bickenbach J. Epithelial stem cells in the skin: definition, markers, localization and functions. Exp Dermatol. 1999;8:80-8. [40] Fuchs E, Segre JA. Stem cells: a new lease on life. Cell. 2000;100:143-55. [41] Lavker RM, Sun TT. Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci U S A. 2000;97:13473-5. [42] Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104:233-45. [43] Fiona M. Watt aBLMH. Out of Eden: Stem Cells and Their Niches Science 2000;287:1427 - 30. [44] Gina Taylor MSL, Pamela J. Jensen T-TS, Lavker aRM. Involvement of Follicular Stem Cells in Forming Not Only the Follicle but Also the Epidermis. Cell. 2000;102:461. [45] Chelly N, Henrion A, Pinteur C, Chailley-Heu B, Bourbon JR. Role of keratinocyte growth factor in the control of surfactant synthesis by fetal lung mesenchyme. Endocrinology. 2001;142:1814-9. [46] Giangreco A, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell. 2008;7:250-9. [47] Gajdusek CM, Schwartz SM. Ability of endothelial cells to condition culture medium. J Cell Physiol. 1982;110:35-42. [48] Goitia Aular M, de Boiso JF. [Culture of Trypanosoma cruzi (Elpidio Padron strain) in a semidefined medium. Effect of variations in its composition and condition]. Acta Cient Venez. 1982;33:488-96. [49] Hill RP, Haycock JW, Jahoda CA. Human hair follicle dermal cells and skin fibroblasts show differential activation of NF-kappaB in response to pro-inflammatory challenge. Experimental dermatology. 2012;21:158-60. [50] Matsuzaki T, Inamatsu M, Yoshizato K. The upper dermal sheath has a potential to regenerate the hair in the rat follicular epidermis. Differentiation. 1996;60:287-97. [51] Cho HJ, Bae IH, Chung HJ, Kim DS, Kwon SB, Cho YJ, et al. Effects of hair follicle dermal sheath cells in the reconstruction of skin equivalents. J Dermatol Sci. 2004;35:74-7. [52] Muchkaeva IA, Dashinimaev EB, Artyuhov AS, Myagkova EP, Vorotelyak EA, Yegorov YY, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta naturae. 2014;6:45-53. [53] Jinno H, Morozova O, Jones KL, Biernaskie JA, Paris M, Hosokawa R, et al. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem cells. 2010;28:2027-40. [54] Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, et al. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. The Journal of cell biology. 2006;175:1005-15. [55] Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nature cell biology. 2004;6:1082-93. [56] Chiu HC, Chang CH, Chen JS, Jee SH. Human hair follicle dermal papilla cell, dermal sheath cell and interstitial dermal fibroblast characteristics. Journal of the Formosan Medical Association = Taiwan yi zhi. 1996;95:667-74. [57] Edward Owusu-Ansah AYUB. A protocol for in vivo detection of reactive oxygen species. Protocol Exchange. 2008. [58] Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nature protocols. 2009;4:1798-806. [59] Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of ageing and development. 2007;128:92-105. [60] Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res. 1965;37:614-36. [61] Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6:331-43. [62] Tice RR, Schneider EL, Kram D, Thorne P. Cytokinetic analysis of the impaired proliferative response of peripheral lymphocytes from aged humans to phytohemagglutinin. The Journal of experimental medicine. 1979;149:1029-41. [63] Mueller SN, Rosen EM, Levine EM. Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science. 1980;207:889-91. [64] Tassin J, Malaise E, Courtois Y. Human lens cells have an in vitro proliferative capacity inversely proportional to the donor age. Exp Cell Res. 1979;123:388-92. [65] Bierman EL. The effect of donor age on the in vitro life span of cultured human arterial smooth-muscle cells. In vitro. 1978;14:951-5. [66] Little JB. Delayed initiation of DNA synthesis in irradiated human diploid cells. Nature. 1968;218:1064-5. [67] Johnson RD, Jasin M. Double-strand-break-induced homologous recombination in mammalian cells. Biochemical Society transactions. 2001;29:196-201. [68] Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Experimental gerontology. 2000;35:927-45. [69] Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A. 1990;87:4533-7. [70] Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P, et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006;5:379-89. [71] Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nature reviews Molecular cell biology. 2012;13:579-90. [72] Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, et al. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer research. 1999;59:3761-7. [73] Suzuki M, Boothman DA. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy. Journal of radiation research. 2008;49:105-12. [74] Mirzayans R, Scott A, Cameron M, Murray D. Induction of accelerated senescence by gamma radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiation research. 2005;163:53-62. [75] Chang BD, Swift ME, Shen M, Fang J, Broude EV, Roninson IB. Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci U S A. 2002;99:389-94. [76] Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593-602. [77] Bodo E, Tobin DJ, Kamenisch Y, Biro T, Berneburg M, Funk W, et al. Dissecting the impact of chemotherapy on the human hair follicle: a pragmatic in vitro assay for studying the pathogenesis and potential management of hair follicle dystrophy. Am J Pathol. 2007;171:1153-67. [78] Amoh Y, Li L, Katsuoka K, Hoffman RM. Chemotherapy targets the hair-follicle vascular network but not the stem cells. J Invest Dermatol. 2007;127:11-5. [79] Youn SW, Kim DS, Cho HJ, Jeon SE, Bae IH, Yoon HJ, et al. Cellular senescence induced loss of stem cell proportion in the skin in vitro. J Dermatol Sci. 2004;35:113-23. [80] Garza LA, Yang CC, Zhao T, Blatt HB, Lee M, He H, et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J Clin Invest. 2011;121:613-22. [81] Mirochnik Y, Veliceasa D, Williams L, Maxwell K, Yemelyanov A, Budunova I, et al. Androgen receptor drives cellular senescence. PloS one. 2012;7:e31052. [82] Shen XH, Xu SJ, Jin CY, Ding F, Zhou YC, Fu GS. Interleukin-8 prevents oxidative stress-induced human endothelial cell senescence via telomerase activation. International immunopharmacology. 2013. [83] Yamagiwa Y, Meng F, Patel T. Interleukin-6 decreases senescence and increases telomerase activity in malignant human cholangiocytes. Life sciences. 2006;78:2494-502. [84] Kwack MH, Ahn JS, Kim MK, Kim JC, Sung YK. Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell proliferation and promotes regression of hair follicles in mice. J Invest Dermatol. 2012;132:43-9. [85] Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature cell biology. 2009;11:973-9. [86] Sayama K, Kajiya K, Sugawara K, Sato S, Hirakawa S, Shirakata Y, et al. Inflammatory mediator TAK1 regulates hair follicle morphogenesis and anagen induction shown by using keratinocyte-specific TAK1-deficient mice. PLoS One. 2010;5:e11275. [87] Hamada K, Hirotsu S, Uchiwa H, Yamazaki S, Suzuki K. Pro-inflammatory cytokine interleukin-1alpha is downregulated during anagen phase of hair cycle in vivo. J Dermatol Sci. 2003;33:195-8. [88] Maeda T, Taniguchi M, Matsuzaki S, Shingaki K, Kanazawa S, Miyata S. Anti-inflammatory effect of electroacupuncture in the C3H/HeJ mouse model of alopecia areata. Acupuncture in medicine : journal of the British Medical Acupuncture Society. 2013;31:117-9. [89] Rashid RM, Thomas V. Androgenic pattern presentation of scarring and inflammatory alopecia. Journal of the European Academy of Dermatology and Venereology : JEADV. 2010;24:979-80. [90] Cetin ED, Savk E, Uslu M, Eskin M, Karul A. Investigation of the inflammatory mechanisms in alopecia areata. The American Journal of dermatopathology. 2009;31:53-60. [91] Arck PC, Handjiski B, Peters EM, Peter AS, Hagen E, Fischer A, et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am J Pathol. 2003;162:803-14. [92] Orentreich N. Autografts in alopecias and other selected dermatological conditions. Ann N Y Acad Sci. 1959;83:463-79. [93] Stenn KS, Cotsarelis G. Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr Opin Biotechnol. 2005;16:493-7. [94] Chuong CM, Cotsarelis G, Stenn K. Defining hair follicles in the age of stem cell bioengineering. J Invest Dermatol. 2007;127:2098-100. [95] Ohyama M, Zheng Y, Paus R, Stenn KS. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp Dermatol. 2010;19:89-99. [96] Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 2000;14:1181-5. [97] Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635-48. [98] Morris RJ, Liu Y, Marles L, Yang Z, Trempus C, Li S, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411-7. [99] Elliott K, Stephenson TJ, Messenger AG. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol. 1999;113:873-7. [100] Ihara S, Watanabe M, Nagao E, Shioya N. Formation of hair follicles from a single-cell suspension of embryonic rat skin by a two-step procedure in vitro. Cell Tissue Res. 1991;266:65-73. [101] Takeda A, Matsuhashi S, Shioya N, Ihara S. Histodifferentiation of hair follicles in grafting of cell aggregates obtained by rotation culture of embryonic rat skin. Scand J Plast Reconstr Surg Hand Surg. 1998;32:359-64. [102] Kelm JM, Fussenegger M. Microscale tissue engineering using gravity-enforced cell assembly. Trends in biotechnology. 2004;22:195-202. [103] Young TH, Hung CH. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials. 2005;26:4291-9. [104] Young TH, Yao CH, Sun JS, Lai CP, Chen LW. The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro. Biomaterials. 1998;19:717-24. [105] Burstone MS. Histochemical comparison of naphthol AS-phosphates for the demonstration of phosphatases. J Natl Cancer Inst. 1958;20:601-15. [106] Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol. 2005;124:867-76. [107] Huang YC, Chan CC, Lin WT, Chiu HY, Tsai RY, Tsai TH, et al. Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials. 2013;34:442-51. [108] Lin RZ, Chou LF, Chien CC, Chang HY. Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and beta1-integrin. Cell Tissue Res. 2006;324:411-22. [109] Kishimoto J, Ehama R, Wu L, Jiang S, Jiang N, Burgeson RE. Selective activation of the versican promoter by epithelial- mesenchymal interactions during hair follicle development. Proc Natl Acad Sci U S A. 1999;96:7336-41. [110] Soma T, Fujiwara S, Shirakata Y, Hashimoto K, Kishimoto J. Hair-inducing ability of human dermal papilla cells cultured under Wnt/beta-catenin signalling activation. Experimental dermatology. 2012;21:307-9. [111] Hamano T, Teramoto A, Iizuka E, Abe K. Effects of polyelectrolyte complex (PEC) on human periodontal ligament fibroblast (HPLF) function. II. Enhancement of HPLF differentiation and aggregation on PEC by L-ascorbic acid and dexamethasone. J Biomed Mater Res. 1998;41:270-7. [112] Tanahashi K, Mikos AG. Protein adsorption and smooth muscle cell adhesion on biodegradable agmatine-modified poly(propylene fumarate-co-ethylene glycol) hydrogels. J Biomed Mater Res A. 2003;67:448-57. [113] Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater. 2012;11:642-9. [114] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677-89. [115] Ballester-Beltran J, Cantini M, Lebourg M, Rico P, Moratal D, Garcia AJ, et al. Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. J Mater Sci Mater Med. 2012;23:195-204. [116] Hsieh CH, Wang JL, Huang YY. Large-scale cultivation of transplantable dermal papilla cellular aggregates using microfabricated PDMS arrays. Acta Biomater. 2011;7:315-24. [117] Ryan PL, Foty RA, Kohn J, Steinberg MS. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S A. 2001;98:4323-7. [118] Lin SJ, Hsiao WC, Jee SH, Yu HS, Tsai TF, Lai JY, et al. Study on the effects of nylon-chitosan-blended membranes on the spheroid-forming activity of human melanocytes. Biomaterials. 2006;27:5079-88. [119] Lin SJ, Jee SH, Hsaio WC, Lee SJ, Young TH. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials. 2005;26:1413-22. [120] Ohyama M, Kobayashi T, Sasaki T, Shimizu A, Amagai M. Restoration of the intrinsic properties of human dermal papilla in vitro. J Cell Sci. 2012. [121] Roh C, Tao Q, Lyle S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiol Genomics. 2004;19:207-17. [122] Link RE, Paus R, Stenn KS, Kuklinska E, Moellmann G. Epithelial growth by rat vibrissae follicles in vitro requires mesenchymal contact via native extracellular matrix. J Invest Dermatol. 1990;95:202-7. [123] Kang BM, Kwack MH, Kim MK, Kim JC, Sung YK. Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. J Invest Dermatol. 2012;132:237-9. [124] Lillie F, Wang H. Physiology of development of the feather. V. Experimental morphogenesis. Physiol Zool 1941:33. [125] Cohen J, Espinasse PG. On the normal and abnormal development of the feather. J Embryol Exp Morphol. 1961;9:223-51. [126] Sharov AA, Sharova TY, Mardaryev AN, Tommasi di Vignano A, Atoyan R, Weiner L, et al. Bone morphogenetic protein signaling regulates the size of hair follicles and modulates the expression of cell cycle-associated genes. Proc Natl Acad Sci U S A. 2006;103:18166-71. [127] Jiang TX, Jung HS, Widelitz RB, Chuong CM. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development. 1999;126:4997-5009. [128] Narhi K, Tummers M, Ahtiainen L, Itoh N, Thesleff I, Mikkola ML. Sostdc1 defines the size and number of skin appendage placodes. Dev Biol. 2012;364:149-61. [129] Chen D, Jarrell A, Guo C, Lang R, Atit R. Dermal beta-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development. 2012;139:1522-33. [130] Venturelli M, Morgan GR, Donato AJ, Reese V, Bottura R, Tarperi C, et al. Cellular aging of skeletal muscle: telomeric and free radical evidence that physical inactivity is responsible and not age. Clinical science. 2014;127:415-21. [131] Vazquez-Memije ME, Capin R, Tolosa A, El-Hafidi M. Analysis of age-associated changes in mitochondrial free radical generation by rat testis. Molecular and cellular biochemistry. 2008;307:23-30. [132] Gonen O, Toledano H. Why adult stem cell functionality declines with age? Studies from the fruit fly Drosophila melanogaster model organism. Current genomics. 2014;15:231-6. [133] Khoo ML, Carlin SM, Lutherborrow MA, Jayaswal V, Ma DD, Moore JJ. Gene profiling reveals association between altered Wnt signaling and loss of T-cell potential with age in human hematopoietic stem cells. Aging Cell. 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55724 | - |
| dc.description.abstract | 毛囊由表皮與真皮兩部分所建構,其中真皮由毛囊真皮乳突細胞所組成。毛囊真皮乳突細胞參與毛囊的發育、生長、週期的調控、型態與器官大小。根據文獻顯示真皮乳突細胞可以教育未分化的表皮細胞走向毛囊發育;也可在成體皮下誘導毛囊異位再生。透過毛囊發生學,了解真皮乳突細胞是來自未分化的間質層纖維母細胞,真皮乳突細胞與纖維母細胞都來自相同的間質細胞並共有大部分的基因叢。然而,被移除的真皮乳突細胞卻可以從附近的纖維母細胞補充而再生成為新的真皮乳突細胞。許多文獻指出經由輻射或化學法治療後引起的掉髮是因為毛囊表皮細胞受到損傷,卻較少文獻探討對毛囊間質細胞的影響。我們發現當纖維母細胞特化成毛囊真皮乳突細胞後,較能夠對抗環境中的壓力所造成的傷害。在氧化壓力傷害下,真皮乳突細胞有較好的存活率,我們發現是由於氧化壓力會使纖維母細胞產生較多的活化態caspase 3及gamma-H2A.X,毛囊真皮乳突細胞具有較高的抗細胞凋亡bcl-2表現量。在高劑量的輻射傷害後,毛囊真皮乳突細胞仍可進行細胞分裂,而纖維母細胞卻不能。因此我們認為毛囊真皮乳突細胞對於外界壓力具有較好的抵抗性。
化療造成的永久性禿髮會有毛髮變細的現象,文獻指出來自雄性禿的毛囊真皮乳突細胞有較佳的細胞分裂能力,並具有老化特徵的證據顯示,但相關機制尚未被釐清,其困難處是由於這些細胞無法在體外大量培養。我們研究發現經由氧化壓力傷害後,存活下來的毛囊真皮乳突細胞具有早熟性老化的現象:細胞分裂能力降低、老化標的因子p16及p21表現量上升。這些老化的毛囊真皮乳突細胞保留它特有的基因表現,並非轉變回纖維母細胞。老化的毛囊真皮乳突細胞無法接收來自角質細胞培養液的刺激生長,說明了表皮對真皮層的訊號傳遞受到損害。這些老化的毛囊真皮乳突細胞中,其誘導毛囊再生的基因(akp與versican)量下降、自我聚集能力變差,並且失去誘導毛囊新生的能力。另外也發現老化的毛囊真皮乳突細胞無法刺激毛囊角質細胞生長與失去維持毛囊幹細胞特性的能力,並無法教育角質細胞往毛囊分化。我們認為間質對表皮訊號傳遞以及幹細胞活化的能力受到損害。在微陣列基因與細胞激素晶片的分析結果顯示:老化細胞分泌大量的發炎因子(interleukin-4,5,6),角質細胞培養在IL-6培養液中其生長能力與細胞聚落形成能力皆變差,我們認為老化的毛囊真皮乳突細胞是因為分泌interleukin 6而抑制角質細胞生長與幹細胞活化。 毛囊真皮乳突細胞對毛囊器官大小有很重要的調控。我們研究顯示毛囊真皮乳突細胞數量與毛囊器官的大小粗細有統計上的正相關。因此我們目標是藉由組織工程的方法去控制毛囊再生後的大小。我們先前的研究顯示生醫材料的親疏水性可以調控毛囊真皮乳突細胞的貼附與細胞聚集形成微組織球的能力,毛囊真皮乳細胞可以經由不同的播種數量,在聚乙烯醇的表面形成各種大小的微組織球體。此方法的優點是可快速取得並經由注射也保有其完整球體結構,並且保有其特化基因表現。我們發現較大的微組織可提高毛囊誘導效率,卻無法經由適當的微組織控制毛囊再生後器官的大小。 我們的研究顯示可以利用氧化壓力刺激而快速得到大量的老化毛囊真皮乳突細胞,並釐清其中老化真皮細胞在表皮-真皮交互作用後的影響機轉,可做為其他器官之表皮-真皮的研究模式,探討因氧化壓力或是年齡增長所導致的器官老化衰退現象並應用在臨床治療上的相關疾病預防。 | zh_TW |
| dc.description.abstract | Hair follicle (HF) is composed of epithelium and mesenchyme. The dermal papilla (DP) is a component of HF mesenchyme and it is involved in the development, growth, cycle regulation, shape, and organ of hair. References showed DP can educate the undifferentiated epithelia cells going to follicular fate and induce ectopic hair neogenesis in adult skin. During HF morphogenesis, DP cells are from fibroblasts (FB), uncharacterized mesenchyme. DP and FB are derived from the same original mesencyme and shared the most genes. However, amputated DP could be regenerated from local fibroblast. There are many studies that have shown that radiotherapy and chemotherapy-induced hair dystrophy and even hair loss is associated with follicular epithelial damage. However, there is little literature on the damage of follicular mesenchyme. To address this question, we found that fibroblasts become more resistant to environmental stress when they differentiate into DP cells. DP cells had higher survival than FB under oxidative stress according to induce cleaved caspase 3, induce cell death, and gamma-H2A.X in FB. DP cells had higher bcl-2, anti-apoptotic factor, expression than FB. DP after radiation can still proliferate but FB can’t. However, DP cells have greater resistant ability to stress than fibroblasts.
Permanent chemotherapy-induced alopecia had diffuse thinning hair. Previous studies have showed that balding DP cells from androgenetic alopecia (AGA) have smaller cell size and limited proliferation compared to non-balding DP cells. Many evidences show that premature senescence is a characteristic of balding DP cells. The exhaustive pathological mechanism is yet unclear. However, the problem is, it difficult to expand numerous balding or aged DP cells in culture. We found the survival DP cells tend to become senescence after oxidative stress. Aged DP cells became enlarged and flatness, having the limited proliferating ability and increasing senescence-associated beta galactosidase activity, p16 and p21. However, the oxidative stress induce senescence wasn’t happened in FB cells. These senescent DP cells conserved the DP specific genes. We suggested that the epithelium to mesenchyme signaling was impaired according to the senescent DP cells are irreversibly by keratinocyte conditioned medium. The HF inductive genes, akp and versican, were decreased in senescent DP cells. The senescent DP cells had less AKP activity and impaired self-aggregated ability. Importantly, they lost the HF induction ability. We also found that the senescent DP cells unable to stimulate HF keratinocytes (KC) growth and support clonal growth and stemness of HF keratinocytes. The senescent DP cells exhibited uredced ability to induce follicular differentiation. We suggested that the mesenchyme to epithelium signaling and stem cell activation were impaired. Base on screen of microarray and cytokine array, we found that the interleukins were up-regulated in senescent DP medium, especially in interleukin 6 (IL-6). The senescent DP cells inhibit of KC clonal growth and stem cell activation by induced IL-6 secretion. The DP plays a crucial role of controlling HF organ size. In our observation, we found that the DP cell number is correlated with HF thickness and is statistically significant. We purpose to control the size of regenerated hair follicles through tissue engineering. According to our previous results, the adhesivity and aggregation ability of DP cells can be controlled by different substratum hydrophobicity. We found that the DP cells could format DP spheroids at different sizes when cultured in polyvinyl alcohol (PVA)-coating plate by different cell densities. The advantages are rapid and to ensure that they are injectable. Characters of spheroidal microtissues obtained on PVA-coated surface. We found that larger DP spheroids showed higher HF induction efficiency but size of preformed DP spheroids did not affect the thickness of regenerated hair. In our studies, we set up a model of rapid and easy senescent DP cells acquisition to elucidate the role of senescent mesenchyme in the interaction of epithelium and mesenchyme for other organs. This model is a beneficial strategy to explore the pathological mechanism of organ atrophy as a result of oxidative stress or aging. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:19:44Z (GMT). No. of bitstreams: 1 ntu-103-D97548013-1.pdf: 2511476 bytes, checksum: 09087198341717637754124b8554ea6c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Acknowledgement………………………………………………………………..……i
中文摘要…………………………………………………………………………...ii-iii Abstract………………………………………………………………………….…iv-v Contents………………………………………………………………………….vi-viii Figures index………………………………………………………………….……..ix Table index……………………………………………………………………………x Chapter1. Introduction……………………………………………………………….1 1.1. Hair follicle development and structure………………………………………….1 1.2. Hair cycle regulation……………………………………………………………..2 1.3. Role of DP in HF regeneration and cycling through EMIs……………………….3 1.4. Hypothesis aims and overall design of this study………………………………...4 Chapter2. Investigate the response of dermal papilla and fibroblasts after stress……..6 2.1. Introduction:………………………………………………………………………6 2.1.1. The role of fibroblasts in regeneration, skin homeostasis and wound repair…..6 2.1.2. Damage response pathway of HF mesenchyme………………………………..6 2.2. Materials and methods:…………………………………………………………..7 2.2.1. Cell isolation, expansion and culture medium…………………………………7 2.2.2. Stimulation of anti-cancer compound, radiation and hydrogen peroxide……..8 2.2.3. Cell viability: MTT assay and trypan blue staining……………………………8 2.2.4. Western blotting………………………………………………………………..8 2.2.5. The activated caspase3/7 detection……………………………………………9 2.3. Results:…………………………………………………………………………..9 2.3.1. Survive or death after stress …………………………………………………..9 2.4. Discussion………………………………………………………………………..10 Chapter 3. The senescent HF mesenchyme effects on EMIs and functional analysis.12 3.1. Introduction……………………………………………………………………12 3.1.1. Androgenetic alopecia……………………………………………………….12 3.1.2. Persistence of Hair follicle stem cell in aged skin……………………………13 3.1.3. Evidence of DP aging in androgenetic alopecia……………………………….13 3.1.4. The subtle difference in skin fibroblasts and dermal papilla……………….…14 3.2. Materials and methods:………………………………...…………………….…15 3.2.1. Flow cytometry: ROS level and senescent cell detection……………………15 3.2.2. The BrdU incorporation …………………………………………………….15 3.2.3. Isolation and culture of keratinocyte…………………………………………15 3.2.4. The secreted IL-6 measure by ELISA…………………………………………16 3.2.5. The colony formation………………………………………………………….16 3.2.6. The conditioned medium collection and cytokine array analysis……………16 3.3. Results:………………………………………………………………………….17 3.3.1. Hydrogen peroxide induced DP senescence but fibroblasts not………………17 3.3.2. Evidences of senescent DP cells……………………………………………..17 3.3.3. The functional loss of senescent DP………………………………………….18 3.3.4. Senescent DP cells had poor ability of maintain keratinocyte growth………..19 3.3.5. The colonic formation ability has been loss in senescent DP cells……………20 3.3.6. Secretory factors from senescent DP cells: the role of IL-6 in EMIs………….21 3.4. Discussion……………………………………………………………………….21 3.4.1. Senescence in skin and other tissues………………………………………….21 3.4.2. Aging processing by chemotherapy, senile, radiation and genetics…………. .22 3.4.3. Hormone and inflammatory regulated senescence in hair loss……………….23 3.4.4. Role of breaking cross-talk with epidermal/SC activation in HF…………….23 Chapter4. Scalable production of controllable dermal papilla spheroids on polyvinyl alcohol surface………………………………………………………………………25 4.1. Introduction……………………………………………………………………..25 4.2 Materials and methods:…………………………………………………………..27 4.2.1. Polymer substratum preparation and contact angle measurement…………….27 4.2.2. Cell isolation, expansion and culture medium………………………………..27 4.2.3. Cell attachment, cell viability, spheroid formation and hanging drop culture..28 4.2.4. Histology, immunostaining and alkaline phosphatase activity……………….29 4.2.5. RNA isolation and reverse transcription-PCR………………………………..29 4.2.6. Injectability of DP spheroids, HF induction efficiency and thickness of regenerated hair fiber ……………………………………………………………….30 4.2.7. Statistical analysis…………………………………………………………….31 4.3. Results:…………………………………………………………………………..31 4.3.1. Relationship of DP cell numbers with the thickness of hair shafts of rat vibrissae………………………………………………………………………………31 4.3.2. Substratum hydrophobicity and the cell-substratum adhesivity……………….32 4.3.3. Spheroidal microtissue formation on PVA-coated surface ……………………32 4.3.4. Controllabe spheroidal microtissues produced in arrays of PVA-coated PCR tubes………………………………………………………………………………….33 4.3.5. Characters of spheroidal microtissues obtained on PVA-coated surface…….35 4.3.6. Injectabililty of spheroidal microtissues……………………………………..35 4.3.7. Effect of DP spheroid size on the HF induction efficiency and the thickness of regenerated hair……………………………………………………………………..36 4.4. Discussion………………………………………………………………………37 4.4.1. Why we can’t moderate the regenerated HF thickness by controlled DP spheroid size?...........................................................................................................................37 Chapter 5. Conclusions and perspective…………………………………………………………………44 Chapter 6. References………………………………………………………………73 | |
| dc.language.iso | en | |
| dc.subject | 毛囊再生 | zh_TW |
| dc.subject | 毛囊真皮乳突細胞 | zh_TW |
| dc.subject | 皮膚纖維母細胞 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 表皮-真皮交互作用 | zh_TW |
| dc.subject | fibroblast | en |
| dc.subject | senescence | en |
| dc.subject | epithelium-mesenchyme interaction | en |
| dc.subject | dermal papilla | en |
| dc.subject | hair follicle regeneration | en |
| dc.title | 探討氧化壓力造成毛囊間質乳突細胞老化影響表皮-真皮交互作用之機轉 | zh_TW |
| dc.title | Oxidative stress-induced premature dermal papilla aging impairs hair follicle epithelial-mesenchymal interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊良棟(Liang-Tung Yang),朱家瑜(Chia-Yu Chu),王培育(Pei-Yu Wang),楊台鴻(Tai-Horng Young) | |
| dc.subject.keyword | 毛囊真皮乳突細胞,皮膚纖維母細胞,老化,表皮-真皮交互作用,毛囊再生, | zh_TW |
| dc.subject.keyword | dermal papilla,fibroblast,senescence,epithelium-mesenchyme interaction,hair follicle regeneration, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
