請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55723完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | Yun-Jie Li | en |
| dc.contributor.author | 李允傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:19:40Z | - |
| dc.date.available | 2015-02-03 | |
| dc.date.copyright | 2015-02-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | [1] H.-L. Lee, I.-T. Lin, J.-H. Chen, H.-E. Horng, and H.-C. Yang, 'High-Tc Superconducting receiving coils for nuclear magnetic resonance imaging,' Applied Superconductivity, IEEE Transactions on, vol. 15, pp. 1326-1329, 2005.
[2] I.-T. Lin, H.-C. Yang, C.-W. Hsieh, T. Jao, and J.-H. Chen, 'Human hand imaging using a 20 cm high-temperature superconducting coil in a 3T magnetic resonance imaging system,' Jounal of Applied Physics, vol. 107, 2010. [3] J. T. Vaughan, M. Garwood, C. M. Collins, W. Liu, L. DelaBarre, G. Adriany, et al., '7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images,' Magnetic Resonance in Medicine, vol. 46, pp. 24-30, 2001. [4] P. B. Roemer, W. A. Edelstein, C. E. Hayes, S. P. Souza, and O. M. Mueller, 'The NMR Phased Array,' MAGNETIC RESONANCE IN MEDICINE, vol. 16, pp. 192-225, 1990. [5] H. Okada, T. Hasegawa, J. G. Vanheteren, and L. Kaufman, 'RF Coil for Low-Field MRI Coated with High-Temperature Superconductor,' Journal of Magnetic Resonance, Series B, vol. 107, pp. 158-164, 5// 1995. [6] I.-T. Lin, H.-C. Yang, and J.-H. Chen, 'Whole Body Screening Using High-Temperature Superconducting MR Volume Resonators: Mice Studies,' PLoS ONE, vol. 7, p. e33207, 2012. [7] I.-T. Lin, H.-C. Yang, and J.-H. Chen, 'A 40-mm High-Temperature Superconducting Surface Resonator in a 3-T MRI System: Simulations and Measurements,' Applied Superconductivity, IEEE Transactions on, vol. 21, pp. 3574-3580, 2011. [8] I.-T. Lin, 'Novel Applications of High Temperature Superconducting Coils for MR Imaging,' Ph. D, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan Univerity, 2011. [9] I.-T. Lin, H.-C. Yang, and J.-H. Chen, 'Using high-Tc superconducting resonator for enhancement of diffusion tensor imaging,' Journal of Applied Physics, vol. 109, pp. -, 2011. [10] C. E. Hayes, N. Hattes, and P. B. Roemer, 'Volume imaging with MR phased arrays,' Magnetic Resonance in Medicine, vol. 18, pp. 309-319, 1991. [11] G. C. Wiggins, C. Triantafyllou, A. Potthast, A. Reykowski, M. Nittka, and L. L. Wald, '32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry,' Magnetic Resonance in Medicine, vol. 56, pp. 216-223, 2006. [12] D.I. Hoult and B. Tomanek, 'Use of Mutually Inductive coupling in Probe Design,' Concepts Magn. Reson. , vol. 15, pp. 262-285, 2002. [13] I.-T. Lin, H.-C. Yang, and J.-H. Chen, 'A Temperature-Stable Cryo-System for High-Temperature Superconducting MR In-Vivo Imaging,' PLoS ONE, vol. 8, p. e61958, 2013. [14] D. M.Pozar, Microwave Engineering, 3 ed.: John Wiley & Sons, 2005. [15] W. Jianmin, A. Reykowski, and J. Dickas, 'Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils [magnetic resonance imaging],' Biomedical Engineering, IEEE Transactions on, vol. 42, pp. 908-917, 1995. [16] T. W. Redpath and J. M. S. Hutchison, 'Estimating patient dielectric losses in NMR imagers,' Magnetic Resonance Imaging, vol. 2, pp. 295-300, 1984. [17] S. E. Hurlston, G. P. Cofer, and G. A. Johnson, 'Optimized radiofrequency coils for increased signal-to-noise ratio in magnetic resonance microscopy,' International Journal of Imaging Systems and Technology, vol. 8, pp. 277-284, 1997. [18] H. T. Lin, 'Decoupling Methods of Magnetic Resonance Imaging Array Coils and Its Biomedical Applications,' Master, Department of Electrical Engineering National Taiwan University, 2007. [19] Kishore V. Mogatadakala, James A. Bankson, and P. A. Narayana, 'Three Element Phased Array Coil for Imaging of Rat Spinal Cord at 7T,' MAGNETIC RESONANCE IN MEDICINE, vol. 60, pp. 1498-1505, 2008. [20] B. Wu, X. Zhang, P. Qu, and G. X. Shen, 'Capacitively decoupled tunable loop microstrip (TLM) array at 7 T,' Magn Reson Imaging, vol. 25, pp. 418-24, Apr 2007. [21] K. Y. Chen, 'High temperature superconducting RF Coil on 3T MRI System: Animal Platform Development and Applications,' Master, Department of Elctrical Engineering, National Taiwan University, 2007. [22] C.-H. Hsu, 'Anisotropy Diffusion Index on Ischemic Stroke Patients,' Master, Department of Automatic Control Engineering, Feng Chia Univerity, 2006. [23] A. Einstein, 'Investigation on the theory of the Brownian movement,' 1926. [24] Molecular Diffusion and Nuclear Magnetic Resonance. Available: http://www.rsierra.com/DA/node6.html#SECTION00610000000000000000 [25] D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, et al., 'Diffusion tensor imaging: Concepts and applications,' Journal of Magnetic Resonance Imaging, vol. 13, pp. 534-546, 2001. [26] C. Beaulieu, 'The basis of anisotropic water diffusion in the nervous system – a technical review,' NMR in Biomedicine, vol. 15, pp. 435-455, 2002. [27] M. Hiroshi, T. Yoshiaki, F. Masao, and A. Toshihisa, 'A New High- T c Oxide Superconductor without a Rare Earth Element,' Japanese Journal of Applied Physics, vol. 27, p. L209, 1988. [28] 'History of Superconductor Materials,' in http://www.ccas-web.org/superconductivity /#image1, ed. Coalition for the commercial Application of Superconductors. [29] D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, 'High-Tc superconducting materials for electric power applications,' Nature, vol. 414, pp. 368-377, 2001. [30] G. Jacobs, A. Assefa, and J. Willig-Onwuachi, 'Q measurement and simulation for RF coils,' presented at the Proc. Intl. Soc. Mag. Reson. Med, 2008. [31] M. A. Ohliger and D. K. Sodickson, 'An introduction to coil array design for parallel MRI,' NMR in Biomedicine, vol. 19, pp. 300-315, 2006. [32] U. M. Savalli. (2014). Mammal Skeletons Available: http://www.savalli.us/BIO370/Anatomy/8.MammalSkeletonLabel.html [33] B. M. Ellingson, S. N. Kurpad, S.-J. Li, and B. D. Schmit, 'In vivo diffusion tensor imaging of the rat spinal cord at 9.4T,' Journal of Magnetic Resonance Imaging, vol. 27, pp. 634-642, 2008. [34] I.-T. Lin, 'The Design and Application of Bi-2223 High-Temperature Superconducting Tape RF coil,' Master, Department of Electrical Engineering National Taiwan University, 2003. [35] W. E. Kwok and Z. You, 'In vivo MRI using liquid nitrogen cooled phased array coil at 3.0 T,' Magnetic Resonance Imaging, vol. 24, pp. 819-823, 2006. [36] E.-l. Wu, C. J.-H, and T.-D. Chiueh, 'Wideband MRI: A new Dimension of MR image Acceleration,' presented at the ISMRM, 2009. [37] E.-L. Wu, J.-H. Chen, and T.-D. Chiueh, 'Wideband MRI: Theoretical analysis and its applications,' in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, pp. 5681-5684. [38] A. T. Van, D. Hernando, and B. P. Sutton, 'Motion-Induced Phase Error Estimation and Correction in 3D Diffusion Tensor Imaging,' Medical Imaging, IEEE Transactions on, vol. 30, pp. 1933-1940, 2011. [39] Y.-L. Liu, 'A Rat Brain Functional MRI Study Using High-Temperature Superconducting Radio-Frequency Coil Platform in a 7T MRI,' Master, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55723 | - |
| dc.description.abstract | 求高時間及空間解析度為目前磁振造影發展的趨勢,越高的訊雜比能換得的時空解析度也越高,因此高訊雜比為提升時空解析度的關鍵因子。相較於傳統磁振造影線圈,使用低電阻的高溫超導材料已是公認可以大幅提升訊雜比的方法。然而,使用高溫超導線圈來加大可視範圍(Field-of-View)的高溫超導相位陣列線圈之研究仍在初步階段。因此本論文的目標為在7T小動物磁振造影系統建立雙通道高溫超導陣列線圈平台,目的為加大可視範圍與展示其高訊雜比的優勢。
首先,建立高溫超導陣列線圈的電磁模型計算其訊雜比的增益與B1場的均勻性。第二,將雙通道高溫超導陣列線圈之間的耦合效應最小化。同時針對此雙通道高溫超導陣列線圈量身製作一低溫裝置,使超導線圈能維持在77K的低溫下。第三,以仿體與活體大鼠為掃描樣品,驗證高溫超導陣列線圈平台的可行性。最後,將此平台應用於大鼠脊髓的擴散張量造影上。 相較於相同大小、形狀之自製銅陣列射頻線圈,本論文於先由電磁模擬平台由理論獲取2.2倍的訊雜比增益,且於實際雙通道高溫超導射頻陣列線圈平台獲得約1.9倍之大鼠脊髓解剖影像的訊雜比增益。此外,在大鼠的擴散張量造影上的角度差分析結果,高溫超導陣列線圈將差異之角度標準差由26.7度縮短至18.9度。 藉由高溫超導陣列線圈高訊雜比與大可視範圍的雙重優勢下,此一成果未來勢必能對神經科學的基礎研究有所幫助。 | zh_TW |
| dc.description.abstract | The signal-to-noise ratio (SNR) is the key factor while magnetic resonance imaging (MRI) towards high spatial and temporal resolution. Compared with copper, the high temperature superconducting (HTS) coil has been proposed as a promising technique for SNR improvement in MRI. However, the HTS coil is not fully demonstrated its capability such as using HTS coil array to enlarge field-of-view. Hence, this study aimed to implement a 2-channel HTS coil array platform for small animal imaging at 7T MRI.
First, the electromagnetic model of HTS coil array was built to simulate the SNR gain and B1 field homogeneity. Second, the 2-channel HTS coil array was implemented with minimized coupling effect. In the meanwhile, the Dewar for this coil configuration was fabricated to maintain the HTS coil array at low temperature of 77K. Third, the capability and feasibility of the homemade HTS coil array was verified by phantom and in-vivo rat body MR experiments. Finally, this HTS coil array platform was applied to the diffusion tensor imaging (DTI) of rat spine. In the theoretical and simulation results, the SNR gain of using 2-channel HTS coil array was approximate 2.2-time to the conventional copper coil array in the same configuration. Our experimental results show the HTS coil array at 7T MRI can provide a 1.9-time SNR gain in both of phantom and in-vivo rat spine scans while compared to copper coil array. In DTI experiment, the standard deviation of the deviation angle was dramatically reduced from 26.7-degree (by 2-channel copper coil array) to 18.9-degree (by 2-channel HTS coil array). In the future, the study will be potentially useful to facilitate the basic research of neuroscience and clinic diagnosis by the advantages of high SNR and larger field-of-view (FOV) of HTS phased array. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:19:40Z (GMT). No. of bitstreams: 1 ntu-103-R00945008-1.pdf: 10051989 bytes, checksum: 1d141d1f95fc7d16121b4225723097d2 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III 英文摘要 IV 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.3研究目標 2 1.4 論文架構 4 第二章 陣列線圈及擴散張量造影理論 5 2.1 本章簡介 5 2.2 射頻線圈理論 5 2.2.1 核磁共振造影原理簡介 5 2.2.2 共振頻率 5 2.2.3 S參數(S parameters)理論 6 2.2.4 S參數量測方法 8 2.2.5 表面線圈 8 2.2.6 激發/接收射頻線圈 9 2.2.7 陣列線圈 10 2.2.8 射頻線圈之信雜比 10 2.3 陣列線圈去耦合理論 14 2.3.1 互感耦合理論 14 2.3.2 幾何去耦合理論 15 2.3.3 電容去耦合理論 16 2.3.4 訊號擷取 18 2.4 擴散張量造影理論 21 2.4.1 擴散張量影像 21 2.4.2 擴散量化指標 24 第三章 方法與材料 25 3.1 高溫超導材料 25 3.2 電磁模擬 27 3.2.1 模擬環境 27 3.2.2 去耦合模擬 28 3.2.3 品質因素模擬 31 3.3 自製雙通道線圈 34 3.3.1 線圈S參數量測 35 3.3.2 線圈去耦合量測 36 3.4 高溫超導陣列射頻線圈平台 37 3.4.1 低溫裝置設計 37 3.4.2 低溫裝置穩定性量測 38 3.4.3 高溫超溫超導陣列線圈之調頻與匹配 39 3.5 實驗流程 41 3.6 影像系統參數設定 43 第四章 結果 44 4.1 本章簡介 44 4.2陣列線圈的射頻品質因素 44 4.3仿體 45 4.3.1 仿體影像 45 4.4動物解剖影像 46 4.5應用 48 第五章 實驗討論、結論與未來工作 55 5.1 實驗討論 55 5.1.1 高溫超導平台 55 5.1.2 影像 57 5.1.3 焊點對於超導特性的影響 60 5.1.4 模擬與實際量測結果之電阻值與品質因素之比較 62 5.2 結論 64 5.3 未來工作 65 附錄A 68 參考文獻 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 訊雜比 | zh_TW |
| dc.subject | 可視範圍 | zh_TW |
| dc.subject | 去耦合 | zh_TW |
| dc.subject | 高溫超導射頻陣列線圈 | zh_TW |
| dc.subject | 擴散磁振造影 | zh_TW |
| dc.subject | 電磁模擬 | zh_TW |
| dc.subject | HTS RF Phased Array Coil | en |
| dc.subject | Decouple | en |
| dc.subject | Field-of-view | en |
| dc.subject | Signal-to-Noise Radio | en |
| dc.subject | Electromagnetic Simulation | en |
| dc.subject | Diffusion Tensor Imaging | en |
| dc.title | 雙通道高溫超導射頻陣列線圈在7T磁振造影系統之開發與應用 | zh_TW |
| dc.title | Two-channel High-temperature Superconducting Transceiver RF Phased Array Coil in 7T MRI | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林胤藏(In-Tsang Lin) | |
| dc.contributor.oralexamcommittee | 林慶波(Ching-Po Lin),盧信嘉(Hsin-Chia Lu),郭立威(Li-Wei Kuo) | |
| dc.subject.keyword | 高溫超導射頻陣列線圈,去耦合,可視範圍,訊雜比,電磁模擬,擴散磁振造影, | zh_TW |
| dc.subject.keyword | HTS RF Phased Array Coil,Decouple,Field-of-view,Signal-to-Noise Radio,Electromagnetic Simulation,Diffusion Tensor Imaging, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 9.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
