請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正(Wen-Cheng Liao) | |
| dc.contributor.author | Michael Wang | en |
| dc.contributor.author | 王俊傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T04:19:36Z | - |
| dc.date.available | 2014-09-03 | |
| dc.date.copyright | 2014-09-03 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-20 | |
| dc.identifier.citation | [1] 鄭元良,宋裕祺,廖慧明,邱昌平,蔡江洋,陶其駿,「高強度鋼筋混凝土應用在超高樓層建築物之耐震性能探討」,內政部建築研究所研究報告,2011。
[2] (財)国土開發技術研究センター,“建設省総合技術開發プロジェクト:鉄筋コンクリート造建築物之超軽量化˙超高層化技術の開發(New RC)” ,平成四年度構造性能分科会報告書,1993。 [3] Saatcioglu, M., Grira, M., “Confinement of Reinforced Concrete Columns with Welded Reinforcement Grids,” ACI Structural Journal, Vol. 96, No. 1, 1999. [4] Lambert-Aikhionbare, N., Tabsh, S. W., “Confinement of High-trength Concrete with Welded Wire Reinforcement,” ACI Structural Journal, Vol. 98, 2001. [5] ACI Committee, 318, “Building Code Requirements for Structural Concrete (ACI 318-11)and Commentary,” American Concrete Institute, 2011. [6] 黃冠傑,¬「鋼筋混凝土柱耐震圍束設計之研究」,碩士論文,國立台灣大學土木工程學系,2013。 [7] Sezen, H., “Seismic Behavior and Modeling of Reinforced Concrete Building Columns,” PhD dissertation, University of California, Berkeley, 2000. [8] Sezen, H., Moehle, J. P., “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineeringc ASCE, 2004. [9] ACI Innovation Task Group 4, “Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ITG-4.3R-07),” American Concrete Institute, 2007. [10] ACI Committee,363, “State-of-the-Art Report on High-Strength Concrete,” American Concrete Institute, 1992. [11] Aoyama, H.,“Design of Modern Highrise Reinforced Concrete Structures,” Imperial College Press, 2001. [12] Mendis, P. A., Panagopoulos, C., “Applications of High Strength Concrete in Seismic Regions, ”12WCEE:12thWorld Conference on Earthquake Engineering, 2000. [13] Murray, N. S., “Applicability of High Strength Concrete for Buildings in Active Seismic Regions,” Massachusetts Institute of Technology. Department of Civil and Environmental Engineering, 2001. [14] Park. R., “Some Current and Future Aspects of Design and Construction of Structural Concrete for Earthquake Resistance,” Australasian Structural Engineering Conference, Auckland, pp.1-16, 1998. [15] National Institute of Standards and Technology, “Use of High-Strength Reinforcement in Earthquake-Resistant Concrete Structures,” NEHRP Consultants Joint Venture, 2014. [16] Prabir C. Basu, P. C., Shylamoni P., Rosham A. D., “Characterisation of Steel Reinforcement for RC Structures: An Overview and Related Issues,” The Indian Concrete Journal, 2004. [17] CNS 560,「鋼筋混凝土用鋼筋」,中華民國國家標準,2005。 [18] Wight, J. K., Macgregor, J. G., “Reinforced Concrete Mechanics & Design,” Prentice Hall, 2011. [19] Aoyama, H.,“Development of Advanced Reinforced Concrete Buildings with High-Strength and High-Quality Materials,” Earthquake Engineering Tenth World Conference, Rotterdam, 1992. [20] Restrepo, J. I., Seible, F., Stephan, B., Schoettler, M. J., “Seismic Testing of Bridge Columns Incorporating High-Performance Materials,” ACI Structural Journal, Vol. 103, 2006. [21] Rautenberg, J. M., “Drift Capacity of Concrete Columns Reinforced with High-Strength Steel,” Purdue University, 2011. [22] Yamamoto, R., Fukada, Y., Tatsumi, M., Ueyama, K., “New Quality Inspection Method for Gas Pressure Welds,” QR of RTRI, Vol. 43, No 1, 2002. [23] Canadian Standards Association, “Design of Concrete Structures,” CSA A23.3-04, 2004. [24] Standards Association of New Zealand, “Concrete Design Standard, NZS 3101:2006, Part 1,” and “Commentary on the Concrete Design Standard, NZS 3101:2006, Part 2,” Wellington, New Zealand, 2006. [25] 中國土木水利工程學會,「混凝土工程設計與解說(土木 401-100)」,科技圖書,2011. [26] Kurniawan, D.P., “Shear Behavior of Reinforced Concrete Columns with High Strength Steel and Concrete under Low Axial Load,” Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, 2011. [27] Handika, N., “Shear Behavior of Tied and Multi-Spiral Columns with High Strength Steel and Concrete under Low Axial Load,” Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, 2012. [28] Presetya, D., “Shear Behavior of Reinforced Concrete Columns with High Strength Steel and Concrete under High Axial Load,” Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, 2013. [29] AIJ 1990, “Design Guidelines for Earthquake Resistant Reinforced Concrete Building Based on Ultimate Strength Concept,” Architectural Institute of Japan, 1990. [30] AIJ 1999, “Design Guidelines for Earthquake Resistant Reinforced Concrete Building Based on Ultimate Strength Concept,” Architectural Institute of Japan, 1999. [31] JICE 1993, “New RC report,” Japan Institute of Construction Engineering, 1993. [32] Whitney, C. S., “Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression,” Journal of American Concrete Institute, Vol. 33, 1937. [33] Metrol, H. C., Rizkalla, S., Zia, P., Mirmiran, A., “Characteristics of Compressive Stress Distribution in High-Strength Concrete,” ACI Structural Journal, Vol. 105, No. 5, 2008. [34] Khadiranaikar, R. B., Awati, Mahesh M., “Concrete Stress Distribution Factors for High-Performance Concrete,” Journal of Structural Engineeringc ASCE, Vo. 138, No. 3, 2012. [35] Ibrahim, Hisham H. H., MacGregor, J. G., “Modification of the ACI Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, Vol. 94, No. 1, 1997. [36] Ozbakkaloglu, T., Saatcioglu, M., “Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, Vol. 101, No. 4, 2004. [37] Azizinamini, A., Kuska, S. S. B., Brungardt, P., Hatfield, E., “Seismic Behavior of SquareHigh-Strength Concrete Columns,” ACI Structural Journal, Vol. 91, No. 3, 1994. [38] Bae, S., Bayrak, O., “Stress Block Parameters for High-Strength Concrete Members,” ACI Structural Journal, Vol. 100, No. 5, 2003. [39] 錢宗國,「非韌性鋼筋混凝土短柱受撓剪破壞之耐震行為研究」,碩士論文,國立台灣大學土木工程學系,2010。 [40] Paultre, P., Legeron, F., “Confinement Reinforcement Design for Reinforced Concrete Columns,” Journal of Structural Engineeringc ASCE, 2008. [41] Watson, S., Zahn, F. A., Park, R., “Confining Reinforcement for Concrete Columns,” Journal of Structural Engineeringc ASCE, 1994. [42] Elwood, K., J., Maffei, J., M., Riederer, K., A., Telleen, K., “Improving Column Confinement-Part 1: Assessment of Design Provisions,” Concrete International, American Concrete Institute, 2009. [43] Elwood, K., J., Maffei, J., M., Riederer, K., A., Telleen, K., “Improving Column Confinement-Part 2: Proposed New Provisions for the ACI 318 Building Code,” Concrete International, American Concrete Institute, 2009. [44] 張豐展,「高強度鋼筋混凝土柱圍束效應研究」,碩士論文,國立台灣大學土木工程學系,2010。 [45] 陳盈璋,「高強度鋼筋混凝土柱耐震圍束效應之研究」,碩士論文,國立台灣大學土木工程學系,2011。 [46] 紀偉凡,「高強度鋼筋混凝土柱耐震圍束設計之研究」,碩士論文國立台灣大學土木工程學系,2012。 [47] Federal Emergency Management Agency, American Society of Civil Engineers, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356),” Federal Emergency Management Agency, 2000. [48] Elwood, K. J., Eberhard M. O., “Effective Stiffness of Reinforced Concrete Columns,” PEER Research Digest, 2006. [49] Elwood, K. J., Moehle, J. P., “An Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol. 102, No. 4, 2005. [50] 內政部營建署建築管理組,¬「混凝土結構設計規範」,內政部營建署,2011。 [51] ASTM C39/C39M, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, 2009. [52] CEB-FIP Model Code 1990, final draft published 1991 by the ComiteEuro-International du Beton as Bulletins d’Information, pp. 57-58. [53] Tomosawa,N., Noguchi, T.,“Relationship Between Compressive Strength and Modulus of Elasticity of High-Strength Concrete,” Dept. of Architecture, Fac. of Engineering, Univ. of Tokyo, 1993. [54] ASTM Standard C469-02, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM International, 2013. [55] RILEM Recommendation CPC 8, “Modulus of elasticity of concrete in compression,” RILEM, 1975. [56] JIS,「コンクリートの静弾性係数試験方法」,日本東京,2010。 [57] ACI-ASCE Committee 326, “Shear and Diagonal Tension,” American Concrete Institute, 1962. [58] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05),” American Concrete Institute, 2006. [59] ASCE/SEI, “Seismic Rehabilitation of Existing Buildings,” ASCE/SEI 41-06, American Society of Civil Engineerings, 2006. [60] 新高強度鋼筋混凝土技術委員會,「鋼筋混凝土用高強度鋼筋-High-Strength Steel bars for Concrete Reinforcement (SD 550/685/785),台灣混凝土學會,2014。 [61] Dinh, H. H., “Shear Behavior of Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement,” PhD dissertation, University of Michigan, 2009. [62] 李台光,華根,陳正誠,「大尺寸鋼筋混凝土柱-橫向箍筋圍束效應之研究」,技師期刊,63期,頁40-46,2013。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/55722 | - |
| dc.description.abstract | 鋼筋混凝土(Reinforced Concrete, RC)結構擁有成本低、耐久性高、易於維護且適用於建築構件組裝的特性,是目前最普遍應用的建築材料,但也由於其單位重量大,強度較鋼骨差,使用於高樓結構會發生柱結構尺寸過大、經濟效應較差甚至鋼筋間距過密難以施工的現象,使得一般30層樓以上的高層建築較少為鋼筋混凝土結構。於912地震時台灣既有的老舊鋼筋混凝土結構表現不佳,外界對於鋼筋混凝土結構的信心大減,導致鋼骨或鋼骨鋼筋混凝土使用於高樓結構較受歡迎。以日本政府於1988年至1992年推行五年的New RC計畫當作借鏡,在提升鋼筋混凝土材料強度並改變施工方法的前提下,鋼筋混凝土結構也同樣可以運用於高樓結構,並擁有與鋼骨、鋼骨鋼筋混凝土結構同等級的安全性能,且能夠解決構件尺寸過大、鋼筋間距過密的現象,並同時得到建築空間提升、成本降低等經濟效益。
在結構物中,柱構件主要用於承受及傳遞垂直載重;對於處於地震帶的台灣,當地震發生時柱子除了承受垂直載重之外,更要承受因地震引起的水平力,以至於柱子在承受軸力下的反覆側推行為是重要的研究議題。 國內外學者發現柱子在承受高軸力的狀況下,剪力容量會隨著側推位移量的增加而下降,且箍筋提供的圍束效果更會直接影響柱子在達到極限強度後側向力的衰減速度。目前使用瓦斯壓接製成的封閉式焊接箍筋用以提供柱圍束及剪力容量,在台灣並沒有相關的研究。本研究以台灣現行的135°的封閉式傳統箍筋與90°-135°非封閉式傳統繫筋當做對照組,比較封閉式焊接箍筋相較於傳統箍筋、繫筋在高強度鋼筋混凝土柱中對柱子反覆側推行為,並驗證現行ACI 318-11規範其剪力鋼筋設計強度對於封閉式焊接箍筋的適用性,以利於工程界的分析與應用。 | zh_TW |
| dc.description.abstract | Nowadays, construction of high-rise buildings become a trend in order to deal with the high population. As the story increase, lower-story structure members will carry higher loads because of the higher self-weight especially for column members. Comparing with steel structure, reinforced concrete structure has a deadly weakness - heavy weight. In order to overcome the problem, bigger section will be used. However, the large dimension was consequent on the higher price and the smaller space. According to the experience of Japan, using high-strength materials in RC members can reduce the dimensions effectively. Therefore, high-strength materials such as high-strength concrete and high-strength steel were strongly recommended in construction industry.
Many researches mention that the shear capacity of RC columns will reduced as the lateral deformation increase especially for columns with high-strength materials. For the reason that the amount and type of transverse reinforcement used in RC columns is a critical factor. For now there is no research of high-strength concrete columns with gas pressure welded rebars as transverse reinforcement in Taiwan. This study used conventional closed-shape hoops with 135° hooks and 90°-135° conventional tie as samples, comparing with welded closed-shape hoops made by gas pressured. Investigating the cyclic behavior of New RC columns with different types of hoops and verifying the adequacy of current ACI shear design equations of RC columns with high strength steel and concrete are the objectives of this study in order to facilitate the analysis and application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T04:19:36Z (GMT). No. of bitstreams: 1 ntu-103-R01521247-1.pdf: 40716932 bytes, checksum: 6f7c8a7c9f0a22c91532f3d332ea0797 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III 目錄 IV 圖目錄 VIII 表目錄 XII 照片目錄 XV 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 研究範圍與內容 2 第二章 文獻回顧 3 2.1. 高強度鋼筋混凝土結構 3 2.1.1. 高強度混凝土 3 2.1.2. 高強度鋼筋 6 2.2. 鋼筋混凝土柱-剪力強度預測公式 13 2.3. 鋼筋混凝土柱-彎矩強度預測公式 27 2.4. 鋼筋混凝土柱-圍束設計公式 30 2.5. 力與位移曲線 41 2.6. 彈性模數 43 2.6.1. 彈性模數預測 44 2.6.2. 彈性模數曲線分析 45 2.7. 裂縫角度 48 第三章 試驗計畫 49 3.1. 試驗背景 49 3.2. 試驗材料 50 3.2.1. 混凝土 50 3.2.2. 鋼筋 51 3.3. 試體參數與命名 52 3.4. 試體設計 53 3.4.1. 柱構件圍束設計 53 3.4.2. 柱構件彎矩強度設計 60 3.4.3. 柱構件剪力強度設計 65 3.4.4. 預測破壞模式 69 3.5. 試驗儀器與設備 72 3.6. 試體製作 75 3.6.1. 應變計貼設 75 3.6.2. 鋼筋籠綁扎後順線 77 3.6.3. 試體澆置 77 3.7. 量測系統 79 3.7.1. 外部量測系統 80 3.7.2. 內部量測系統 81 3.8. 實驗流程 81 第四章 實驗結果 84 4.1. 混凝土抗壓試驗 84 4.2. 鋼筋拉伸試驗 86 4.3. 反覆側推試驗 87 4.3.1. 試體CF-C-PT-0.3 89 4.3.2. 試體CF-C-W-0.3 93 4.3.3. 試體CF-C-FT-0.3 97 4.3.4. 試體CS-C-W-0.2 101 第五章 分析與比較 105 5.1. 試體與破壞參數 105 5.2. 曲線與破壞模式 106 5.2.1. 驗證設計公式 106 5.2.2. 撓曲剪力破壞曲線比較 111 5.3. 有效勁度與迴圈消能 114 5.3.1. 有效勁度計算 114 5.3.2. 側向勁度遞減 115 5.3.3. 試體迴圈消能 117 5.4. 剪力裂縫寬度與角度 119 5.4.1. 剪力裂縫寬度 119 5.4.2. 剪力裂縫角度 121 5.5. 箍筋圍束與主筋挫屈 123 5.6. 橫向箍筋剪力與圍束強度 126 第六章 結論與建議 128 6.1. 結論 128 6.2. 建議 129 參考文獻 131 附錄 A – 試驗儀器與設備照片 138 附錄 B – 試體設計 143 附錄 C – 材料強度曲線與照片 147 附錄 D – 反覆側推試驗照片 153 附錄 E – 鋼筋應變 191 附錄 F – 曲率與剪應變 261 | |
| dc.language.iso | zh-TW | |
| dc.subject | 封閉式焊接箍筋 | zh_TW |
| dc.subject | New RC | zh_TW |
| dc.subject | 圍束 | zh_TW |
| dc.subject | 反覆側推 | zh_TW |
| dc.subject | 箍筋型式 | zh_TW |
| dc.subject | cyclic loading | en |
| dc.subject | New RC | en |
| dc.subject | confinement | en |
| dc.subject | types of hoops | en |
| dc.subject | welded closed-shape hoops | en |
| dc.title | 不同箍筋型式之New RC柱反覆側推行為研究 | zh_TW |
| dc.title | Study of the Cyclic Behavior of New RC Columns with Different Types of Hoops | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃世建(Shyh-Jiann Hwang),歐昱辰(Yu-Chen Ou) | |
| dc.subject.keyword | 封閉式焊接箍筋,New RC,圍束,反覆側推,箍筋型式, | zh_TW |
| dc.subject.keyword | welded closed-shape hoops,New RC,confinement,cyclic loading,types of hoops, | en |
| dc.relation.page | 264 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 39.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
